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Michael’s theorem for Lipschitz cells in o-minimal structures

MALGORZATA CzAPLA and WIESLAW PAawruckl (Krakow)

Abstract. A version of Michael’s theorem for multivalued mappings definable in
o-minimal structures with M-Lipschitz cell values (M a common constant) is proven.
Uniform equi-LC™ property for such families of cells is checked. An example is given
showing that the assumption about the common Lipschitz constant cannot be omit-
ted.

1. Introduction. Assume that R is any real closed field and an expan-
sion of R to some o-minimal structure is given. Throughout the paper we
will be talking about definable sets and mappings referring to this o-minimal
structure. (For fundamental definitions and results on o-minimal structures
the reader is referred to [vdD] or [C].) In this article we adopt the following
definition of a closed cell.

A subset S of R™ (m € Z, m > 0) will be called a closed (respectively,
closed M-Lipschitz) cellin R™, where M € R, M > 0, if

(i) when m = 1: S is a closed interval [, ] (o, 8 € R, «
S = [a,+0), or S = (—00,a] (0 € R), or S = R, and

(i) when m > 1 S = [fi, fol = AWum) : o/ € S AY) < pm <
fo(y)}, where v/ = (y1,...,ym—1), S’ is a closed (respectively, closed
M-Lipschitz) cell in R™™1) f;: S’ — R (i = 1,2) are continuous (re-
spectively, M-Lipschitz) definable functions such that f1(y") < fa(y')
for each v/ € §', or S = [f,+0) = {(V,ym) : ¥V €5, ym > f(V)},
or S = (—o00, f] = {(¥,ym) 1 ¥ € S ym < f(y)}, o0 § =5 xR,
where S’ is as before and f : S’ — R is continuous (respectively,
M-Lipschitz).
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Let F: A = R™ be a multivalued mapping defined on a subset A of R";
i.e. a mapping which assigns to each = € A a nonempty subset F(z) of R™.
Then F' can be identified with its graph, a subset of R™ x R™. If this subset
is definable, we will call F' definable. F' is called lower semicontinuous if for
each a € A, each u € F(a) and any neighborhood U of u, there exists a
neighborhood V' of a such that U N F(x) # (0 for each 2z € V.

The aim of the present article is to prove the following theorem.

THEOREM 1.1. Let F : A = R™ be a definable lower semicontinuous
multivalued mapping on a definable subset A of R™ such that every value F(x)
1s a closed M -Lipschitz cell in R™, where the constant M > 0 is independent
of x € A. Then F admits a continuous definable selection ¢ : A — R™.

The following generalization of Theorem [1.1]is immediate.

COROLLARY 1.2. Let F: A = R™ be a definable lower semicontinuous
multivalued mapping on a definable subset A of R™. If there is a continuous
definable mapping ® : A — Aut(R™) with values in the space of linear
automorphz’sms@ of R™ such that ®(x)(F(z)) is a closed M -Lipschitz cell
in R™, then F' admits a continuous definable selection ¢ : A — R™.

Theorem is true for the semilinear expansion of R provided that A
is bounded (see Remark below). Moreover, every closed semilinear cell
is Lipschitz and for every semilinear family of semilinear cells they are M-
Lipschitz with a common M [vdD, Chapter 1, (7.4)]. In this way we obtain
the following generalization of [AT2, Theorem 4.10].

COROLLARY 1.3. Let F : A = R™ be a semilinear lower semicontinuous
multivalued mapping on a semilinear bounded subset A of R™ such that every
value F(x) is a closed semilinear cell in R™. Then F admits a continuous
semilinear selection ¢ : A — R™.

For other results on multivalued mappings in connection with o-minimal
geometry we refer the reader to [AT1], [AT2]| and [DP].

2. Proof of Theorem (1.1} The proof will be by induction on m. Con-
sider first the case m = 1. Then F(z) = {t € R: f(x) <t < g(z)} for each
x € A, where f : A - RU{—o00} and g : A — R U {+o0o} are definable
functions @ It is easy to check that F' is lower semicontinuous if and only
if g is lower semicontinuous and f is upper semicontinuous. Therefore, the
problem reduces to the following.

PROPOSITION 2.1. Let f : A - RU{—o0} and g : A — RU {400} be
definable functions such that f(x) < g(z) for each x € A, and f is upper

(*) The space Aut(R™) is naturally identified with a subset of R™.
(*) This means that f|f~*(R) and g|g~*(R) are definable.
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semicontinuous while g is lower semicontinuous. Then there exists a definable
continuous function ¢ : A — R such that f < ¢ < g.

To prove Proposition [2.1] which is a definable version of the Kat&tov—
Tong Insertion Theorem, we need the following definable version of the Tietze
Theorem.

THEOREM 2.2 (Definable Tietze Theorem). Let X and Y be definable
subsets of R™ such that Y is closed in X. Then every definable continuous
function ¢ 1 Y — R has a continuous definable extension ¥ : X — R.

For a proof of Theorem see |[vdDl Chapter 8, (3.10)] (compare also
[AF, Lemma 6.6]).

REMARK 2.3. According to [AT2, Theorem 3.3| Theorem [2.2 holds true
in the semilinear expansion of R, provided that Y is bounded.

Proof of Proposition We use induction on d := dim A. The case
d = 0 is trivial. Assume that d > 0. Let

B:={a€ A: f and g are both continuous in a neighborhood of a in A}.

Then B is a definable, open and dense subset of A. Hence A\ B is de-
finable closed in A and dim(A \ B) < d. By induction hypothesis there
exists a definable continuous function ¢ : A\ B — R such that f(z) <
Y(z) < g(x) for each x € A\ B. By the Definable Tietze Theorem there
exists a definable continuous extension ¥ : A — R of 1. Now set p(z) :=
min(max(¥(z), f(x)), g(x)) for z € A. It is clear that f < ¢ < g. Continuity
of ¢ on B is obvious, since ¥, f and g are continuous on B.

We now check the continuity of ¢ at any a € A\ B. We have p(a) =
Y(a) € [f(a),g(a)]. Fix any € > 0. There exists a neighborhood V of a
in A such that ¢¥(a) + ¢ > f(z), ¥(a) — e < g(x), ¥(a) + & > ¥(z) and
Y(a) —e < ¥(x) for each x € V. Then

pla) —e =9(a) —e <¥(x) <max(¥(x), f(z)) <(a) +e=pla) +¢
and ¢p(a) — e < g(x). Hence
¢(a) — e < min(max(¥(z), f(z)),9(z)) < (a) +¢. =

REMARK 2.4. The proof of Proposition 2.1 holds true in the semilinear
expansion of R under the assumption that A is semilinear bounded, provided
we apply a semilinear version of Theorem with X = A (see Remark .

Assume now that m > 1 and our theorem is true for m — 1. To make the
induction hypothesis work we prove the following.

PROPOSITION 2.5. Under the assumptions of Theorem 1.1, let

W:RmBy:(yl,...,ym)r—>y':(yl,...,ymfl)GRm_l
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be the natural projection. Let mo F : A = R™~! be defined by (7o F)(x) =
7(F(x)). Then, after identifying o F with its graph 7 o F C R™ x R™~ Y
the multivalued mapping

G:moF>(x,y)={ym€R: (Y ,ym) € F(x)} CR
18 lower semicontinuous.

Proof. By the definition of a closed cell, one can write, for each = € A,

F(z) ={(/ ym) : ¥ € 7(F(2)), ym € R, fo(y) < ym < g2(¥)},
where fy, g, : 7(F(x)) — R are M-Lipschitz (or maybe f, =—00, or g, =00;
these cases will follow by a simple modification of the argument below).
Fix any (a,t)) € mo F, u € G(a,V') = {ym € R : fo(V) < ym < ga(V)}
and any open interval (u — &, u + €). Let W be the open ball {y/ € R™ ! :
|y —b'| < e/(4M)}, where || is defined by || = |(y1, - . ., Ym—1)| = max; |y;].
By lower semicontinuity of F' there exists a neighborhood V of a in A such
that F'(z) N (W x (u—¢e/2,u+¢/2)) # ) whenever z € V.

Let (z,y') € (moF)N(V x W). There exists (2/,v) € F(z)N(W x (u—e/2,
u+¢/2)). Then ¢ € n(F(x)) and 2’ € w(F(z)); hence |y — 2| < e/(2M)
and f,(2") < v < g, (2). Thus, |f.(v) — f(2)| < M|y — 2| < %5. Hence
fz(y) < fr(z’)—i—%s < U—i—%z’f < u+e. Similarly, |g.(y') — g2(2")] < %6 and so
9:(y') 2 go(#') = 56 > v > u—e. Finally, [fo(y'), g2(y)] N (u—e,u+¢) # 0,
which ends the proof. =

To finish the proof of Theorem[I.1] observe that the mapping woF' is lower
semicontinuous as the composition of a lower semicontinuous mapping with
a continuous one, so by the induction hypothesis there exists a continuous
definable selection ¢’ for m o F. We identify ¢’ with its graph. By Proposi-
tion 2.5, G|¢’ : ¢’ = R is lower semicontinuous; hence, by Proposition 2.1, it
admits a continuous definable selection o : ¢’ — R, which gives the required
selection ¢ = (¢, 0 0 (ida, ¢')).

REMARK 2.6. The proof of Proposition holds true for the semilinear
expansion of R, so in view of Remark Theorem holds true for the

semilinear structure under the assumption that A is semilinear and bounded.

3. A counterexample. We now give a semialgebraic example showing
that in Theorem the assumption of common boundedness of the Lip-
schitz constants of the Lipschitz cells F'(x) cannot be omitted, even if F' is
continuous.

Let A =T, UT, C R?, where

Ty = {(x1,22) : 21 € 0,1], —21 < 9 < 1},
Ty = {(21,22) : 21 € [-1,0], 21 <25 < —21}.
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We define F : A = R? by

{0} x [0,1], (z1,72) = (0,0),
{@, lyl/lz1]) : =21 + 22 <y <31}, 71 >0, 22 20,
F(z,22) = {(y: [yl/lz1]) : —z1 Sy < a1 + 22}, r1 >0, 22 <0,

{(y, 1 =yl/|z1]) s 21+ 22 <y < —z1}, 21 <0, 22 >0,
{(y, 1= yl/laa]) c 21 Sy < —a1 + a2}, 21 <0, 22 <0.
The graph of F' is shown in Fig 1.

R2

X2

AN

Ty
Fig. 1. The graph of F

Suppose that F' admits a continuous semialgebraic selection ¢ = (o, p) :
A — RZ% Then, for z1 > 0, o(x1,21) > 0 and o(x1, —x1) < 0; hence, there
exists § € [—x1, x1] such that o(z1,§) = 0, so p(21,§) = |o(z1,€)|/|21] = 0
and p(z1,£) = (0,0). Consequently, by continuity, ©(0,0) = (0,0). Similarly,
for any x; < 0, there exists £ € [z, —x1] such that ¢(z1,£) = (0,1); hence
©(0,0) = (0,1), a contradiction.

Notice that in the above example the dimensions of both the domain and
the target space are minimal (see [CzP]).

4. M-Lipschitz cells as a uniformly equi-LC? family, with arbi-
trary p. Let S§; denote the set of all closed M-Lipschitz cells in R, where
M > 0 is a constant. We will show that S} is uniformly equi-LC?, with ar-
bitrary p, in the sense of Michael [M]. This follows immediately from the fact
that every closed cell is contractible, together with the following proposition.

PROPOSITION 4.1. Let M,e € R, M > 1, ¢ > 0. Set k1 =11 =1
and ky, = 22772 and l,, = 22" 3 for m > 2. Endow R™ with the metric
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(a1, ... am)—(b1,...,by)| = max; |a;—b;|. For anya = (a1,...,am) € R™,
consider the following cuboids with center a:
P(a,e) :=[a1 — ke, a1 + kig] X -+ X [am, — kmM™ e, ap, + k:mMm_ls],
Q(a,e) = [a1 — lie,a1 + lig] X -+ X [am — L M™ Ye, ap, + lmMm_le].
Then, for any S € Sy}, if SN Q(a,e) # 0, then SN P(a,¢) € S}}.

Proof. The assertion is trivial for m = 1, so assume that m > 2 and the
assertion is true for m — 1. Let 7 : R™ 3 (a1,...,am) = (a1,...,am—1) €
R™ ! Then n(P(a,e)) = P(n(a),e) and 7(Q(a,¢)) = Q(n(a),e). Let S €
Sypand SNQ(a,e) # 0. Then 7(S)NQ(7(a),e) # 0. Hence, by the induction
hypothesis, T := 7(P(a,c)) N 7(S) is an M-Lipschitz cell in R™~1. We
distinguish three cases.

@O S =1[ffol =4y =W ym) : v € 7(S), 1(y) < ym < fo(¥)},
where ¥ = (y1,...,Ym—1) and f; : m(S) = R (i = 1,2) are M-Lipschitz. By
assumption, there exists u = (v, um) € SN Q(a,e). Then v’ € T, f1(u') <
Um < fo(u') and ay, — LnM™ e < up < g + L M™ e, Thus, for any
y e,

AW < i)+ M)y — | < up, + Mdiamn(P(a, €))
<y + Ly M™ e 4 M - 2k M™% = ay, + by M™ e,
and similarly
L) = f2(u) = Mly' — | = upn, — Mdiamr(P(a, €))
> Gy — Ly M™ e — M - 2k 1 M™% = ay, — iy M™ e
Consequently,

SNP(a,e)={(,ym) : ¥ €T,
max(fl (y/)7 m — kmMm_lg) < Ym < min(f2(y/)7 am + kmMm_IE)}
is an M-Lipschitz cell.

In the cases (IT) S = [f, +00) and (III) S = (—o0, f] we argue in a similar
way. m
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