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Some finitely generated modules and cohomologies
and the Jacobian conjecture

by Shmuel Friedland (Chicago, IL)

Abstract. We show that the plane Jacobian conjecture is equivalent to finite gener-
atedness of certain modules.

0. Introduction. Let f ∈ C[C2] be a primitive polynomial. That is, the
fiber

Vt := {(x, y) ∈ C2 : f(x, y) = t}
is an irreducible affine curve for all but a finite number of values of t. It is well
known that there exists a finite set K(f) ⊂ C so that for each t ∈ C \K(f)
the affine curve Vt is homeomorphic to a fixed closed Riemann surface Σ
punctured at k ≥ 1 distinct points ζ1, . . . , ζk (see e.g. [Fri]). We assume that
K(f) is a minimal set, i.e. for any t ∈ K(f) the affine curve Vt is not hom-
eomorphic to Σ \{ζ1, . . . , ζk}. It is well known that f is linearizable iff K(f)
is an empty set. (We give a short proof of this statement for completeness.)

Associate with f the following partial differential operator:

(0.1) L(u) = −fyux + fxuy.

Here u is a holomorphic function on a domain X ⊂ C2. It is known that
topological type of Vt, t ∈ C \K(f), is reflected in certain properties of L.
We bring the following two examples which motivate this paper. Let

F := C(f) ⊂ C(C2), F [C2] ⊂ C(C2),

be the field generated by f and the ring F⊗C[C2] respectively. Then L(F) =
{0} and

(0.2) L : F [C2]→ F [C2]

is a linear operator over F . In [Fri] we showed that L is Fredholm with
kerL = F and the dimension of cokerL is equal to the rank of H1(Vt,Z) for
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any regular fiber t 6∈ K(f). Let X be a domain in C2 and denote by OX the
sheaf of germs of holomorphic functions on X. Then H0(X,OX) is the ring
of holomorphic functions on X. We call X quasi-projective if X is C2 minus
a finite number of affine algebraic curves. For a quasi-projective domain X
let

OX,r := OX ∩ C(C2), H0(X,OX,r)
be the sheaf of rational functions holomorphic on X and the ring of ratio-
nal functions holomorphic on X respectively. We assume that X is quasi-
projective whenever we use the ring OX,r. Clearly,

L : H0(X,OX)→ H0(X,OX),(0.3)

L : H0(X,OX,r)→ H0(X,OX,r)(0.3r)

are derivations. Let kerX L and kerX,r L be the kernels of (0.3) and (0.3r)
respectively. Obviously, each of these kernels is a ring. We view H0(X,OX)
(resp. H0(X,OX,r)) as a kerX L-module (resp. kerX,r L-module). Then L
in (0.3) (resp. (0.3r)) is a kerX L-homomorphism (resp. kerX,r L-homomor-
phism). Define the following kerX L-modules and kerX,r L-modules respec-
tively:

(0.4)

MX := H0(X,OX)/L(H0(X,OX)),

MX,r := H0(X,OX,r)/L(H0(X,OX,r)),
M :=MC2,r = C[C2]/L(C[C2]).

Let

(0.5) B := C \K(f), Y := f−1(B) = C2 \
⋃

t∈K(f)

Vt.

In [Dim] Dimca proved that MY,r (resp. MY ) is a finitely generated free
kerY,r L-module (resp. kerX,r L-module) whose rank is equal to the rank of
H1(Vt,Z), t ∈ C \K(f). The following problem arises naturally:

Problem 1. Let f ∈ C[C2] be a primitive polynomial. When is M a
finitely generated module over C[f ] (= kerC2,r L)?

We now briefly summarize the results of our paper. In §1 we show that
for f = xmyn, (m,n) = 1, the module M is finitely generated. Theorem 1
claims that if M is a finitely generated C[f ]-module and f has no critical
points, then the monodromy action on H1(Vt,Z), t 6∈ K(f), is trivial. Let
B(a,R) ⊂ C2 be an open Euclidean ball of radius R centered at a. We
show that the results of Theorem 1 hold if MB(0,R) is a finitely generated
kerB(0,R) L-module for R big enough.

Assume that F = (f, g) : C2 → C2 is a polynomial map with a nonzero
constant Jacobian L(g) = const 6= 0. (We call such a pair (f, g) a Jacobian
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pair.) The celebrated Jacobian conjecture claims that F is an automor-
phism of C2. See for example [B-C-W], [Dru] and [Ess]. It is known that
F is a diffeomorphism iff M is a trivial module [Ste], [K-S]. We show that
if each fiber Vt is irreducible and M is finitely generated then F is an au-
tomorphism. Kaliman’s result shows that the plane Jacobian conjecture is
equivalent to the statement that for any Jacobian pair the module M is a
finitely generated C[f ]-module.

In §2 we show that MX is isomorphic to certain first cohomology asso-
ciated with (0.3). This cohomology has a Stein cover [G-R], consisting of a
countable set {Wi}i∈N of open sets covering C2. On each Wi the cohomol-
ogy is trivial. Clearly, closureB(0, R) can be covered by a finite cover from
{Wi}i∈N. Thus the Jacobian conjecture is reduced to the finiteness problem
of the above cohomology. It is our hope that this finiteness can be proved
by a careful study of the patching of a finite Stein cover for B(0, R).

1. Finitely generated modules

Lemma 1. Let f = xmyn, where m,n are coprime positive integers.
Then M is a finitely generated module over the ring R = C[f ]. The number
of minimal generators is mn. Moreover M is a free module iff m = n = 1.

Proof. Clearly,

L(xpyq) = (mq − np)xm+p−1yn+q−1.

Thus L(C[C2]) does not have monomials xayb of the following type:

(1.1)
a ≤ m− 1, b ≤ n− 1,

a = lm− 1, b = ln− 1, l = 2, . . .

That is, M is a C-vector space generated by the vectors xayb, with (a, b)
satisfying (1.1). Note that for l ≥ 2 we have the equality

xlm−1yln−1 = (xmyn)l−1xm−1yn−1.

Hence the R-module M is generated by nm monomials given by the first
condition of (1.1). Note that the monomial xm−1yn−1 generates a free R-
submoduleM. For any other monomial xayb which satisfies the first condi-
tion of (1.1), we find that fxayb is a zero element in M. Hence M is free
iff m = n = 1. As the monomials given in the first part of (1.1) are linearly
independent over C it follows that mn is the minimal number of generators
of M.

Let f ∈ C[C2] be a primitive polynomial. Then Y → B is a fiber bundle
with a fiber Vt homeomorphic to Σ \ {ζ1, . . . , ζk}. Therefore

χ(B) = 1− |K(f)|, χ(Σ \ {ζ1, . . . , ζk}) = 2− 2 gen− k,
χ(Y ) = χ(Σ \ {ζ1, . . . , ζk})χ(B) = (2 gen + k − 2)(|K(f)| − 1).
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Here χ(W ) is the Euler characteristic of a CW complex W and gen is the
genus of Σ. If K(f) = 0 then Y = C2 and χ(Y ) = 1. Hence each fiber
Vt is a smooth irreducible affine curve which is homeomorphic to C. The
Abhyankar–Moh theorem [A-M] implies that f is linearizable. That is, there
exists a polynomial automorphism F = (f, g). In this case the moduleM is
trivial.

We recall some basic notions and results on the monodromy of the regular
fiber Vτ , τ ∈ B. We closely follow our exposition in [Fri]. By choosing a
canonical basis in H1(Vτ ,Z) one obtains the representation

φ : π1(B, τ)→ AutH1(Vτ ,Z)

of the fundamental group π1(B, τ) in AutH1(Vτ ,Z). This representation
is called the monodromy of H1(Vτ ,Z). More precisely, let an element α ∈
π1(B, τ) be represented by a closed continuous path α : [0, 1]→ B starting
at τ . Then for any given element [γ] in the homology class of Vτ we can
define a unique continuation

[γ](t) ∈ H1(Vα(t),Z), t ∈ [0, 1],

[γ](0) = [γ], [γ](1) = φ(α)(γ).

The above continuation is called the Hurewicz connection. The monodromy
φ of f is called trivial if φ is a trivial homomorphism. Let H1(Vt), t ∈ B, be
the first regular holomorphic cohomology of Vt. Any class [ω] ∈ H1(Vt) is
represented by a holomorphic 1-form ω on Vt, which has rational singularities
in the closure of Vt. We have [ω] = [θ] iff ω−θ = df , where f is a holomorphic
function on Vt which is rational on the closure of Vt. Note that

H1(Vt) ∼ C⊗H1(Vt,Z), t ∈ B.
Hence monodromy acts dually on H1(Vτ ). Let H1

fix(Vτ ) ⊂ H1(Vτ ) be the
subspace of all cohomology elements which are fixed by the monodromy
action. Denote by fix1(f) the dimension of H1

fix(Vτ ). Let δ(f, t), t ∈ C, be
the number of irreducible components of Vt minus 1. Clearly, δ(f, t) = 0,
t ∈ B. Let

δ(f) :=
∑

t∈C
δ(f, t) =

∑

t∈K(f)

δ(f, t).

It is shown in [A-C-D] and in [Fri] that

fix1(f) = δ(f).

Hence if each Vt is irreducible then fix1(f) = 0.
The arguments in [Fri, Lemma 3.2] yield that there exists a rational

1-form ω on C2, which is holomorphic on Y , such that, in Y ,

(1.2) ω = sdx+ tdy, df ∧ ω = dx ∧ dy.
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Moreover, if f does not have critical points then s, t can be chosen to be
polynomials. It follows that for t ∈ B, any cohomology class in H1(Vt) can
be given by the restriction hω|Vt for some h ∈ C[C2]. Moreover, for any
h ∈ C[C2], L(h)ω|Vt is an exact 1-form on Vt. See [Fri] or [Dim]. Hence
H1(Vt) is isomorphic to MY |Vt . The derivation d/dt of a cohomology ele-
ment in H1(Vt) is given by the Gauss–Manin connection, which is dual to
the Hurewicz connection. It is given by the following differential map:

M :MY →MY , M(h) = thx − shy + o(ω)h,(1.3)

o(ω) =
dω

dx ∧ dy = tx − sy.

Let γ ⊂ Vt, t ∈ B, be a smooth closed path. Let B(t, r) ⊂ B be an open
disk centered at t with a small radius r. Extend γ to a continuous family of
smooth closed curves γ(z) ⊂ Vz, z ∈ B(t, r). Then (1.3) yields

(1.4)
d

dz

�

γ(z)

hω =
�

γ(z)

M(h)ω.

(In [Fri] we prove (1.4) in the special case where ω = dg and the Jacobian
of the map F = (f, g) is equal to 1.)

Theorem 1. Let f ∈ C[C2] be a polynomial without critical points. As-
sume that M is a finitely generated C[f ]-module. Then the monodromy of
f is trivial.

Proof. Let h1, . . . , hn be generators of M. View M(hi) and o(ω)hi as
elements of M. As M is finitely generated we get

M(hi) + o(ω)hi =
n∑

j=1

aji(f)hj , i = 1, . . . , n.

Thus, A(t) = (aij(t))n1 is an n×n matrix with polynomial entries. Consider
the following linear ODE system for x(t) = (x1(t), . . . , xn(t))T in a complex
variable t:

(1.5)
dx

dt
= −A(t)x, x(τ) = ξ ∈ Cn.

Since A(t) is entire on C there exists a unique entire solution x(t) of (1.5).
Let h := (h1, . . . , hn)T. Consider the holomorphic 1-form on C2,

(1.6) θ :=
n∑

i=1

xi(f)hiω.

Let θt := θ|Vt be viewed as an element of H1(Vt). Then for t ∈ B let
dθt/dt ∈ H1(Vt) be the derivative of θt with respect to the Gauss–Manin
connection. The definition of M and (1.5) yield
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dθt
dt

= (x′(t))T(h|Vt) + (x(t))T(M(h)|Vt)(1.7)

= −x(t)TAT(u|Vt) + x(t)TA(t)T(u|Vt) = 0.

Hence the monodromy action fixes the cohomology element θτ . From the
proof of Lemma 3.2 in [Fri] it follows that any element in the cohomology
H1(Vτ ) is represented by hω|Vτ , h ∈ C[C2]. AsM is generated by h1, . . . , hn
over the ring C[f ], it follows that the monodromy action fixes any element in
cohomology. Hence the monodromy action fixes any element in homology.

We do not know if the converse to Theorem 1 holds.

Corollary 1. Under the assumptions of Theorem 1,

(1.8) rankH1(Vτ ,Z) = dimH1(Vτ ) = fix1(f) = δ(f), τ ∈ B.
Corollary 2. Let f ∈ C[C2] be a polynomial without critical points.

Assume that M is a finitely generated C[f ]-module and each fiber Vt, t ∈ C,
is irreducible. Then f is linearizable.

Proof. If a regular fiber Vτ , τ ∈ B, is C then f is linearizable [A-M].
Assume to the contrary that Vτ is not C. Then H1(Vτ ) is nontrivial contrary
to Corollary 1 (δ(f) = 0).

We now show that (1.8) holds under milder conditions. Let D(a, r) be
an open disk of radius r centered at a in C. For any set S ⊂ Cn let S be the
closure of S. We first establish the following lemma:

Lemma 2. Let f ∈ C[C2] be a polynomial without critical points. As-
sume that D(a, r) ⊃ K(f). Then there exists B(0, R), R = R(r), with the
following property. Let

(1.9) L(u) = 0, u ∈ H0(B(0, R),OB(0,R)).

Then there exists v ∈ H0(D(a, r),OD(a,r)) such that

(1.10) u(x, y) = v(f(x, y)), ∀(x, y) ∈ B(0, R) ∩ f−1(D(a, r)).

Proof. Fix a point P = (x0, y0). Since P is not a critical point of f
there exists a linear function g = bx + cy so that L(g)(P ) 6= 0. Hence the
polynomial map F = (f, g) : C2 → C2 is a dominating polynomial map,
which is a local diffeomorphism at P . That is, there exists %P > 0 such that

(1.11) F : B(P, %P )→ F (B(P, %P ))

is a diffeomorphism. In particular, F (B(P, %P )) is simply connected. Assume
furthermore that %P is small enough so that there exists εP > 0 such that

f(B(P, %P )) ⊃ D(f(P ), εP ),

WP := B(P, %P ) ∩ f−1(D(f(P ), εP )) is connected,(1.12)

B(P, %P ) ∩ Vt = WP ∩ Vt is connected, t ∈ D(f(P ), εP ).
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Assume that

(1.13) L(u) = 0, u ∈ H0(B(P, %P ),OB(P,%P )).

Introducing new variables s = f , t = g we deduce that ug = 0 (see e.g.
[Fri]). Since each WP ∩ Vt is connected for t ∈ D(f(P ), εP ), there exists
vP ∈ H0(D(f(P ), εP ),OD(f(P ),εP )) so that

(1.14) u(x, y) = vP (f(x, y)), (x, y) ∈WP .

Thus {WP}P∈C2 is an open cover of C2. Assume (1.9). Then for each
P ∈ B(0, r) we have the function vP . We view the set vP , P ∈ B(0, R),
as the set of germs of analytic functions on E := f(B(0, R)). Choosing a
path α : [0, 1]→ B(0, R) and considering the family vP along this path, we
obtain an analytic continuation of vP in E along the path f◦α. Since B(0, R)
is a semialgebraic set and Vt is an algebraic set, B(0, R)∩Vt has a finite num-
ber of connected components for any t ∈ C. Suppose that B(0, R) ∩ Vt is a
nonempty connected set. Continuing vP along paths lying on B(0, R)∩Vt we
deduce that all vP , P ∈ B(0, R)∩ Vt, give rise to the same germ of analytic
function vt in the neighborhood of t. Let κ > 0 be small enough so that

Kκ(f) :=
⋃

t∈K(f)

D(t, κ) ⊂ D(a, r).

Let S := D(a, r)\Kκ(f). Morse theory, e.g. the arguments in [Fri, §1], yields
that there exist R� 1 so that B(0, R)∩Vt is a nonempty connected set for
any t ∈ S. Choose g = bx + cy so that the map F = (f, g) : C2 → C2 is
proper. (f = 0 and g = 0 do not have common points at the line at infinity.)
Assume that

F−1(D(a, r)× {0}) ⊂ B(0, R).

Let τ ∈ S. Then B(0, R) ∩ Vτ is connected, hence v defines a unique holo-
morphic germ vτ . We claim that vτ has an analytic continuation along any
smooth closed path in α ⊂ D(a, r). Furthermore, this continuation termi-
nates with the germ vτ . Let L be the line g = 0. Then F |L = f |L is a
proper map. View α as a closed path in D(a, r) × {0}. Then one can lift
α to L. Since F |L may have a finite number of critical points, we may
have a finite number of possible continuous liftings of α, which are piece-
wise smooth. Let γ : [0, 1] → L be one of these liftings. Our assumptions
yield that γ([0, 1]) ⊂ B(0, R). Continue vτ = vγ(0) along γ([0, 1]). Since
γ(1) ∈ B(0, R) ∩ Vτ it follows that vγ(1) = vτ . Hence the analytic continua-
tion of vτ in D(a, r) gives rise to v ∈ H0(D(a, r),OD(a,r)) and (1.10) holds.

We remark that a more careful analysis shows the validity of Lemma 2
under the assumptions that f ∈ C[C2] has a finite number of critical points.
(We are not using this remark.)
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Theorem 2. Let f ∈ C[C2] be a polynomial without critical points.
Assume that MB(0,R) is a finitely generated kerB(0,R) L-module for each
R > 0. Then the monodromy of f is trivial.

Proof. Fix D(a, r) which contains K(f). Let S be as defined in the proof
of Lemma 2. Assume that κ is small enough so that S is homotopic to B.
Choose R � 1 so that B(0, R) satisfies the assumptions in the proof of
Lemma 2. Furthermore, for each t ∈ S, Vt∩B(0, R) is a connected set which
is homeomorphic to Vt. Assume that the kerB(0,R) L-moduleMB(0,R) is gen-
erated by u1, . . . , uN ∈ H0(B(0, R),OB(0,R)). Let ω be the 1-form defined
by (1.2). As in the proof of Theorem 1 it follows that u1ω|Vτ , . . . , uNω|Vτ ,
τ ∈ S, spanH1

hol(Vτ∩B(0, R)), the space of holomorphic 1-forms modulo the
exact forms on Vτ ∩B(0, R). We see that π1(S, τ) acts on H1

hol(Vτ ∩B(0, R))
(the monodromy action). Combine Lemma 2 with the proof of Theorem 1
to deduce that this action is trivial. As H1

hol(Vτ ∩B(0, R)) is isomorphic to
H1(Vτ ) we deduce our theorem.

2. Cohomologies. Let f ∈ C[C2] be a polynomial. Let P be the follow-
ing sheaf over C2: Each stalk s of P(x0,y0) is given by

(2.1) s(x, y) = ψ(f(x, y)− f(x0, y0)),

where ψ is the germ of a holomorphic function in one variable t at 0. It is
straightforward to check that P is a sheaf.

Lemma 3. Let f ∈ C[C2] be a polynomial without critical points. Then
the following sequence of sheaf maps on C2 is exact :

(2.2) 0→ P inclusion−−−−→ OC2
L→ OC2 → 0.

Proof. Clearly, L(ψ(f(x, y)− f(x0, y0))) = 0. Assume that u is a germ
of a holomorphic function in (x, y) in the neighborhood of (x0, y0) such that
L(u) = 0. Then the proof of Lemma 2 yields that u is in P. That is, P is the
kernel of L on the sheaf OC2 . It is left to show that L(OC2) = OC2 . This is
equivalent to the local solution of L(v) = u at (x0, y0) for any holomorphic
germ u at (x0, y0). As in the proof of Lemma 2 choose g = bx+ cy so that
L(g)(x0, y0) 6= 0. Then L(v) = u becomes the equation vg = u/L(g) in the
coordinates (f, g) (see e.g. [Fri]). Clearly, one can find a local solution to
this equation by integrating with respect to g. Pull back by F = (f, g) to
obtain a local solution.

Let Y be a topological space with a given open cover V = {Vi}i∈I . Let
S be a given sheaf. Then V is called an acyclic covering for S if

Hq(Vi1 ∩ . . . ∩ Vip ,S) = 0, q > 0, for any i1, . . . , ip ∈ I.



Finitely generated modules and cohomologies 109

The Leray Theorem states that [G-H, 0.3]

H∗(V,S) = H∗(Y,S).

Lemma 4. Let f ∈ C[C2] be a polynomial with no critical points. Then
there exists a countable covering U of C2 which is acyclic for the sheafs
P,OC2 .

Proof. For each P = (x0, y0) choose an open set WP as defined in (1.12).
For each integer p ≥ 1, choose a finite cover Up of B (0, p) \B(0, p− 1) out
of the cover

{WP }P∈B(0,p)\B(0,p−1).

Let U :=
⋃
p≥1 Up. Without loss of generality we may assume that each

WP ∈ U has a nonempty intersection with a finite number of elements of U.
That is, there exists a discrete countable set T ⊂ C2 so that U = {WP }P∈T .
As each WP is a Stein manifold it follows that U is an acyclic cover for OC2 .
Consider WP with P = (x0, y0). Use the local diffeomorphism F defined in
the proof of Lemma 2 to deduce that H∗(WP ,PWP ) = 0. Hence U is an
acyclic cover for P.

Corollary 3. Let f ∈ C[C2] be a polynomial with no critical points.
Assume that X ⊂ C2 is a Stein manifold. Then

(2.3) MX ∼ H1(X,PX).

Proof. Consider the exact sequence of cohomology groups corresponding
to the exact sequence (2.2) [G-H, 0.3], using a countable acyclic cover UX :=
{WP }P∈T (X) of X as constructed in the proof of Lemma 4:

0→ H0(X,PX)→ H0(X,OX)→ H0(X,OX)

→ H1(X,PX)→ H1(X,OX)→ H1(X,OX)→ . . .

As the inclusionH0(X,PX)→H0(X,OX) is an injection andH1(X,OX)=0
we obtain (2.3).

We now explain the isomorphism map in (2.3). Let u ∈ H0(X,OX). For
each P ∈ T (X) we find a local solution

(2.4) L(vP ) = u, vP ∈ OX(WP ), P ∈ T (X).

Assume that WP ∩WQ 6= ∅. Our arguments show that

(2.5) hP,Q := vP − vQ ∈ P(WP ∩WQ), P,Q ∈ T (X).

Hence u ∈ L(H0(X,OX)) iff the above cocycle in H1(UX ,PX) is trivial.
Note that the coset u + L(H0(X,OX)) corresponds to the same cocycle
(2.5) in H1(UX ,PX). This gives the injection

ι :MX → H1(UX ,PX).
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Corollary 3 implies that ι is surjective. That is, for a cocycle

hP,Q ∈ PX(WP ∩WQ), P,Q ∈ T (X),

there exists u ∈ H0(X,OX) with local solutions (2.4) so that the above
cocycle is the cocycle (2.5). Note that H1(X,PX) is an H0(X,OX)-module.

Fix R ≥ 0. Let

(2.6) T (R) := {P ∈ T : WP ∩B(0, R) 6= ∅}.
As we pointed out in the proof of Lemma 4 we may assume that T (R) is a
finite set. Let

(2.7) XR :=
⋃

P∈T (R)

WP .

Then XR is a Stein manifold with a finite acyclic cover {WP }P∈T (R). Com-
bine Corollary 2 with the arguments of the proof of Theorem 2 to obtain

Theorem 3. Let f ∈ C[C2] have no critical points. Let XR be defined by
(2.6)–(2.7). If H1(XR,PXR) is a finitely generated module for each R > 0
then the monodromy of f is trivial.

Assume that F = (f, g) is a Jacobian pair with L(g) = 1. Then the
1-form ω defined in (1.2) is given by dg. Furthermore, M defined in (1.3) is
given by

M := gy
∂

∂x
− gx

∂

∂y
.

As ML = LM we deduce that for any domain X,

(2.8) M :MX →MX .

Without loss of generality we can assume that for each WP , which is defined
in (1.12), F |WP is a diffeomorphism. The following observation may be useful
in the study of the plane Jacobian conjecture:

Proposition 1. Let F = (f, g) be a Jacobian pair with L(g) = 1. As-
sume that X ⊂ C2 is a Stein manifold. Then the isomorphism (2.3) induces
the isomorphism between the action of M given by (2.8) and the action

(2.8′) M : H1(X,PX)→ H1(X,PX)

given by

(2.8′′) hP,Q 7→M(hP,Q), hP,Q ∈ P(WP ∩WQ).

Proof. Let u ∈ P(WP ). Push forward by F , take the derivative with
respect to g and pull back by F to deduce that M(u) ∈ P(WP ). Similarly,

hP,Q ∈ P(WP ∩WQ)⇒M(hP,Q) ∈ P(WP ∩WQ).
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Assume that the cocycle corresponding to an acyclic covering of X by a
countable cover {WP }P∈T (X) is a trivial cocycle. As ML = LM it follows
that

M(hP,Q) ∈ P(WP ∩WQ), P,Q ∈ T (X),

is a trivial cocycle. Hence (2.8′′) defines the action (2.8′).
Corollary 3 yields that any cocycle in H1(X,PX) is of the form (2.5),

where each vP , P ∈ T (X), satisfies (2.4). Clearly,

M(u) = M(L(vP )) = L(M(vP )), P ∈ T (X).

Corollary 3 yields that the cocycle

M(vP − vQ) ∈ P(WP ∩WQ), P,Q ∈ T (X), P 6= Q,

determines the unique coset M(u) +L(H0(X,OX)). Hence the action (2.8)
is isomorphic to the action (2.8′).

Note that for any s ∈ P(x0,y0) of the form (2.1) we have

M(s) = ψ′(f(x, y)− f(x0, y0)).
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