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Some finitely generated modules and cohomologies
and the Jacobian conjecture

by SHMUEL FRIEDLAND (Chicago, IL)

Abstract. We show that the plane Jacobian conjecture is equivalent to finite gener-
atedness of certain modules.

0. Introduction. Let f € C[C?] be a primitive polynomial. That is, the

fiber
Vi = {(a,y) € C*: f(z,y) =t}

is an irreducible affine curve for all but a finite number of values of t. It is well
known that there exists a finite set K(f) C C so that for each t € C\ K(f)
the affine curve V; is homeomorphic to a fixed closed Riemann surface X
punctured at k > 1 distinct points (3, ..., (x (see e.g. [Fri]). We assume that
K(f) is a minimal set, i.e. for any ¢ € K(f) the affine curve V; is not hom-
eomorphic to X\ {(1, ...,k }. It is well known that f is linearizable iff K (f)
is an empty set. (We give a short proof of this statement for completeness.)

Associate with f the following partial differential operator:

(0.1) L(u) = — fyug + fauy.
Here u is a holomorphic function on a domain X C C2. It is known that

topological type of Vi, t € C\ K(f), is reflected in certain properties of L.
We bring the following two examples which motivate this paper. Let

F:=C(f) c C(C?), F[C? ccC(C?,

be the field generated by f and the ring F ®C[C?] respectively. Then L(F) =
{0} and

(0.2) L: F|C? — F[C?

is a linear operator over F. In [Fri] we showed that L is Fredholm with
ker L = F and the dimension of coker L is equal to the rank of H;(V;,Z) for
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any regular fiber ¢t ¢ K(f). Let X be a domain in C? and denote by Ox the
sheaf of germs of holomorphic functions on X. Then H°(X,Ox) is the ring
of holomorphic functions on X. We call X quasi-projective if X is C? minus
a finite number of affine algebraic curves. For a quasi-projective domain X
let

OX,T = OXO(C(CQ), HO(X,OX7T)

be the sheaf of rational functions holomorphic on X and the ring of ratio-
nal functions holomorphic on X respectively. We assume that X is quasi-
projective whenever we use the ring Ox . Clearly,

(0.3) L:HX,0x)— H(X,0x),
(0.3r) L:H(X,0x,)— H(X,0x.,)

are derivations. Let kerx L and kerx , L be the kernels of (0.3) and (0.3r)
respectively. Obviously, each of these kernels is a ring. We view H°(X, Ox)
(resp. HY(X,0x ,)) as a kery L-module (resp. keryx , L-module). Then L
in (0.3) (resp. (0.3r)) is a kerx L-homomorphism (resp. kerx , L-homomor-
phism). Define the following kerx L-modules and kerx , L-modules respec-
tively:

Mx = H°(X,0x)/L(H°(X, Ox)),
(0.4) Mx = H(X,0x,)/L(H*(X,0x,)),
M := Mc2, = C[C?]/L(C[C?)).
Let
(0.5) B:=C\K(f), Y:=f'B=C\ |J

teK(f)

In [Dim] Dimca proved that My, (resp. My ) is a finitely generated free
kery , L-module (resp. kery , L-module) whose rank is equal to the rank of
H(V;,Z),t € C\ K(f). The following problem arises naturally:

PROBLEM 1. Let f € C[C?] be a primitive polynomial. When is M a
finitely generated module over C[f] (= kercz , L)?

We now briefly summarize the results of our paper. In §1 we show that
for f = a™y"™, (m,n) = 1, the module M is finitely generated. Theorem 1
claims that if M is a finitely generated C[f]-module and f has no critical
points, then the monodromy action on Hy(V;,Z), t ¢ K(f), is trivial. Let
B(a,R) C C? be an open Euclidean ball of radius R centered at a. We
show that the results of Theorem 1 hold if Mp( r) is a finitely generated
kerp(o,r) L-module for R big enough.

Assume that F' = (f,g) : C> — C? is a polynomial map with a nonzero
constant Jacobian L(g) = const # 0. (We call such a pair (f,g) a Jacobian
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pair.) The celebrated Jacobian conjecture claims that F' is an automor-
phism of C2. See for example [B-C-W], [Dru] and [Ess]. It is known that
F is a diffeomorphism iff M is a trivial module [Ste], [K-S]. We show that
if each fiber V; is irreducible and M is finitely generated then F' is an au-
tomorphism. Kaliman’s result shows that the plane Jacobian conjecture is
equivalent to the statement that for any Jacobian pair the module M is a
finitely generated C[f]-module.

In §2 we show that M x is isomorphic to certain first cohomology asso-
ciated with (0.3). This cohomology has a Stein cover [G-R], consisting of a
countable set {W;};en of open sets covering C2. On each W; the cohomol-
ogy is trivial. Clearly, closure B(0, R) can be covered by a finite cover from
{W,}ien. Thus the Jacobian conjecture is reduced to the finiteness problem
of the above cohomology. It is our hope that this finiteness can be proved
by a careful study of the patching of a finite Stein cover for B(0, R).

1. Finitely generated modules

LEMMA 1. Let f = x™y"™, where m,n are coprime positive integers.
Then M is a finitely generated module over the ring R = C[f]. The number
of minimal generators is mn. Moreover M is a free module iff m =n = 1.

Proof. Clearly,

L(zPy?) = (mq — np)x™ P!

yn—f—q—l'

Thus L(C[C?]) does not have monomials x%y® of the following type:
a<m-—1, b<n-—1,
(1.1)
a=Im-1, b=In—-1, [=2,...

That is, M is a C-vector space generated by the vectors %y, with (a,b)
satisfying (1.1). Note that for [ > 2 we have the equality

:L,lmfl In—1 _( m n)lflxmfl nfl'

Yy = Yy Yy
Hence the R-module M is generated by nm monomials given by the first
condition of (1.1). Note that the monomial 2™~ 1y"~! generates a free R-
submodule M. For any other monomial 2%4® which satisfies the first condi-
tion of (1.1), we find that fx%y’ is a zero element in M. Hence M is free
iff m =n = 1. As the monomials given in the first part of (1.1) are linearly
independent over C it follows that mn is the minimal number of generators

of M. m

Let f € C[C?] be a primitive polynomial. Then Y — B is a fiber bundle
with a fiber V; homeomorphic to X'\ {(3,...,(x}. Therefore

X(B) =1—-[K(f)l,  x(Z\{C,. -, C}) =2 —2gen -k,
X(Y) =x(Z\A{C; -, G Hx(B) = (2gen + k = 2)(|K(f)[ - 1).
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Here x (W) is the Euler characteristic of a CW complex W and gen is the
genus of X. If K(f) = 0 then Y = C? and x(Y) = 1. Hence each fiber
V; is a smooth irreducible affine curve which is homeomorphic to C. The
Abhyankar-Moh theorem [A-M] implies that f is linearizable. That is, there
exists a polynomial automorphism F' = (f, g). In this case the module M is
trivial.

We recall some basic notions and results on the monodromy of the regular
fiber V., 7 € B. We closely follow our exposition in [Fri]. By choosing a
canonical basis in H;(V;,Z) one obtains the representation

¢:m (B, 7) — Aut H(V;,Z)

of the fundamental group w1 (B, ) in Aut Hi(V;,Z). This representation
is called the monodromy of Hy(V;,Z). More precisely, let an element o €
m1(B,T) be represented by a closed continuous path « : [0, 1] — B starting
at 7. Then for any given element [y] in the homology class of V; we can
define a unique continuation

[’7] (t) € Hy (Va(t)a Z), t e [O, 1],

[O) =0l BIA) =é(@) ()
The above continuation is called the Hurewicz connection. The monodromy
¢ of f is called trivial if ¢ is a trivial homomorphism. Let H!(V;), t € B, be
the first regular holomorphic cohomology of V;. Any class [w] € H(V}) is
represented by a holomorphic 1-form w on V4, which has rational singularities

in the closure of V;. We have [w] = [0] iff w—6 = df, where f is a holomorphic
function on V; which is rational on the closure of V;. Note that

HY(V,) ~C® H'(V,,Z), teB

Hence monodromy acts dually on H'(V;). Let H} (V;) € H*(V;) be the
subspace of all cohomology elements which are fixed by the monodromy
action. Denote by fix'(f) the dimension of H} (V;). Let 6(f,t), t € C, be
the number of irreducible components of V; minus 1. Clearly, §(f,t) = 0,
t € B. Let

5(f) =Y 8(f;t)= > &(f.1).

teC teK(f)
It is shown in [A-C-D] and in [Fri] that
fix' (f) = ().
Hence if each V; is irreducible then fix'(f) = 0.

The arguments in [Fri, Lemma 3.2] yield that there exists a rational
1-form w on C2, which is holomorphic on Y, such that, in Y,

(1.2) w = sdx +tdy, df Nw=dxAdy.
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Moreover, if f does not have critical points then s,¢ can be chosen to be
polynomials. It follows that for ¢t € B, any cohomology class in H'(V;) can
be given by the restriction hw|y, for some h € C[C?]. Moreover, for any
h € C[C?], L(h)wl|y, is an exact 1-form on V;. See [Fri] or [Dim]. Hence
H'(V;) is isomorphic to My |y,. The derivation d/dt of a cohomology ele-
ment in H!(V;) is given by the Gauss—Manin connection, which is dual to
the Hurewicz connection. It is given by the following differential map:

(1.3) M: My — My, M(h)=thy — shy + o(w)h,

() dw
[0) = =
“ dx A dy
Let v C V4, t € B, be a smooth closed path. Let B(t,r) C B be an open
disk centered at ¢ with a small radius r. Extend v to a continuous family of
smooth closed curves v(z) C V., z € B(t,r). Then (1.3) yields

d
(1.4) s | o= | Mh)w.

(=) (=)

te — Sy.

(In [Fri] we prove (1.4) in the special case where w = dg and the Jacobian
of the map F' = (f,g) is equal to 1.)

THEOREM 1. Let f € C[C?] be a polynomial without critical points. As-
sume that M is a finitely generated C[f]-module. Then the monodromy of
f s trivial.

Proof. Let hq,...,hy, be generators of M. View M (h;) and o(w)h; as
elements of M. As M is finitely generated we get

M(hl)—i—o(w)hlzz%z(f)h], 1=1,...,n.
j=1

Thus, A(t) = (ai;(t))7 is an n x n matrix with polynomial entries. Consider
the following linear ODE system for x(t) = (x1(t),...,2,(t))T in a complex
variable t:

d
(1.5) d—”; = —A(t)z, a(r)=¢eCm
Since A(t) is entire on C there exists a unique entire solution x(¢) of (1.5).
Let h := (hy,...,hy)T. Consider the holomorphic 1-form on C2,

(1.6) 0:=> zi(f)hiw.
i=1
Let 0; := 0|y, be viewed as an element of H'(V;). Then for t € B let

df,/dt € H'(V;) be the derivative of §; with respect to the Gauss—Manin
connection. The definition of M and (1.5) yield
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do,

(1.7) =

= (2'(t)) " (hlv,) + (2()) T (M (R)]v,)
= —x(t)T AT (uly,) + z(t)TA@) " (ulv,) = 0.
Hence the monodromy action fixes the cohomology element .. From the
proof of Lemma 3.2 in [Fri] it follows that any element in the cohomology
H(V,) is represented by hwly,, h € C[C?]. As M is generated by h1,..., hy,
over the ring C[f], it follows that the monodromy action fixes any element in
cohomology. Hence the monodromy action fixes any element in homology. m
We do not know if the converse to Theorem 1 holds.
COROLLARY 1. Under the assumptions of Theorem 1,
(1.8) rank [ (V;, Z) = dimH' (V;) = fix' (f) = 6(f), 7€ B.

COROLLARY 2. Let f € C[C?] be a polynomial without critical points.
Assume that M is a finitely generated C[f]-module and each fiber Vi, t € C,
1s wrreducible. Then f is linearizable.

Proof. If a regular fiber V,, 7 € B, is C then f is linearizable [A-M].
Assume to the contrary that V; is not C. Then H*(V;) is nontrivial contrary
to Corollary 1 (6(f) =0). m

We now show that (1.8) holds under milder conditions. Let D(a,r) be
an open disk of radius r centered at a in C. For any set S C C™ let S be the
closure of S. We first establish the following lemma:

LEMMA 2. Let f € C[C?] be a polynomial without critical points. As-
sume that D(a,r) D K(f). Then there exists B(0,R), R = R(r), with the
following property. Let

(1.9) L(u) =0, we H(B(0,R),Op,r))-
Then there exists v € HY(D(a,r), Op(a,ry) such that
(1.10) u(z,y) = o(f(z,y)), Y(z,y) € B(O,R) N f~H(D(a,r)).

Proof. Fix a point P = (x9,%0). Since P is not a critical point of f
there exists a linear function g = bx + cy so that L(g)(P) # 0. Hence the
polynomial map F = (f,g) : C2 — C? is a dominating polynomial map,
which is a local diffeomorphism at P. That is, there exists op > 0 such that
(1.11) F: B(P,op) — F(B(P, op))

is a diffeomorphism. In particular, F'(B(P, pp)) is simply connected. Assume
furthermore that gp is small enough so that there exists ep > 0 such that

f(B(P,op)) D D(f(P),ep),
(1.12)  Wp := B(P,op) N f X (D(f(P),ep)) is connected,
B(P,op)NV; =WpnNV, isconnected, € D(f(P),ep).
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Assume that
(1.13) Lu) =0, ue H(B(P,op),Opp,op))-

Introducing new variables s = f, t = g we deduce that u, = 0 (see e.g.
[Fri]). Since each Wp NV, is connected for t € D(f(P),ep), there exists
vp € HO(D(f(P)75P)7 OD(f(P),EP)) so that

(114) U(Ji,y) :'Up(f(l’,y)), (‘7:7y) € Wp.

Thus {Wp}peccz is an open cover of C2. Assume (1.9). Then for each
P € B(0,7) we have the function vp. We view the set vp, P € B(0, R),
as the set of germs of analytic functions on F := f(B(0, R)). Choosing a
path « : [0,1] — B(0, R) and considering the family vp along this path, we
obtain an analytic continuation of vp in E along the path foa. Since B(0, R)
is a semialgebraic set and V; is an algebraic set, B(0, R)NV; has a finite num-
ber of connected components for any ¢ € C. Suppose that B(0,R) NV, is a
nonempty connected set. Continuing vp along paths lying on B(0, R)NV; we
deduce that all vp, P € B(0, R) NV, give rise to the same germ of analytic
function v; in the neighborhood of ¢. Let x > 0 be small enough so that

K.(f)= |J D(tr) c D(a,r).
teK(f)

Let S := D(a,r)\ K. (f). Morse theory, e.g. the arguments in [Fri, §1], yields
that there exist R > 1 so that B(0, R) NV} is a nonempty connected set for
any t € S. Choose g = bz + cy so that the map F = (f,g) : C?> — C? is
proper. (f =0 and g = 0 do not have common points at the line at infinity.)
Assume that

F~Y(D(a,r) x {0}) c B(0,R).

Let 7 € S. Then B(0, R) NV, is connected, hence v defines a unique holo-
morphic germ v,. We claim that v, has an analytic continuation along any
smooth closed path in o C D(a,r). Furthermore, this continuation termi-
nates with the germ v,. Let L be the line ¢ = 0. Then F|, = f|. is a
proper map. View « as a closed path in D(a,r) x {0}. Then one can lift
a to L. Since F|;, may have a finite number of critical points, we may
have a finite number of possible continuous liftings of «, which are piece-
wise smooth. Let 7 : [0,1] — L be one of these liftings. Our assumptions
yield that v([0,1]) C B(0,R). Continue v; = v, along ([0,1]). Since
v(1) € B(0,R) N'V; it follows that v.,(1) = v,. Hence the analytic continua-
tion of v, in D(a,r) gives rise to v € H(D(a,7), Op(a,r) and (1.10) holds. m

We remark that a more careful analysis shows the validity of Lemma 2
under the assumptions that f € C[C?] has a finite number of critical points.
(We are not using this remark.)
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THEOREM 2. Let f € C[C?] be a polynomial without critical points.
Assume that Mpo,r) is a finitely generated kerp(o, gy L-module for each
R > 0. Then the monodromy of f is trivial.

Proof. Fix D(a,r) which contains K (f). Let S be as defined in the proof
of Lemma 2. Assume that x is small enough so that S is homotopic to B.
Choose R > 1 so that B(0, R) satisfies the assumptions in the proof of
Lemma 2. Furthermore, for each ¢ € S, V;NB(0, R) is a connected set which
is homeomorphic to V;. Assume that the kerg(g, ) L-module M (o, r) is gen-
erated by ui,...,uy € H°(B(0,R), Op(o,r))- Let w be the 1-form defined
by (1.2). As in the proof of Theorem 1 it follows that wiw|y,,...,unw|y,,
T € S, span H{ ,(V.NB(0, R)), the space of holomorphic 1-forms modulo the
exact forms on V; N B(0, R). We see that 71 (S, 7) acts on H{ (V. NB(0, R))
(the monodromy action). Combine Lemma 2 with the proof of Theorem 1
to deduce that this action is trivial. As Hi (V> N B(0, R)) is isomorphic to
H(V,) we deduce our theorem. m

2. Cohomologies. Let f € C[C?] be a polynomial. Let P be the follow-
ing sheaf over C2: Each stalk s of Pao,yo) 18 given by

(2.1) s(z,y) = (f(z,y) — f(zo0,10)),

where 1 is the germ of a holomorphic function in one variable ¢ at 0. It is
straightforward to check that P is a sheaf.

LEMMA 3. Let f € C[C?] be a polynomial without critical points. Then
the following sequence of sheaf maps on C? is exact:

(2.2) 0— P 2ewion 5, L Oz — 0.

Proof. Clearly, L(¢y/(f(z,y) — f(x0,v0))) = 0. Assume that u is a germ
of a holomorphic function in (z,y) in the neighborhood of (xg, yo) such that
L(u) = 0. Then the proof of Lemma 2 yields that w is in P. That is, P is the
kernel of L on the sheaf Ocez. It is left to show that L(O¢2) = Oc2. This is
equivalent to the local solution of L(v) = u at (zg,yo) for any holomorphic
germ u at (xg,yo). As in the proof of Lemma 2 choose g = bx + cy so that
L(g)(zo,y0) # 0. Then L(v) = u becomes the equation v, = u/L(g) in the
coordinates (f,g) (see e.g. [Fri]). Clearly, one can find a local solution to
this equation by integrating with respect to g. Pull back by F = (f,g) to
obtain a local solution. m

Let Y be a topological space with a given open cover V.= {V;};c;. Let
S be a given sheaf. Then V is called an acyclic covering for S if

HY(Vi;,n...nV;,,8)=0, ¢>0, for any iy,...,4, € I.
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The Leray Theorem states that [G-H, 0.3]
H*(V,8)=H"(Y,S).

LEMMA 4. Let f € C[C?] be a polynomial with no critical points. Then
there exists a countable covering U of C? which is acyclic for the sheafs

P,Oc:.

Proof. For each P = (x¢,yo) choose an open set Wp as defined in (1.12).
For each integer p > 1, choose a finite cover U, of B (0,p) \ B(0,p — 1) out
of the cover

{Wp} peBo.p)\B(O.p-1)-

Let U := Up>1 U,. Without loss of generality we may assume that each
Wp € U has a nonempty intersection with a finite number of elements of U.
That is, there exists a discrete countable set T' C C2 so that U = {Wp} per.
As each Wp is a Stein manifold it follows that U is an acyclic cover for Oc2.
Consider Wp with P = (z9, ). Use the local diffecomorphism F' defined in
the proof of Lemma 2 to deduce that H*(Wp,Pw,) = 0. Hence U is an
acyclic cover for P. =

COROLLARY 3. Let f € C[C?] be a polynomial with no critical points.
Assume that X C C? is a Stein manifold. Then

(2.3) Mx ~ HY (X, Px).

Proof. Consider the exact sequence of cohomology groups corresponding
to the exact sequence (2.2) [G-H, 0.3], using a countable acyclic cover Ux :=
{Wp}perx) of X as constructed in the proof of Lemma 4:

0— H°(X,Px) — H°(X,0x) — H°(X,0Ox)

— HY (X, Px) —» H'(X,0x) —» H'(X,0x) — ...
As the inclusion H%(X, Px)— H°(X, Ox) is an injection and H' (X, Ox)=0
we obtain (2.3). m

We now explain the isomorphism map in (2.3). Let u € H°(X, Ox). For
each P € T(X) we find a local solution

(2.4) L(Up) =u, vp € Ox(Wp), Pe T(X)
Assume that Wp N Wg # 0. Our arguments show that
(2.5) hpg :=vp —vg E'P(WPQWQ), P,QeT(X).

Hence u € L(H°(X,Ox)) iff the above cocycle in H'(Ux,Px) is trivial.
Note that the coset u + L(H°(X,Ox)) corresponds to the same cocycle
(2.5) in H'(Ux,Px). This gives the injection

L: Mx — HY(Ux, Px).
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Corollary 3 implies that ¢ is surjective. That is, for a cocycle
thQE'Px(meWQ), P,QGT(X),

there exists u € H°(X,Ox) with local solutions (2.4) so that the above
cocycle is the cocycle (2.5). Note that H (X, Py) is an H°(X, Ox)-module.
Fix R > 0. Let

(2.6) T(R):={PeT:WpnB(0,R) # 0}.

As we pointed out in the proof of Lemma 4 we may assume that T'(R) is a
finite set. Let

(27) XR = U Wp.
PeT(R)

Then Xg is a Stein manifold with a finite acyclic cover {Wp} per(g). Com-
bine Corollary 2 with the arguments of the proof of Theorem 2 to obtain

THEOREM 3. Let f € C[C?] have no critical points. Let Xr be defined by
(2.6)—(2.7). If H'(XRr,Px,) is a finitely generated module for each R > 0
then the monodromy of f is trivial.

Assume that F' = (f,g) is a Jacobian pair with L(g) = 1. Then the
1-form w defined in (1.2) is given by dg. Furthermore, M defined in (1.3) is
given by

0 0
M:=g,— — go—.
o 9 oy
As ML = LM we deduce that for any domain X,
(2.8) M: Mx — Mx.

Without loss of generality we can assume that for each Wp, which is defined
in (1.12), F|w, is a diffeomorphism. The following observation may be useful
in the study of the plane Jacobian conjecture:

PROPOSITION 1. Let F' = (f,g) be a Jacobian pair with L(g) = 1. As-
sume that X C C? is a Stein manifold. Then the isomorphism (2.3) induces
the isomorphism between the action of M given by (2.8) and the action

(2.8") M: HY(X,Px) — H' (X, Px)
given by
(2.8”) hp,Q — M(thQ), hp,Q S P(Wp N WQ)

Proof. Let w € P(Wp). Push forward by F, take the derivative with
respect to g and pull back by F to deduce that M (u) € P(Wp). Similarly,

hpQ S P(Wp N WQ) = M(hRQ) € P(Wp N WQ).
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Assume that the cocycle corresponding to an acyclic covering of X by a
countable cover {Wp}pcr(x) is a trivial cocycle. As ML = LM it follows
that

M(hpq) € PWpnWq), P,QeT(X),

is a trivial cocycle. Hence (2.8”) defines the action (2.8").
Corollary 3 yields that any cocycle in H'(X,Px) is of the form (2.5),
where each vp, P € T(X), satisfies (2.4). Clearly,

M(u) = M(L(vp)) = L(M(vp)), PeT(X).
Corollary 3 yields that the cocycle
M(vp —vg) e PWpnWgy), PQeT(X), P+#Q,

determines the unique coset M (u) + L(H°(X,Ox)). Hence the action (2.8)
is isomorphic to the action (2.8’). m

Note that for any s € P, 4, of the form (2.1) we have
M(s) =4'(f(z,y) — (20, y0))-
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