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On the span invariant for cubic similarity

by Gianluca Gorni (Udine) and Halszka Tutaj-Gasińska (Kraków)

Abstract. Given a real n×n matrix A, we make some conjectures and prove partial
results about the range of the function that maps the n-tuple x into the entrywise kth
power of the n-tuple Ax. This is of interest in the study of the Jacobian Conjecture.

1. Introduction. Let F : Rn → Rn be a map of the following form:

FA(x) := x+ (Ax)∗3,

where A is a real n×n matrix and “∗” means entrywise power. We say that
A is a Drużkowski matrix when det(JacF ) = 1 (cf. e.g. [1]). This paper is
the result of trying to understand the image of the map x 7→ (Ax)∗3, or,
more generally, the image of the map x 7→ (Ax)∗k, where k ∈ N and A is
any square matrix. More precisely, we focus on the “span” of these maps,
by which we mean the smallest linear subspace that contains the range of
the maps.

We say that two real n×n matrices A,B are cubic-similar if there exists
an invertible n× n matrix T such that

FB(x) = T−1FA(Tx) ∀x ∈ Rn.
It is easy to see that cubic similarity is an equivalence relation. Some effort
has been made to classify all Drużkowski matrices in low dimension with
respect to cubic similarity (cf. [4, 5]). To this end some invariants of cubic
similarity have been used (cf. e.g. [6]). The dimension of the span of the
map x 7→ (Ax)∗3,

dim span(x 7→ (Ax)∗3),

is an integer that is easily seen to be such an invariant, but it seems that it
has not been used so far.
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Our investigation of this “span invariant” has led us to the following
conjecture.

Conjecture 1. For any square matrix A and integer k ≥ 1,

span(x 7→ (Ax)∗k) = range(AAT )∗k.

Since rangeA = rangeAAT for all real matrices, by well known elemen-
tary facts in linear algebra Conjecture 1 is equivalent to the following one.

Conjecture 2. For any symmetric positive semidefinite matrix B ∈
L(Rn) and integer k ≥ 1,

span(x 7→ (Bx)∗k) = rangeB∗k.

(The inclusion ⊇ is obvious.)

We can also write the formula as

span(x 7→ (Bx)∗k) = span(x 7→ B∗kx),

because for a linear map the span and the range coincide. Then a way to
state our conjecture is that when B is symmetric and positive semidefinite,
(Bx)∗k and B∗kx are the same as far as the span is concerned.

These conjectures were checked on thousands of random integer matri-
ces with n between 3 and 6 and k between 2 and 5. No counterexample was
found. We will show that the conjectures are true for n = 2 and n = 3
and arbitrary k. Our main tool will be the properties of the Kronecker
(a.k.a. tensor) product of matrices (see [3], Section 4.2). We are grateful
to Prof. Friedland for his tip in the right direction.

2. Examples. One may wonder why the transpose AT appears in Con-
jecture 1. Consider the matrix

A :=




1 0 0
−1 1 −1
0 1 −1


 .

Then both A and A∗2 have rank 2, while (AAT )∗2 has rank 3. This shows
that the (true) inclusion

span(x 7→ (Ax)∗2) ⊇ rangeA∗2

can be strict if A is not symmetric and positive semidefinite.
The symmetric matrix

B :=




5 2 4
2 8 4
4 4 4




is positive semidefinite and of rank 2, but B∗2 is positive definite. This shows
that the inequality rankB∗k ≥ rankB can be strict.
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The 4× 4 matrix

A :=




1 0 2 1
0 1 1 −1
1 2 4 −1
1 1 3 0




has rank 2, no two rows (or columns) are parallel, and the span of x 7→
(Ax)∗2 coincides with the range of (AAT )∗2 and has dimension 3. Similarly
the 5× 5 matrix

A :=




1 0 1 1 0
0 1 0 0 1
1 1 1 1 1
1 2 1 1 2
2 1 2 2 1




has rank 2, no two rows (or columns) are parallel, and the span of x 7→
(Ax)∗3 coincides with the range of (AAT )∗3 and has dimension 4. Thus it
is not true that the dimension of the span of x 7→ (Ax)∗k is the same as
the number of rows (or columns) that are left if we delete the zero rows (or
columns) and identify any two remaining rows (or columns) that are parallel
to each other.

It is not true that if B is symmetric and with positive determinant then
B∗k necessarily has positive determinant. For example the symmetric matrix

B :=




31 24 48
24 12 48
48 48 48




has positive determinant but B∗2 has negative determinant.

3. A bound on the dimension of the span

Definition. Given x, y ∈ Rn (instead of R any other field is fine) let us
define the binary operation

x ∗ y := (x1y1, x2y2, . . . , xnyn), where x = (x1, . . . , xn), y = (y1, . . . , yn).

This “multiplication” is of course commutative, associative, and also dis-
tributive with respect to the ordinary sum: x ∗ (y + z) = x ∗ y + x ∗ z for
all x, y, z ∈ Rn. We can also define the power with integer exponent by
induction as

x∗0 := (1, 1, . . . , 1), x∗(k+1) := x∗k ∗ x.
Proposition 3. Let A be a matrix of rank r. Then span(x 7→ (Ax)∗k)

is generated by all “monomials” x∗i1(1) ∗ x
∗i2
(2) ∗ . . . ∗ x

∗ir
(r) where the column

vectors x(j) are a basis of the range of A and the indices ij ≥ 0 range over
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all r-tuples of integers such that i1 + . . .+ ir = k. As a consequence,

dim span(x 7→ (Ax)∗k) ≤
(
k − 1 + rankA

k

)

(binomial coefficient).

Proof. Consider the mapping ϕk : Rn → Rn defined as ϕk(x) := x∗k.
We claim that the image under ϕk of an r-dimensional linear subspace
of Rn is contained in a linear subspace of dimension at most

(
k−1+r
r

)
. If

this is proved, then we only need to apply it with the range of A as the
linear subspace.

Let x(1), . . . , x(r) be a base of the subspace and λ1, . . . , λr be scalars. Let
us expand the value of ϕk on the linear combination of the vectors through
Leibniz’s formula:

(Ax)∗k = (λ1x(1) + . . .+ λkx(r))
∗k

=
∑

i1+...+ir=k, ij≥0

ci1...ir · λi11 . . . λirr︸ ︷︷ ︸
scalar

·x∗i1(1) ∗ . . . ∗ x
∗ir
(r)︸ ︷︷ ︸

vector

(where ci1...ir is a scalar that just happens to be k!/(i1! . . . ir!)). Hence
(Ax)∗k is a linear combination of vectors from the set

{x∗i1(1) ∗ . . . ∗ x
∗ir
(r) | i1 . . . , ir ≥ 0, i1 + . . .+ ir = k}.

These vectors are at most as many as the number of possible monomials
of degree k in r variables, or, what is the same, the number of r-tuples
(i1, . . . , ir) ∈ Nr such that i1 + . . . + ir = k. It is well known that this
number is

(
r+k−1
k

)
.

Lemma 4. If B is symmetric and positive semidefinite with rank r, then
there exists an invertible principal minor of dimension r.

Proof. Let B be n × n, and C be a matrix whose n − r columns form
a basis of the kernel of B. Up to a reshuffling of the coordinates, we can
assume that the last n − r rows of C form an invertible submatrix. The
quadratic form ϕ(x) := x · Bx vanishes only on the range of C. Hence its
restriction to the subspace of the first n−r coordinates is positive definite.

Proposition 5. If A,B are symmetric and positive definite matrices of
the same dimension, then A ∗B is also positive definite.

Proof. Consider the mapping A ⊗ B of Rn ⊗ Rn into itself defined as
(A ⊗ B)(x ⊗ y) := (Ax) ⊗ (By) on the tensors x ⊗ y, and extended by
linearity to the whole of Rn⊗Rn. Let ei be the ith element of the canonical
basis of Rn. If on Rn ⊗ Rn we fix the basis {ei ⊗ ej : i, j = 1, . . . , n}, the
matrix representing the linear map A ⊗ B is called the Kronecker product
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of the two matrices A and B (cf. e.g. [3]). In terms of components, it is the
n2 × n2 matrix C defined as

cn(i−1)+h,n(j−1)+k = ai,jbh,k for h, k = 1, . . . , n,

or, equivalently, as
cr,s := ai,jbh,k,

where

i :=
⌊
r − 1
n

⌋
+ 1, h := r − n(i− 1),

j :=
⌊
s− 1
n

⌋
+ 1, k := s− n(j − 1).

It is known ([3], Corollary 4.2.13) that if A and B are symmetric and positive
definite, then also C is symmetric and positive definite. Now note that A∗B
can be obtained from A⊗B by deleting all rows and all columns except those
of positions 0 + 1, n+ 2, 2n+ 3, . . . ,(n− 1)n+ n. In other words, A ∗B is
the matrix representing the restriction of A⊗B to the subspace with basis
{ei ⊗ ei : i = 1, . . . , n}. Thus A ∗ B is a principal minor of the symmetric
positive definite matrix C. We conclude that A ∗B is positive definite.

Proposition 6. If B is symmetric and positive semidefinite, then

rankB∗k ≥ rankB.

Equality holds whenever either B is invertible or when rankB = 1.

Proof. Consider an invertible principal minor of B of dimension rankB.
In particular the minor is symmetric and positive definite. By taking the
kth powers of its entries we get a symmetric positive definite minor of B∗k.
Hence the rank of B∗k is not less than the rank of B.

Summing up, for the dimension of the span the following inequalities
hold for any n× n real matrix A:

rankAAT ≤ rank(AAT )∗k ≤ dim span(x 7→ (Ax)∗k) ≤
(
k − 1 + rankA

k

)
.

4. Dimensions 2 and 3

Proposition 7. If a real 2 × 2 matrix B is symmetric and positive
semidefinite then for all k ∈ N,

span(x 7→ (Bx)∗k) = rangeB∗k.

Proof. If B has rank 2 then B∗k is invertible. If B has rank 1 it is obvious
that both the span and the range of B∗k have dimension 1.

Proposition 8. Suppose that B∈L(R3) is symmetric, positive semidef-
inite, of rank 2, and no column is a multiple of another. Then for all k ≥ 2
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the matrix B∗k is invertible, and

span(x 7→ (Bx)∗k) = rangeB∗k.

Proof. Upon rearranging the coordinates we can assume that

B =




b1,1 b1,2 λb1,1 + µb1,2
b1,2 b2,2 λb1,2 + µb2,2

λb1,1 + µb1,2 λb1,2 + µb2,2 λ2b1,1 + 2λµb1,2 + µ2b2,2


 ,

where b1,1 > 0, b2,2 > 0 and b1,1b2,2 − b21,2 > 0. Then

detB∗2 = −2(b21,2 − b1,1b2,2)3λ2µ2.

When λµ 6= 0, B∗2 is invertible, and our claim is proved for k = 2. Suppose
that it is true for a given k ≥ 2. Then B∗(k+1) is the principal submatrix
with indices 1, 4, 6 of the Kronecker product B∗k ⊗ B, which is symmetric
and positive semidefinite. The kernel of B∗k ⊗ B is given by the set of the
Kronecker products (v1, v2, v3)⊗ (λ, µ,−1), where (v1, v2, v3) ranges over all
of R3. In components,

(v1, v2, v3)⊗ (λ, µ,−1) = (v1λ, v2λ, v3λ, v1µ, v2µ, v3µ, −v1, −v2, −v3).

Now the kernel of the principal submatrix B∗(k+1) is the intersection of
the kernel of the full matrix B∗k ⊗ B with the subspace of components 1,
4 and 6. But v2λ = v3λ = v1µ = v3µ = −v1 = −v2 = 0 if and only if
v1 = v2 = v3 = 0, because λµ 6= 0. Hence B∗(k+1) is invertible. Finally, from
the general inclusions

R3 ⊇ span(x 7→ (Bx)∗k) ⊇ rangeB∗k

and since B∗k is invertible, we deduce that the inclusions are actually equal-
ities.

Proposition 9. If B ∈ L(R3) is symmetric and positive semidefinite
then for all k ≥ 2 we have

span(x 7→ (Bx)∗k) = rangeB∗k.

Proof. The only case left is when rankB = 2 and one column is a mul-
tiple of another. Upon rearranging the coordinates we can assume that

B =




b1,1 b1,2 λb1,1
b1,2 b2,2 λb1,2
λb1,1 λb1,2 λ2b1,1


 ,

where b1,1 > 0, b2,2 > 0 and b1,1b2,2 − b21,2 > 0. Let b(1), b(2) be the first two
columns of B. Recall that span(x 7→ (Bx)∗k) is generated by the “mono-
mials” b∗r(1) ∗ b

∗(k−r)
(2) where 0 ≤ r ≤ k. We want to prove that all these

monomials are actually linear combinations of the two vectors b∗k(1) and b∗k(2).
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In fact, since the submatrix

B̂ :=
(
b1,1 b1,2
b1,2 b2,2

)

is symmetric and positive definite, also B̂∗k is invertible, and there exist
α, β ∈ R such that

α

(
b1,1
b1,2

)∗k
+ β

(
b1,2
b2,2

)∗k
=
(
b1,1
b1,2

)∗r
∗
(
b1,2
b2,2

)∗(k−r)
.

If we multiply the first row of this identity by λk we get

α(λb1,1)k + β(λb1,2)k = (λb1,1)r(λb1,2)r−k.

Combining the two equalities we get αb∗k(1) + βb∗k(2) = b∗r(1) ∗ b
∗(k−r)
(2) , which is

what we needed.
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