The Real Jacobian Conjecture for polynomials of degree 3

by Janusz GwoźDziewicz (Kielce)

Abstract

We show that every local polynomial diffeomorphism (f, g) of the real plane such that $\operatorname{deg} f \leq 3, \operatorname{deg} g \leq 3$ is a global diffeomorphism.

1. Introduction. In [4] Pinchuk presented a polynomial mapping F : $\mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ such that F is not a global diffeomorphism although $\operatorname{Jac}(F)>0$ everywhere in \mathbb{R}^{2}. Components of Pinchuk's mapping have degrees 10 and 35. It is an interesting question what is the lowest degree of a polynomial map in an example like this. In this note we prove that it should be at least 4.

Theorem 1. Every polynomial mapping $(f, g): \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ with a positive Jacobian such that $\operatorname{deg} f \leq 3, \operatorname{deg} g \leq 3$ is a global diffeomorphism.

Recall that $\operatorname{Jac}(f, g)$ is given by $\operatorname{Jac}(f, g)=f_{x}^{\prime} g_{y}^{\prime}-f_{y}^{\prime} g_{x}^{\prime}$. The condition $\operatorname{Jac}(f, g)>0$ guarantees that (f, g) is a local diffeomorphism. For the proof of our main result we need a sequence of lemmas.

2. Lemmas

Lemma 1. Let $(f, g): \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be a polynomial mapping with a positive Jacobian. If for all $t \in \mathbb{R}$ the level sets $\{f=t\}$ are connected then (f, g) is a global diffeomorphism.

Proof. Every injective polynomial mapping from \mathbb{R}^{2} to itself is bijective (see [1], [5]). Therefore it suffices to show that (f, g) is an injection.

Suppose to the contrary that $(f, g)\left(p_{1}\right)=(f, g)\left(p_{2}\right)=(t, s)$ for $p_{1} \neq p_{2}$. Let T be a segment of a curve $\{f=t\}$ joining points p_{1} and p_{2}. Take another point $p_{3} \in T$ such that $g\left(p_{3}\right)=\max _{p \in T} g(p)$ or $g\left(p_{3}\right)=\min _{p \in T} g(p)$. From Lagrange's multipliers method it follows that the derivatives $d f\left(p_{3}\right)$ and

[^0]$d g\left(p_{3}\right)$ are linearly dependent. Hence $\operatorname{Jac}(f, g)\left(p_{3}\right)=0$. This contradiction finishes the proof.

Lemma 2. Let $(f, g): \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be a polynomial mapping with a positive Jacobian. Let f^{+}, g^{+}denote the leading homogeneous forms of the polynomials f, g. If $\left(f^{+}, g^{+}\right)^{-1}(0)=\{(0,0)\}$ then (f, g) is a diffeomorphism.

Proof. Under the above assumptions the mapping (f, g) is proper and hence is a diffeomorphism. For the details we refer the reader to [2], Proposition 2.1.

Let $f \in \mathbb{C}[x, y]$ be a polynomial with a finite number of critical points. Set $\mu(f)=\sum_{p \in \mathbb{C}^{2}}\left(f_{x}^{\prime}, f_{y}^{\prime}\right)_{p}$ where $(f, g)_{p}$ denotes the intersection multiplicity of polynomials f and g at a point p.

Lemma 3. Let $f \in \mathbb{R}[x, y]$ be a polynomial with a finite number of complex critical points. If f has no real critical point then $\mu(f)$ is even.

Proof. The sum $\sum_{p \in \mathbb{C}^{2}}\left(f_{x}^{\prime}, f_{y}^{\prime}\right)_{p}$ extends over all solutions of the system $f_{x}^{\prime}=f_{y}^{\prime}=0$. Since both partial derivatives have real coefficients, together with any complex solution p the system has the conjugate complex solution \bar{p}. From the definition of intersection multiplicity (see [6]) it follows that $\left(f_{x}^{\prime}, f_{y}^{\prime}\right)_{p}=\left(f_{x}^{\prime}, f_{y}^{\prime}\right)_{\bar{p}}$. Therefore it suffices to count the terms of the above sum in pairs to get the lemma.

In order to state subsequent lemmas we need a few notations. Let $f=$ $\sum_{\alpha \in \mathbb{N}^{2}} a_{\alpha} x^{\alpha_{1}} y^{\alpha_{2}}$ be a polynomial. We call the set

$$
\Delta_{f}=\operatorname{conv}\left(\left\{\alpha \in \mathbb{N}^{2}: a_{\alpha} \neq 0\right\}\right)
$$

the Newton polygon of f. Here $\operatorname{conv}(A)$ denotes the convex hull of a set A. For a compact subset Δ of \mathbb{R}^{2} and $\xi \in \mathbb{R}^{2}$ we define $l(\Delta, \xi)=\max _{\alpha \in \Delta}\langle\xi, \alpha\rangle$ and $\Delta^{\xi}=\{\alpha \in \Delta:\langle\xi, \alpha\rangle=l(\Delta, \xi)\}$. We call the polynomial $f^{\xi}=$ $\sum_{\alpha \in \Delta_{f}^{\xi}} a_{\alpha} x^{\alpha_{1}} y^{\alpha_{2}}$ the leading part of f with respect to ξ. It is a quasihomogeneous polynomial of weight $\mathrm{w}(f)=l\left(\Delta_{f}, \xi\right)$ provided that $\mathrm{w}(x)=\xi_{1}$ and $\mathrm{w}(y)=\xi_{2}$.

To shorten notation we write $f>0$ if $f(x, y)$ is positive for all $(x, y) \in \mathbb{R}^{2}$.
Lemma 4. Let $f \in \mathbb{R}[x, y], f>0$. Then $f^{\xi} \geq 0$ for every $\xi \in \mathbb{R}^{2}$.
Proof. Fix $(x, y) \in \mathbb{R}^{2}$. Expanding the polynomial $f\left(t^{\xi_{1}} x, t^{\xi_{2}} y\right)$ with respect to powers of t we get $f\left(t^{\xi_{1}} x, t^{\xi_{2}} y\right)=f^{\xi}(x, y) t^{l\left(\Delta_{f}, \xi\right)}+$ terms of lower degrees. For large t the sign of the right-hand side is determined by the sign of $f^{\xi}(x, y)$. Hence $f^{\xi}(x, y) \geq 0$.

Corollary 1. If $f \in \mathbb{R}[x, y]$ is everywhere positive, then the polygon Δ_{f} has vertices at points with even coordinates only.

Lemma 5. Let $(f, g): \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be a polynomial mapping. Assume that $\xi \in \mathbb{R}^{2}$ is such that $\Delta_{f}^{\xi}=\{\alpha\}, \Delta_{g}^{\xi}=\{\beta\}$ and α, β are linearly independent. Then for $J=\operatorname{Jac}(f, g)$ we have $\Delta_{J}^{\xi}=\{\alpha+\beta-(1,1)\}$.

Proof. Lemma 5 is a consequence of the property $J^{\xi}=\operatorname{Jac}\left(f^{\xi}, g^{\xi}\right)$ provided that $\operatorname{Jac}\left(f^{\xi}, g^{\xi}\right) \neq 0$. Indeed, under our assumptions f^{ξ} and g^{ξ} are monomials $a_{\alpha} x^{\alpha_{1}} y^{\alpha_{2}}, b_{\beta} x^{\beta_{1}} y^{\beta_{2}}$ and we see that $\operatorname{Jac}\left(f^{\xi}, g^{\xi}\right)=a_{\alpha} b_{\beta}\left(\alpha_{1} \beta_{2}-\right.$ $\left.\alpha_{2} \beta_{1}\right) x^{\alpha_{1}+\beta_{1}-1} y^{\alpha_{2}+\beta_{2}-1}$ is nonzero.

Corollary 2. Under the assumptions of Lemma 5, if $\alpha+\beta$ has an even coordinate then the polynomial $\operatorname{Jac}(f, g)$ changes sign.

Now we formulate Kouchnirenko's theorem (see [3]) in the form suitable for our purposes.

Theorem 2. Let $f \in \mathbb{C}[x, y]$ be a polynomial such that $a=\operatorname{deg} f(x, 0)$ $>0, b=\operatorname{deg} f(0, y)>0$ and $f(0,0) \neq 0$. If edges of the Newton polygon Δ_{f} intersect the lattlice \mathbb{N}^{2} at vertices only then $\mu(f)=2 \operatorname{Area}\left(\Delta_{f}\right)-a-b+1$.

Example. Let the polynomial f have the Newton diagram C_{3} (see Figure 1). Then f satisfies the assumptions of Kouchnirenko's theorem. We have $\operatorname{Area}\left(\Delta_{f}\right)=3, a=2, b=2$ and consequently $\mu(f)=2 \operatorname{Area}\left(\Delta_{f}\right)-a-b+1$ $=3$. Similarly, if $\Delta_{f}=C_{4}$ then $\mu(f)=2(5 / 2)-1-2+1=3$.

Fig. 1
3. Proof of Theorem 1. In the course of the proof we will often replace a mapping (f, g) by $(\tilde{f}, \widetilde{g})=L_{1} \circ(f, g) \circ L_{2}$ where $L_{1}, L_{2}: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ are
affine orientation preserving automorphisms. Clearly, Theorem 1 holds for (f, g) iff it does for $(\widetilde{f}, \widetilde{g})$. In the proof we construct a number of Newton polygons. They are each drawn in a separate figure.

First consider the special case when one of the polynomials f, g has degree 1 or 2 . If $\operatorname{deg} f=1$ then all level sets $\{f=t\}$ are connected and the theorem follows by Lemma 1 . If $\operatorname{deg} f=2$ then a suitable affine change of coordinates reduces f to $f=y-x^{2}$ or $f=a x^{2}+b y^{2}+c$. In the first case all level sets $\{f=t\}$ are connected and so by Lemma $1,(f, g)$ is a diffeomorphism. In the second case $(0,0)$ is a critical point of f, which is impossible because $\operatorname{Jac}(f, g)>0$.

From now on we assume that $\operatorname{deg} f=\operatorname{deg} g=3$. If the leading homogeneous parts of the polynomials f and g do not have a common nonzero root then by Lemma $2,(f, g)$ is a diffeomorphism. If they have, then without loss of generality we can assume that their common root is $(0,1)$ (we apply a linear change of coordinates). Then we have $f^{+}=a x y^{2}+b x^{2} y+c x^{3}$ and $g^{+}=A x y^{2}+B x^{2} y+C x^{3}$. Moreover, we may assume that $a=0$. Indeed, for $A \neq 0$ we can replace f by $\tilde{f}=f-(a / A) g$ and for $A=0$ we change the roles of f and g. This gives $\Delta_{f} \subset C_{1}$ and $\Delta_{g} \subset C_{9}$.

Two cases can occur: $(1)(2,1) \in \Delta_{f}$, and (2) $(2,1) \notin \Delta_{f}$.
3.1. Analysis of case (1). We have $f^{+}=b x^{2} y+c x^{3}=b x^{2}(y+(c / b) x)$, $b \neq 0$. A linear substitution $y=\widetilde{y}-(c / b) x$ gives $f^{+}=b x^{2} \widetilde{y}^{2}$. Hence we may assume that $(3,0) \notin \Delta_{f}$ and so $\Delta_{f} \subset C_{3}$. By Kouchnirenko's theorem if $\Delta_{f}=C_{3}$ or $\Delta_{f}=C_{4}$ then $\mu(f)=3$ (see the Example at the end of the previous section). By Lemma 3 in both cases a polynomial f has a real critical point. For $\Delta_{f}=C_{5}$ direct easy computations show that f has a real critical point. All these cases are excluded. Hence $\Delta_{f} \subset C_{6}$.

Let us write $f=f_{1}(x) y+f_{2}(x)$. If $f_{1}(x)$ has a constant sign then the level sets $\{f=t\}$ are connected, because they have equations $y=(t-$ $\left.f_{2}(x)\right) / f_{1}(x)$, and by Lemma $1,(f, g)$ is a diffeomorphism. If there is x_{0} such that $f_{1}\left(x_{0}\right)=0$ then without the loss of generality we may replace (f, g) with $\left(f\left(x+x_{0}, y\right)-f\left(x_{0}, 0\right), g\left(x+x_{0}, y\right)\right)$. This reduces the Newton polygon of f to $\Delta_{f} \subset C_{7}$. If $(1,1) \in \Delta_{f}$ then an easy computation shows that f has a critical point, which is impossible. Therefore $\Delta_{f} \subset C_{8}$.

Consider the Newton polygon Δ_{g}. We have $\Delta_{g} \subset C_{9}$. Suppose that $(0,2) \in \Delta_{g}$. Then by Corollary 2 applied to $(0,2) \in \Delta_{g}$ and $(2,1) \in \Delta_{f}$ the $\operatorname{Jacobian} \operatorname{Jac}(f, g)$ would change sign. Thus $(0,2) \notin \Delta_{g}$ and $\Delta_{g} \subset C_{10}$. Note that $(0,1) \in \Delta_{g}$ because otherwise $\operatorname{Jac}(f, g)(0,0)=0$. Fix a direction $\xi=(-1,1)$ and put $J=\operatorname{Jac}(f, g)$. We can write $f^{\xi}=a x+b x^{2} y, a \neq 0$, $b \neq 0$ and $g^{\xi}=A y+B x y^{2}, A \neq 0$. Hence $J^{\xi}=\operatorname{Jac}\left(f^{\xi}, g^{\xi}\right)=3 b B(x y)^{2}+$ $2(A b+a B) x y+a A$. Since a discriminant $(2(A b+a B))^{2}-4(3 b B)(a A)$ can be written as a sum of squares $3(A b-a B)^{2}+(A b+a B)^{2}$ it is a positive
number. Therefore J^{ξ} changes its sign and so does J by Lemma 4. This contradiction finishes the proof of case (1).
3.2. Analysis of case (2). We have $\Delta_{f} \subset C_{2}$ and $\Delta_{g} \subset C_{9}$. By Corollary 2 it is impossible that both $(0,2) \in \Delta_{f}$ and $(1,2) \in \Delta_{g}$.

Assume first that $(1,2) \notin \Delta_{g}$. Then $\Delta_{g} \subset C_{1}$. If $(2,1) \in \Delta_{g}$ then we can put $\widetilde{f}=g, \widetilde{g}=-f$ and the proof for a pair $(\tilde{f}, \widetilde{g})$ has already been given. If $(2,1) \notin \Delta_{g}$ then $\Delta_{g} \subset C_{2}$. Comparing the Newton polygons of f and g we see that there is a constant c such that the polynomial $\widetilde{g}=g-c f$ is of degree 1 or 2 . We have checked this case at the beginning of the proof.

Assume now that $(0,2) \notin \Delta_{f}$. Then $\Delta_{f} \subset C_{11}$. If $(1,1) \in \Delta_{f}$ then it is easily seen that f has a critical point, which is impossible. Hence $\Delta_{f} \subset C_{12}$.

If $(0,1) \in \Delta_{f}$ then all level sets $\{f=t\}$ are connected and by Lemma 1 the map (f, g) is a diffeomorphism.

If $(0,1) \notin \Delta_{f}$ then the polynomial f depends on the variable x only. Moreover, f has no critical point and consequently the level sets of f are (single) straight lines. Hence by Lemma $1,(f, g)$ is a diffeomorphism.

Acknowledgements. I would like to express my thanks to Université de Savoie for the invitation and personally to Krzysztof Kurdyka for his encouragement to write this article.

References

[1] A. Białynicki-Birula and M. Rosenlicht, Injective morphisms of real algebraic varieties, Proc. Amer. Math. Soc. 13 (1962), 200-203.
[2] L. M. Drużkowski and K. Rusek, The Real Jacobian Conjecture for cubic maps of rank two, Univ. Iagel. Acta Math. 32 (1995), 17-23.
[3] A. G. Kouchnirenko, Polyèdres de Newton et nombres de Milnor, Invent. Math. 32 (1976), 1-31.
[4] S. Pinchuk, A counterexample to the Real Jacobian Conjecture, Math. Z. 217 (1994), 1-4.
[5] K. Rusek, Algebraic transformations over real closed fields, Univ. Iagel. Acta Math. 30 (1993), 133-136.
[6] I. R. Shafarevich, Basic Algebraic Geometry, Springer, Heidelberg, 1974.
Kielce University of Technology
Al. 1000-lecia Państwa Polskiego 7
25-314 Kielce, Poland
E-mail: matjg@tu.kielce.pl

[^0]: 2000 Mathematics Subject Classification: Primary 14P99.
 Key words and phrases: Jacobian conjecture, Newton polygon, real polynomial mapping.

