The Real Jacobian Conjecture for polynomials of degree 3

by JANUSZ GWOŹDZIEWICZ (Kielce)

Abstract. We show that every local polynomial diffeomorphism (f,g) of the real plane such that deg $f \leq 3$, deg $g \leq 3$ is a global diffeomorphism.

1. Introduction. In [4] Pinchuk presented a polynomial mapping $F : \mathbb{R}^2 \to \mathbb{R}^2$ such that F is not a global diffeomorphism although $\operatorname{Jac}(F) > 0$ everywhere in \mathbb{R}^2 . Components of Pinchuk's mapping have degrees 10 and 35. It is an interesting question what is the lowest degree of a polynomial map in an example like this. In this note we prove that it should be at least 4.

THEOREM 1. Every polynomial mapping $(f,g) : \mathbb{R}^2 \to \mathbb{R}^2$ with a positive Jacobian such that deg $f \leq 3$, deg $g \leq 3$ is a global diffeomorphism.

Recall that $\operatorname{Jac}(f,g)$ is given by $\operatorname{Jac}(f,g) = f'_x g'_y - f'_y g'_x$. The condition $\operatorname{Jac}(f,g) > 0$ guarantees that (f,g) is a local diffeomorphism. For the proof of our main result we need a sequence of lemmas.

2. Lemmas

LEMMA 1. Let $(f,g) : \mathbb{R}^2 \to \mathbb{R}^2$ be a polynomial mapping with a positive Jacobian. If for all $t \in \mathbb{R}$ the level sets $\{f = t\}$ are connected then (f,g) is a global diffeomorphism.

Proof. Every injective polynomial mapping from \mathbb{R}^2 to itself is bijective (see [1], [5]). Therefore it suffices to show that (f, g) is an injection.

Suppose to the contrary that $(f,g)(p_1) = (f,g)(p_2) = (t,s)$ for $p_1 \neq p_2$. Let T be a segment of a curve $\{f = t\}$ joining points p_1 and p_2 . Take another point $p_3 \in T$ such that $g(p_3) = \max_{p \in T} g(p)$ or $g(p_3) = \min_{p \in T} g(p)$. From Lagrange's multipliers method it follows that the derivatives $df(p_3)$ and

²⁰⁰⁰ Mathematics Subject Classification: Primary 14P99.

 $Key\ words\ and\ phrases:$ Jacobian conjecture, Newton polygon, real polynomial mapping.

 $dg(p_3)$ are linearly dependent. Hence $Jac(f,g)(p_3) = 0$. This contradiction finishes the proof.

LEMMA 2. Let $(f,g): \mathbb{R}^2 \to \mathbb{R}^2$ be a polynomial mapping with a positive Jacobian. Let f^+ , g^+ denote the leading homogeneous forms of the polynomials f, g. If $(f^+, g^+)^{-1}(0) = \{(0,0)\}$ then (f,g) is a diffeomorphism.

Proof. Under the above assumptions the mapping (f,g) is proper and hence is a diffeomorphism. For the details we refer the reader to [2], Proposition 2.1. \blacksquare

Let $f \in \mathbb{C}[x, y]$ be a polynomial with a finite number of critical points. Set $\mu(f) = \sum_{p \in \mathbb{C}^2} (f'_x, f'_y)_p$ where $(f, g)_p$ denotes the intersection multiplicity of polynomials f and g at a point p.

LEMMA 3. Let $f \in \mathbb{R}[x, y]$ be a polynomial with a finite number of complex critical points. If f has no real critical point then $\mu(f)$ is even.

Proof. The sum $\sum_{p \in \mathbb{C}^2} (f'_x, f'_y)_p$ extends over all solutions of the system $f'_x = f'_y = 0$. Since both partial derivatives have real coefficients, together with any complex solution p the system has the conjugate complex solution \overline{p} . From the definition of intersection multiplicity (see [6]) it follows that $(f'_x, f'_y)_p = (f'_x, f'_y)_{\overline{p}}$. Therefore it suffices to count the terms of the above sum in pairs to get the lemma.

In order to state subsequent lemmas we need a few notations. Let $f = \sum_{\alpha \in \mathbb{N}^2} a_{\alpha} x^{\alpha_1} y^{\alpha_2}$ be a polynomial. We call the set

$$\Delta_f = \operatorname{conv}(\{\alpha \in \mathbb{N}^2 : a_\alpha \neq 0\})$$

the Newton polygon of f. Here $\operatorname{conv}(A)$ denotes the convex hull of a set A. For a compact subset Δ of \mathbb{R}^2 and $\xi \in \mathbb{R}^2$ we define $l(\Delta, \xi) = \max_{\alpha \in \Delta} \langle \xi, \alpha \rangle$ and $\Delta^{\xi} = \{ \alpha \in \Delta : \langle \xi, \alpha \rangle = l(\Delta, \xi) \}$. We call the polynomial $f^{\xi} = \sum_{\alpha \in \Delta_f^{\xi}} a_{\alpha} x^{\alpha_1} y^{\alpha_2}$ the leading part of f with respect to ξ . It is a quasihomogeneous polynomial of weight $w(f) = l(\Delta_f, \xi)$ provided that $w(x) = \xi_1$ and $w(y) = \xi_2$.

To shorten notation we write f > 0 if f(x, y) is positive for all $(x, y) \in \mathbb{R}^2$.

LEMMA 4. Let $f \in \mathbb{R}[x, y]$, f > 0. Then $f^{\xi} \geq 0$ for every $\xi \in \mathbb{R}^2$.

Proof. Fix $(x, y) \in \mathbb{R}^2$. Expanding the polynomial $f(t^{\xi_1}x, t^{\xi_2}y)$ with respect to powers of t we get $f(t^{\xi_1}x, t^{\xi_2}y) = f^{\xi}(x, y)t^{l(\Delta_f, \xi)} + \text{terms of lower degrees.}$ For large t the sign of the right-hand side is determined by the sign of $f^{\xi}(x, y)$. Hence $f^{\xi}(x, y) \geq 0$.

COROLLARY 1. If $f \in \mathbb{R}[x, y]$ is everywhere positive, then the polygon Δ_f has vertices at points with even coordinates only.

LEMMA 5. Let $(f,g) : \mathbb{R}^2 \to \mathbb{R}^2$ be a polynomial mapping. Assume that $\xi \in \mathbb{R}^2$ is such that $\Delta_f^{\xi} = \{\alpha\}, \ \Delta_g^{\xi} = \{\beta\}$ and α, β are linearly independent. Then for $J = \operatorname{Jac}(f,g)$ we have $\Delta_J^{\xi} = \{\alpha + \beta - (1,1)\}.$

Proof. Lemma 5 is a consequence of the property $J^{\xi} = \operatorname{Jac}(f^{\xi}, g^{\xi})$ provided that $\operatorname{Jac}(f^{\xi}, g^{\xi}) \neq 0$. Indeed, under our assumptions f^{ξ} and g^{ξ} are monomials $a_{\alpha}x^{\alpha_1}y^{\alpha_2}$, $b_{\beta}x^{\beta_1}y^{\beta_2}$ and we see that $\operatorname{Jac}(f^{\xi}, g^{\xi}) = a_{\alpha}b_{\beta}(\alpha_1\beta_2 - \alpha_2\beta_1)x^{\alpha_1+\beta_1-1}y^{\alpha_2+\beta_2-1}$ is nonzero.

COROLLARY 2. Under the assumptions of Lemma 5, if $\alpha + \beta$ has an even coordinate then the polynomial Jac(f,g) changes sign.

Now we formulate Kouchnirenko's theorem (see [3]) in the form suitable for our purposes.

THEOREM 2. Let $f \in \mathbb{C}[x, y]$ be a polynomial such that $a = \deg f(x, 0)$ > 0, $b = \deg f(0, y) > 0$ and $f(0, 0) \neq 0$. If edges of the Newton polygon Δ_f intersect the lattlice \mathbb{N}^2 at vertices only then $\mu(f) = 2\operatorname{Area}(\Delta_f) - a - b + 1$.

EXAMPLE. Let the polynomial f have the Newton diagram C_3 (see Figure 1). Then f satisfies the assumptions of Kouchnirenko's theorem. We have Area $(\Delta_f) = 3$, a = 2, b = 2 and consequently $\mu(f) = 2 \operatorname{Area}(\Delta_f) - a - b + 1 = 3$. Similarly, if $\Delta_f = C_4$ then $\mu(f) = 2(5/2) - 1 - 2 + 1 = 3$.

3. Proof of Theorem 1. In the course of the proof we will often replace a mapping (f,g) by $(\tilde{f},\tilde{g}) = L_1 \circ (f,g) \circ L_2$ where $L_1, L_2 : \mathbb{R}^2 \to \mathbb{R}^2$ are

affine orientation preserving automorphisms. Clearly, Theorem 1 holds for (f,g) iff it does for (\tilde{f},\tilde{g}) . In the proof we construct a number of Newton polygons. They are each drawn in a separate figure.

First consider the special case when one of the polynomials f, g has degree 1 or 2. If deg f = 1 then all level sets $\{f = t\}$ are connected and the theorem follows by Lemma 1. If deg f = 2 then a suitable affine change of coordinates reduces f to $f = y - x^2$ or $f = ax^2 + by^2 + c$. In the first case all level sets $\{f = t\}$ are connected and so by Lemma 1, (f,g) is a diffeomorphism. In the second case (0,0) is a critical point of f, which is impossible because Jac(f,g) > 0.

From now on we assume that deg $f = \deg g = 3$. If the leading homogeneous parts of the polynomials f and g do not have a common nonzero root then by Lemma 2, (f, g) is a diffeomorphism. If they have, then without loss of generality we can assume that their common root is (0, 1) (we apply a linear change of coordinates). Then we have $f^+ = axy^2 + bx^2y + cx^3$ and $g^+ = Axy^2 + Bx^2y + Cx^3$. Moreover, we may assume that a = 0. Indeed, for $A \neq 0$ we can replace f by $\tilde{f} = f - (a/A)g$ and for A = 0 we change the roles of f and g. This gives $\Delta_f \subset C_1$ and $\Delta_g \subset C_9$.

Two cases can occur: (1) $(2,1) \in \Delta_f$, and (2) $(2,1) \notin \Delta_f$.

3.1. Analysis of case (1). We have $f^+ = bx^2y + cx^3 = bx^2(y + (c/b)x)$, $b \neq 0$. A linear substitution $y = \tilde{y} - (c/b)x$ gives $f^+ = bx^2\tilde{y}^2$. Hence we may assume that $(3,0) \notin \Delta_f$ and so $\Delta_f \subset C_3$. By Kouchnirenko's theorem if $\Delta_f = C_3$ or $\Delta_f = C_4$ then $\mu(f) = 3$ (see the Example at the end of the previous section). By Lemma 3 in both cases a polynomial f has a real critical point. For $\Delta_f = C_5$ direct easy computations show that f has a real critical point. All these cases are excluded. Hence $\Delta_f \subset C_6$.

Let us write $f = f_1(x)y + f_2(x)$. If $f_1(x)$ has a constant sign then the level sets $\{f = t\}$ are connected, because they have equations $y = (t - f_2(x))/f_1(x)$, and by Lemma 1, (f,g) is a diffeomorphism. If there is x_0 such that $f_1(x_0) = 0$ then without the loss of generality we may replace (f,g) with $(f(x + x_0, y) - f(x_0, 0), g(x + x_0, y))$. This reduces the Newton polygon of f to $\Delta_f \subset C_7$. If $(1,1) \in \Delta_f$ then an easy computation shows that f has a critical point, which is impossible. Therefore $\Delta_f \subset C_8$.

Consider the Newton polygon Δ_g . We have $\Delta_g \subset C_9$. Suppose that $(0,2) \in \Delta_g$. Then by Corollary 2 applied to $(0,2) \in \Delta_g$ and $(2,1) \in \Delta_f$ the Jacobian Jac(f,g) would change sign. Thus $(0,2) \notin \Delta_g$ and $\Delta_g \subset C_{10}$. Note that $(0,1) \in \Delta_g$ because otherwise Jac(f,g)(0,0) = 0. Fix a direction $\xi = (-1,1)$ and put J = Jac(f,g). We can write $f^{\xi} = ax + bx^2y$, $a \neq 0$, $b \neq 0$ and $g^{\xi} = Ay + Bxy^2$, $A \neq 0$. Hence $J^{\xi} = \text{Jac}(f^{\xi}, g^{\xi}) = 3bB(xy)^2 + 2(Ab + aB)xy + aA$. Since a discriminant $(2(Ab + aB))^2 - 4(3bB)(aA)$ can be written as a sum of squares $3(Ab - aB)^2 + (Ab + aB)^2$ it is a positive

number. Therefore J^{ξ} changes its sign and so does J by Lemma 4. This contradiction finishes the proof of case (1).

3.2. Analysis of case (2). We have $\Delta_f \subset C_2$ and $\Delta_g \subset C_9$. By Corollary 2 it is impossible that both $(0,2) \in \Delta_f$ and $(1,2) \in \Delta_q$.

Assume first that $(1,2) \notin \Delta_g$. Then $\Delta_g \subset C_1$. If $(2,1) \in \Delta_g$ then we can put $\tilde{f} = g$, $\tilde{g} = -f$ and the proof for a pair (\tilde{f}, \tilde{g}) has already been given. If $(2,1) \notin \Delta_g$ then $\Delta_g \subset C_2$. Comparing the Newton polygons of f and gwe see that there is a constant c such that the polynomial $\tilde{g} = g - cf$ is of degree 1 or 2. We have checked this case at the beginning of the proof.

Assume now that $(0,2) \notin \Delta_f$. Then $\Delta_f \subset C_{11}$. If $(1,1) \in \Delta_f$ then it is easily seen that f has a critical point, which is impossible. Hence $\Delta_f \subset C_{12}$.

If $(0,1) \in \Delta_f$ then all level sets $\{f = t\}$ are connected and by Lemma 1 the map (f,g) is a diffeomorphism.

If $(0,1) \notin \Delta_f$ then the polynomial f depends on the variable x only. Moreover, f has no critical point and consequently the level sets of f are (single) straight lines. Hence by Lemma 1, (f,g) is a diffeomorphism.

Acknowledgements. I would like to express my thanks to Université de Savoie for the invitation and personally to Krzysztof Kurdyka for his encouragement to write this article.

References

- A. Białynicki-Birula and M. Rosenlicht, *Injective morphisms of real algebraic varieties*, Proc. Amer. Math. Soc. 13 (1962), 200–203.
- [2] L. M. Drużkowski and K. Rusek, The Real Jacobian Conjecture for cubic maps of rank two, Univ. Iagel. Acta Math. 32 (1995), 17–23.
- [3] A. G. Kouchnirenko, Polyèdres de Newton et nombres de Milnor, Invent. Math. 32 (1976), 1–31.
- S. Pinchuk, A counterexample to the Real Jacobian Conjecture, Math. Z. 217 (1994), 1–4.
- [5] K. Rusek, Algebraic transformations over real closed fields, Univ. Iagel. Acta Math. 30 (1993), 133–136.
- [6] I. R. Shafarevich, *Basic Algebraic Geometry*, Springer, Heidelberg, 1974.

Kielce University of Technology Al. 1000-lecia Państwa Polskiego 7 25-314 Kielce, Poland E-mail: matjg@tu.kielce.pl

Reçu par la Rédaction le 25.2.2000

(1187)