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The Real Jacobian Conjecture for polynomials of degree 3

by JaNusz GwozpziEwicz (Kielce)

Abstract. We show that every local polynomial diffeomorphism (f,g) of the real
plane such that deg f < 3, degg < 3 is a global diffeomorphism.

1. Introduction. In [4] Pinchuk presented a polynomial mapping F :
R? — R? such that F is not a global diffeomorphism although Jac(F) > 0
everywhere in R2. Components of Pinchuk’s mapping have degrees 10 and
35. It is an interesting question what is the lowest degree of a polynomial
map in an example like this. In this note we prove that it should be at
least 4.

THEOREM 1. Every polynomial mapping (f,g) : R?> — R? with a positive
Jacobian such that deg f < 3, degg < 3 is a global diffeomorphism.

Recall that Jac(f,g) is given by Jac(f,g) = f.9, — f,9.- The condition
Jac(f,g) > 0 guarantees that (f, g) is a local diffeomorphism. For the proof
of our main result we need a sequence of lemmas.

2. Lemmas

LEMMA 1. Let (f,g) : R? — R? be a polynomial mapping with a positive
Jacobian. If for all t € R the level sets {f =t} are connected then (f,g) is
a global diffeomorphism.

Proof. Every injective polynomial mapping from R? to itself is bijective
(see [1], [5]). Therefore it suffices to show that (f,¢g) is an injection.

Suppose to the contrary that (f,g)(p1) = (f,9)(p2) = (¢,s) for p1 # pa.
Let T be a segment of a curve {f = ¢} joining points p; and po. Take another

point p3 € T such that g(p3) = max,er g(p) or g(ps) = minyer g(p). From
Lagrange’s multipliers method it follows that the derivatives df(ps) and
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dg(ps) are linearly dependent. Hence Jac(f, g)(p3) = 0. This contradiction
finishes the proof. =

LEMMA 2. Let (f,g): R? — R? be a polynomial mapping with a positive
Jacobian. Let fT, g+ denote the leading homogeneous forms of the polyno-
mials f, g. If (f*,g%7)71(0) ={(0,0)} then (f,g) is a diffeomorphism.

Proof. Under the above assumptions the mapping (f,g) is proper and
hence is a diffeomorphism. For the details we refer the reader to [2], Propo-
sition 2.1. m

Let f € C[z, y| be a polynomial with a finite number of critical points. Set
n(f) = cc2(fz, f,)p where (f, g), denotes the intersection multiplicity of

T

polynomials f and g at a point p.

LEMMA 3. Let f € Rlz,y] be a polynomial with a finite number of com-
plex critical points. If f has no real critical point then u(f) is even.

Proof. The sum 2 (f3, f,)p extends over all solutions of the system
fr = f,, = 0. Since both partial derivatives have real coefficients, together
with any complex solution p the system has the conjugate complex solution
p. From the definition of intersection multiplicity (see [6]) it follows that
(fe [y)p = (f2, f;)p- Therefore it suffices to count the terms of the above

sum in pairs to get the lemma. m

In order to state subsequent lemmas we need a few notations. Let f =
Y aen? a1y be a polynomial. We call the set

Ay =conv({a € N? : a, # 0})

the Newton polygon of f. Here conv(A) denotes the convex hull of a set A.
For a compact subset A of R? and ¢ € R? we define I(4, ¢) = max,ea (€, )
and A = {a € A : (& a) = 1(A,€)}. We call the polynomial f& =
EaeA? Ao r*y*? the leading part of f with respect to £. It is a quasi-
homogeneous polynomial of weight w(f) = [(Ay,§) provided that w(z) = &

and w(y) = &.
To shorten notation we write f > 0 if f(z,y) is positive for all (z,y) € R2.

LEMMA 4. Let f € Rlz,y], f > 0. Then f& >0 for every & € R2.

Proof. Fix (z,y) € R?. Expanding the polynomial f(t1z,t%2y) with re-
spect to powers of t we get f(t51x,t52y) = f&(x, y)t! (A58 + terms of lower
degrees. For large ¢ the sign of the right-hand side is determined by the sign
of f&(x,y). Hence f&(z,y) >0. m

COROLLARY 1. If f € Rz, y| is everywhere positive, then the polygon
Ay has vertices at points with even coordinates only.
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LEMMA 5. Let (f,g) : R? — R? be a polynomial mapping. Assume that
¢ € R? is such that Afc = {a}, Ag = {B} and «, B are linearly independent.

Then for J = Jac(f,g) we have A§ ={a+p/-(1,1)}.

Proof. Lemma 5 is a consequence of the property J¢ = Jac(f¢, g%) pro-
vided that Jac(f¢,g%) # 0. Indeed, under our assumptions f¢ and g¢ are
monomials a2z y*2, bgrP1yP2 and we see that Jac(f¢, g%) = anbs(a1 B2 —
agfy )z tPi—lyeatB2=1 i nongero. m

COROLLARY 2. Under the assumptions of Lemma 5, if a+ 3 has an even
coordinate then the polynomial Jac(f,g) changes sign.

Now we formulate Kouchnirenko’s theorem (see [3]) in the form suitable
for our purposes.

THEOREM 2. Let f € Clx,y] be a polynomial such that a = deg f(x,0)
>0, b=deg f(0,y) >0 and f(0,0) # 0. If edges of the Newton polygon Ay
intersect the lattlice N? at vertices only then p(f) = 2 Area(Ay) —a—b+ 1.

EXAMPLE. Let the polynomial f have the Newton diagram C3 (see Fig-
ure 1). Then f satisfies the assumptions of Kouchnirenko’s theorem. We have
Area(Ayf) =3, a =2, b = 2 and consequently p(f) =2 Area(As) —a—b+1
= 3. Similarly, if Ay = Cy then p(f) =2(5/2) —1-2+1=3.

Cl . C2

Cs Cy
A '\ A A
> Cs .. Cg .. Cy . . Cg
A A A A
\Cg /\C’lo .. C11 .. Cho

Fig. 1

3. Proof of Theorem 1. In the course of the proof we will often replace
a mapping (f,g) by (f,g) = L1 o (f,g) o Ly where L1, Ly : R?> — R? are
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affine orientation preserving automorphisms. Clearly, Theorem 1 holds for
(f,g) iff it does for (f,q). In the proof we construct a number of Newton
polygons. They are each drawn in a separate figure.

First consider the special case when one of the polynomials f, g has
degree 1 or 2. If deg f = 1 then all level sets {f = t} are connected and
the theorem follows by Lemma 1. If deg f = 2 then a suitable affine change
of coordinates reduces f to f =y — 22 or f = ax® + by? + c. In the first
case all level sets {f = t} are connected and so by Lemma 1, (f,g) is a
diffeomorphism. In the second case (0,0) is a critical point of f, which is
impossible because Jac(f, g) > 0.

From now on we assume that deg f = deg g = 3. If the leading homoge-
neous parts of the polynomials f and g do not have a common nonzero root
then by Lemma 2, (f, g) is a diffeomorphism. If they have, then without loss
of generality we can assume that their common root is (0,1) (we apply a
linear change of coordinates). Then we have f+ = axy? + bx?y + cx® and
gt = Azy* + Bz?y + Cz3. Moreover, we may assume that a = 0. Indeed,
for A # 0 we can replace f by f = f — (a/A)g and for A = 0 we change the
roles of f and g. This gives Ay C Cy and A, C Cy.

Two cases can occur: (1) (2,1) € Ay, and (2) (2,1) € Ay.

3.1. Analysis of case (1). We have f+ = bx?y + cax® = ba?(y + (¢/b)x),
b # 0. A linear substitution y = § — (c¢/b)z gives fT = ba?y%. Hence we
may assume that (3,0) € Ay and so Ay C C5. By Kouchnirenko’s theorem
if Ay = C3 or Ay = Cy then u(f) = 3 (see the Example at the end of
the previous section). By Lemma 3 in both cases a polynomial f has a real
critical point. For Ay = (5 direct easy computations show that f has a real
critical point. All these cases are excluded. Hence Ay C Cs.

Let us write f = fi(x)y + fa(z). If fi(x) has a constant sign then the
level sets {f = t} are connected, because they have equations y = (t —
fa(z))/ fi(x), and by Lemma 1, (f,g) is a diffeomorphism. If there is xg
such that fi(xg) = 0 then without the loss of generality we may replace
(f,g) with (f(z + zo,y) — f(20,0),9(x + xo,y)). This reduces the Newton
polygon of f to Ay C Cr. If (1,1) € Ay then an easy computation shows
that f has a critical point, which is impossible. Therefore Ay C Cs.

Consider the Newton polygon A,. We have A, C Cy. Suppose that
(0,2) € Ay. Then by Corollary 2 applied to (0,2) € A, and (2,1) € Ay
the Jacobian Jac(f, g) would change sign. Thus (0,2) ¢ A, and Ay C Cio.
Note that (0,1) € A, because otherwise Jac(f, g)(0,0) = 0. Fix a direction
& = (=1,1) and put J = Jac(f,g). We can write f¢ = ax + bx?y, a # 0,
b# 0 and ¢¢ = Ay + Bxy?, A # 0. Hence J¢ = Jac(f¢, ¢%) = 3bB(zy)? +
2(Ab + aB)wzy + aA. Since a discriminant (2(Ab + aB))? — 4(3bB)(aA) can
be written as a sum of squares 3(Ab — aB)? + (Ab+ aB)? it is a positive
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number. Therefore J¢ changes its sign and so does J by Lemma 4. This
contradiction finishes the proof of case (1).

3.2. Analysis of case (2). We have Ay C Cy and A, C Cy. By Corol-
lary 2 it is impossible that both (0,2) € Ay and (1,2) € A,.
Assume first that (1,2) ¢ Ay. Then A, € C4. If (2,1) € A then we can

put f = g, g = —f and the proof for a pair (f g) has already been given.
If (2,1) ¢ Ay then A, C Cy. Comparing the Newton polygons of f and g
we see that there is a constant ¢ such that the polynomial g = g — ¢f is of
degree 1 or 2. We have checked this case at the beginning of the proof.

Assume now that (0,2) &€ Ay. Then Ay C Cyy. If (1,1) € Ay then it is
easily seen that f has a critical point, which is impossible. Hence Ay C Cy».

If (0,1) € Ay then all level sets {f = ¢} are connected and by Lemma 1
the map (f, g) is a diffeomorphism.

If (0,1) ¢ Ayf then the polynomial f depends on the variable x only.
Moreover, f has no critical point and consequently the level sets of f are
(single) straight lines. Hence by Lemma 1, (f,g) is a diffeomorphism. =
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