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Length 2 variables of A[z,y| and transfer

by Eric EpO (Talence) and STEPHANE VENEREAU (Grenoble)

Abstract. We construct and study length 2 variables of A[x,y] (A is a commutative
ring). If A is an integral domain, we determine among these variables those which are
tame. If A is a UFD, we prove that these variables are all stably tame. We apply this
construction to show that some polynomials of A[z1,...,zy] are variables using transfer.

1. Introduction. Let A be a commutative ring. The automorphism
group GA, (A) is anti-isomorphic to Aut A’ and has an obvious geometric
significance. A naive question about automorphisms is: “What do they look
like?” This is already a difficult problem for n = 2 and we focus on this case.

The simplest automorphisms belong to the three subgroups Afy(A),
BAs(A) and N,,(A) (see Notations 1). When A is a field the situation is
well understood thanks to Jung—van der Kulk’s theorem (see Theorem 1):
all automorphisms are tame, i.e. belong to the subgroup generated by Afs(A)
and BA5(A). But there exist non-tame automorphisms as soon as A is no
longer a field.

Since n = 2, the study of automorphisms boils down to the study of
variables (see Corollary 2). When Q C A a general result (see Theorem 2)
gives a criterion for a polynomial to be a variable. Without assumptions
on A, we define the length of a variable (see Notation 3). Length 1 variables
were described by Russell and Sathaye (see Theorem 3).

The study of length 2 variables has begun only recently in the work
of Drensky and Yu [DY], but they use characteristic zero techniques; in
fact, they suppose A = K[z] with K a field of characteristic zero and in
this case the general criterion can be applied. We give a construction of
length 2 variables without any assumption on A (see Theorem 4) and we
study these variables. If A is an integral domain, we determine among these
variables those which are tame (see Proposition 3) using Jung—van der Kulk’s
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theorem. If A is a UFD, we prove that these variables are all stably tame
(see Theorem 5). This result was obtained with the help of D. Wright and is
a strong generalization of M. Smith’s result (see [S]). Finally, we apply this
construction to show that some polynomials of A[zq,...,z,] are variables
using transfer (see Theorems 7 and 8).

2. Notations and background. Throughout this paper, A and k de-
note commutative rings, A* is the set of non-zero divisors of A and qt A
denotes the total quotient ring of A, i.e. qt A = (A*)"1A.

NoOTATIONS 1. We use the following classical notations:

o GA,(A) = Auts Alzy,...,x,] is the automorphism group of the
A-algebra Alzq, ..., 2],

e Af,,(A) is the affine automorphism subgroup,

e BA, (A) is the triangular automorphism subgroup (6 € GA,(A) is

triangular if 3(z;) = a;z; + Pi(ziy1,...,2,) where a; are units in A and
P, e Alzig1,...,zp) for 1 <i<mn),

e N, (A) is the subgroup of nilpotency (8 € N, (A) if 5(x;) = x; + P; with
P; nilpotent elements in A[zq,...,2,])

e TA,(A) is the tame automorphism subgroup (i.e. the subgroup of
GA,, (A) generated by Af,,(A4), BA,,(4) and N, (4)),

e ST,,(A) is the stably tame automorphism subgroup (o € GA,(A) is
stably tame if there exists m > 1 such that o, € TA, ,,(A) where o, €
GA, 1 m(A) is defined by o, (x;) = o(z;) if 1 < i < n and o,,(z;) = z; if
n+1<i<n+m).

If n < 3 we will use the following notations: z = x1, y = 2 and z = x3.
The following result is well known (see for example [N] or [MW]):
THEOREM 1 ([Jung, van der Kulk]). If A is a field then

GA(A) = TA(A) = Afy(A) *x BAo(A)

where x is the amalgamated product of Afa(A) and BA3(A) along their in-
tersection.

NOTATIONS 2. We introduce new notations:
TAS(A) = {o € TA3(A) : 0 =bpay, ...bia1by, b; € BAs(A), a; € Afs(A)},
GA5(A) = GA3(A) N TAS (gt A).
The Jung—van der Kulk theorem has the following useful consequence:
COROLLARY 1. If A is an integral domain then

GAs(A) = | GA3(A) and GAJ(A)NTAz(A) = TAL(A).
neN
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Proof. Because A is an integral domain, qt A is a field and we can apply
the theorem in qt A. The first equality follows from GAs(qt A) = TAs(qt A).
The inclusion TAS(A) C GA5(A) N TAz(A) is obvious, the opposite one
follows from TAo(A) = Afs(A) * BAo(A) and the two inclusions Afy(A) N
BAs(A) C Afs(qt A) N~ BAa(qt A) and BA3(A) ~ Afy(A) C BAs(qt A) ~
Afy(qt A).

One can easily describe GA;(A) (cf. [N], Proposition 3.1):
PROPOSITION 1. We have
GA1(A) = {ax + b(z) + c: a unit in A, b nilpotent in Alz], c € A}.

COROLLARY 2. Let 0,0 € GAx(A). If o(y) = o'(y) then o~ to’ €
BA5(A)Ny(A).

This corollary shows that all the information about appearance and
tameness of an automorphism of A[z,y| is contained in one of its two com-
ponents, i.e. in a variable.

NoOTATIONS 3. We define the following subsets of Az, y]:

TVy(A) ={F € Alx,y] : (o € TA3(A))o(y) = F},
TV3(A) ={F € Alz,y] : (30 € TA;(A))o(y) = F},
VA2(A) = {F € Alz,y] : (30 € GA2(A))o(y) = F},
VA3 (A) ={F € Alz,y] : (30 € GAZ(A))o(y) = F},
SVo(A) ={F € Alz,y| : (30 € ST3(A))o(y) = F}.

DEFINITIONS. An element of TVy(A) (resp. VA3(A), resp. SVa(A)) is
called a tame wvariable (resp. a wvariable, resp. a stably tame variable).

A length n variable is an element of VA% (A) ~ VAL 1(A).

Here is a powerful criterion for proving that some polynomials are vari-
ables:

THEOREM 2. Suppose Q C A and let F € Alx,y]. Then F € VA5 (A) if
and only if the following two assumptions hold:

(i) F € VAy(qt A),
(i) 1 € (9, F,0,F).

This theorem is based on the theory of locally nilpotent derivations de-
veloped recently by Daigle and Freudenburg when A is a UFD (see [DF],
Proposition 2.3 and Theorem 2.5), Bhatwadekar and Dutta when A is a
(normal) noetherian integral domain (see [BD], Theorem 4.7) and Berson,
van den Essen and Maubach in the general situation, i.e. when Q C A (see
[BEM], Theorem 3.7).

If Q ¢ A then Theorem 2 is not true if A is not a field.
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If char(A) = p > 0, let ¢ € A* and suppose ¢ is not a unit in A. We
consider F' = gz +y + y? € VAa(qt A). Let M be a maximal ideal such
that ¢ € M. We have F' = y(1 + y?~') mod M, hence F € VA3(A/M) and
F ¢ VA5 (A). Nevertheless, assumptions (i) and (ii) do hold.

If char(A) =0, let ¢ € A* and suppose ¢ is an integer and is not a unit
in A. We consider F' = gqx + y + y? and we conclude as above.

On the other hand, we have (see [R]) the following old result (without
the assumption Q C A) which describes VA3 (A):

THEOREM 3 (Russell, Sathaye). Let F € Alx,y]. Then F € VA3(A) if
and only if F(x,y) = pr+ Y. g;y" with p € A* and > giy* € Aly] such
that g1 (resp. g; for i > 2) is a unit (resp. are nilpotent) mod pA.

REMARK. If Q C A then Theorem 3 follows from Theorem 2.

Corollary 1 gives:

PROPOSITION 2. If A is an integral domain then
VAL(A) N TV, (A) = {p:l: +3 gy’ € VAL(A) : (Vi > 2) g; = 0 mod pA}.

REMARK. The Nagata polynomial is N = 22z + y + 2y* € Alz,y| with
A = k[z]. Theorem 3 and Proposition 2 show that N € VA3(A) ~ TVy(A),
which is a result due to Nagata (see [N]).

3. Length 2 variables of A[z,y]

NoOTATION. We denote by LV%(A) the the set of polynomials y+ H (px +
G(y)) with p € A%, G(y) = 29" € Aly] and H(y) = > hiy' € Aly] such
that h; is nilpotent mod pA for i > 1.

THEOREM 4. We have the following inclusion: TV3(A) C VA3(A).

Proof. Let p € A%, G(y) = X giy' € Aly] and H(y) = - hiy' € Aly]
such that h; (¢ > 1) is nilpotent mod pA.

LEMMA. Let H be the ideal of Aly] generated by h; (i > 1). Define the
family (Qn)nen in Aly] by Qo(y) = 0 and Qny1(y) = G(y — H(Qn(y))) for
n € N. Then:

(1) (Vn € N) Qn(y + H(G(y))) = G(y) mod H",

(2) (Vn eN) Qnt1(y) = Qn(y) mod H™.

Proof of the lemma. We prove (1) and (2) by induction. For n = 0 this
is trivial (indeed, H® = A). Let n € N\ {0} and suppose (1) and (2) hold
at step n — 1. Then modulo H":

Qn(y + H(G(y))) = Gy + H(G(y)) — H@Qn1(y + H(G(y))))) = G(y)
and

Qn+1(y) = Gy — H(Qn(y))) = Gy — H(Qn-1(y))) = Qn(y).
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We return to the proof of Theorem 4. Let  be such that H! C pA and let
Q(y) = Qu(y). If F =y+ H(px+G(y)) (resp. F1 =y — H(pr+Q(y))) then
by (1) (resp. (2)) of the lemma Q(F) = G(y) mod pA[x,y] (resp. G(Fy) =
Q(y) mod pAlx,y]), i.e. there exists K € Alz,y] (resp. K1 € Alz,y]) such
that Q(F) = G(y) — pK(z,y) (resp. G(F1) = Q(y) — pK1(w,y)). We define
o= (x+ K,F)and 01 = (z + K1, F1). We have oo1(y) = Fi(x + K, F)
= F - Hpx + pK + Q(F) = y and oo1(x) =  + K + Ky(z + K, F).
Since p(K + K1(z+ K, F)) = Q(F) -G+ Q(F) - G(Fi(x + K, F)) = 0 we
have K + K;(z + K, F) = 0 because p € A*, hence oo1(z) = z. A similar
computation shows that o10(y) = y and o10(z) = x, hence o € GA3(A)
and F € VA3(A).

REMARK. If Q C A then Theorem 4 follows from Theorem 2. The first
part of Theorem 3.10 in [DY] follows from Theorem 4 and also from Theo-
rem 2.

REMARK. The lemma gives an algorithm to compute @Q;(y) and find a
o € GA3(A) such that o(y) = y + H(pz + G(y)) (i.e. find o(z)) but we do
not know any general formula giving Q;(y) in terms of p, G and H. However,
here is an example of such a formula:

EXAMPLE. Let p € A%, and G(y) = ay’, H(y) = ry* with j,k > 1,
r € A nilpotent mod pA and a € A. We can compute the sequence defined
in the lemma:

(Vn € N) Qn(y) = ay’ Z cijx(—ra®y?* 1 mod " Afy]

where the coefficients ¢; j , are defined by the formula C(T) = > ¢; ;s T"
where C(T) € A[[T]] is defined by C(T) = (1 + TC(T)*)J.
In fact, by induction, modulo ™! A[y]:

Qnt1(y) = G(y — H(Qn(v)))

n—1

. . kN7
— a(y—r[ayj Ci%k(—rakyjk_l)’] )
i=0
4 A n-! A RN
— ayf (1 — raFyi-1 [Zcid’k(_raky]kfl)z] )
i=0

n

j k. jk—1v\i

= ay’ E Ci gk (—ra®y’" )"
i=0

So we can take one of the following automorphisms (if b € A and b = 0
mod pA then p~1b means one of ¢ € A such that b = pc):
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-1
o(x) =z +p oy — o) Y cign(—rataly) 1)),
i=1
a(y) =y +r(pr +ay’)".
EXAMPLE. With A = k[z,t], p = 2, G(y) = ty and H(y) = zy?, we have
the following automorphism o of k[z, t][x, y]:
o(z) =z — t(zx + ty)?,
o(y) =y + z(zx + ty)2.
This is Popov’s second automorphism [P], a variant of which is used by

van den Essen and Hubbers in [EH] as a counterexample to several conjec-
tures.

ExAMPLE. With A = k[z], p = 2%, G(y) = y* and H(y) = 2y?, we have
the following automorphism o of k[z][x, y]:
o(z) =2 +272(y* - o(y)* — 2z0(y)°),
o(y) =y +z(z"z +y?)*.
QUESTIONS. One can ask the following questions (the answers should
depend on A):

1. Let U(A) = {(z,ay) : a a unit in A}. Do we have VA3(A)~VA3(A) C
U(A)LV3?

2. Does there exist an integer n such that GA5(A) is generated by Afa(A),
GAZ(A) and Ny (A)?

REMARK. The lemma of Theorem 5 is a partial answer to Question 1.

4. Tameness properties. Corollary 1 gives:

PROPOSITION 3. If A is an integral domain, let F = y+H (pr+G(y)) €
LV32(A). Then F € TVy(A) if and only if the following three conditions are
satisfied:

(1) g; = 0 mod pA for all i > 2,

(2) there exists s € A such that pA+ g1 A = sA,

(3) sk; = 0 mod pA for all i > 2 where H(sy+ go) = > kiy'.

REMARK. The “moreover” part of Theorem 3.10 in [DY] follows from
Proposition 3.

THEOREM 5. If A is a UFD, then LV3(A) C SVy(A).

LEMMA. Suppose A is a UFD. Let p € AX, G(y) = >_ g:y* € Aly] and
H(y) =>"hyyt € Aly]. If ged(p,g; i > 1) is a unit and y+ H(pz + G(y))
€ VA3(A) then for all i > 1, h; is nilpotent mod pA.
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Proof of the lemma. We write p = [] p;” with p; irreducible. For all
j,» y + H(G(y)) is a variable in (A/p;jA)[y]. Since degG > 1, we have
degH <1, ie. h; = 0mod p;A for all 7 > 1. Hence for all 7 > 1 we have
h; = 0 mod [ p; A, which implies h; is nilpotent mod pA.

Proof of Theorem 5 (this argument follows an idea due to D. Wright (1)).
Let F =y + H(pz + G(y)) € VA3(A); we prove that F is stably tame by
induction on the number of irreducible factors of p. If p is a unit then F' is
tame. Suppose p is not a unit. Let s = ged{p, ¢g; : i > 1}.

(1) If s is not a unit then we change p to s~!p, G(y) to s~ (G(y) —go) and
H(y) to H(sy+ go). This does not change F' and the number of irreducible
factors of p decreases.

(2) If s is a unit, by the lemma r = ged{p, h; : i > 1} is not a unit. Let
o € GA3(A) be such that o(y) = F and let z = x3 be a new indeterminate.
We extend o to o1 by o1(x) = o(x), 01(y) = o(y) and o1(2) = z. We write
H(y) = rHi(y) (one can suppose hg = 0) with H; € Afy]. We consider
a = (v,2,y +rz), B8 = (2,9,2),y = (y,—ry + z,2) € Af3(A4) and 7 =
(z — Hi(G(y) + p2),y,z) € BA3(A). (Here ¢ = (f,g,h) means o(z) = f,
o(y) = g, o(z) = h.) Let 0o = y7fB01a. We have 03(2) = z and o2(y) =
y—Hi(pr+G(—ry+2z)). Let G*(y) = 3 g/y" = G(w—ry) € Alw][y; now r
divides s* = ged{p, g/ : i > 1} and we can reduce the number of irreducible
factors of p as in case (1).

PROPOSITION 4. Let F € VA3(A). Then there exists o € Afo(A) such
that o(F) € LV3.

Proof. Let F = px + G(y) € VA3(A) with G(y) = 3. giv'. Let a,b € A
be such that ag;y — pb = 1. We consider a = (g1 — by, —px + ay) € Afa(A);
then a(F) € LV3.

COROLLARY 3. If A is a UFD, then VA3(A) C TAy(A).

EXAMPLE. Let ¢ € C be such that €2 + 3 = 0. By Theorem 3 we have
2(1+€)z+y+2y%+(1+¢)y® € VA3(Z[e]), and the proof of Theorem 5 cannot
be applied to this variable because the terms 2y? and (1 + ¢)y® cannot be
cancelled simultaneously. So we do not know whether this variable is stably
tame or not.

REMARK. Corollary 3 implies that the Nagata polynomial is stably
tame, which is a result due to M. Smith [S].

DEFINITION. If Q C A, we say that 0 € GA3(A) is a Smith automor-
phism if there exists a triangular derivation D of A[z,y] and W € ker D
such that o = exp(WD); we say that F' € A[z,y] is a Smith variable if there
exists a Smith automorphism o such that o(y) = F.

(}) Private communication.



74 E. Edo and S. Vénéreau

REMARK. M. Smith’s result [S] asserts that a Smith automorphism is
stably tame.

THEOREM 6. If A is a UFD and Q C A, let F =y + H(px + G(y)) €
LV2(A) and suppose H ¢ A. Then F is a Smith variable if and only if
H(G(y))G'(y) = 0 mod pA[y].

Proof. We write p = [],¢ Ipé" (pi irreducible in A) and for i € I we
denote by v; the p;-adic valuation in A[y]. We have the following equivalence
(K € Aly]):

(%) K =0mod pAly] & (Vie I) v;(K) > ;.

(1) Suppose that y+ H(px+ G(y)) is a Smith variable. Then there exists
a triangular derivation D of A[z,y] and W € ker D such that exp(WD)(y) =
y+ H(pz + G(y)). We write D = B(y)D, + bD,, with B € Aly] and b € A
and we obtain bW = H (pz + G(y)). We have v;(b) < v;(H (pz + G(y))) for
i€l and W =b"tH(pr + G(y)). Hence 0 = D(W) = B(y)b~'pH'(pz +
G(y))+G'(y)H' (pr+G(y)) and B(y)p+bG'(y) = 0 because H ¢ A. Finally,
v (p) < vi(b) +vi(G'(y)) < vi(pr + H(G(y))G' (y)) for i € I and we obtain
H(G(y))G'(y) = H(pz + G(y))G'(y) = 0 mod pA[y] using (x).

(2) Let h = ged(H(G(y)),p) and suppose that H(G(y))G’'(y) = 0 mod
pAly]. Then —p~*hG'(y) € Aly]. Let D = —p~'hG'(y) D, + hD,, which is
a triangular derivation of A[z,y], and let W = h™'H (pz + G(y)). We have
D(W)=-G'(y)H (pr+G(y)) + G (y)H (pr + G(y)) =0, i.e. W € ker(D).

We have (WD)(y) = H(pz + G(y)) and (WD)’ (y) = 0 for j > 2, hence
exp(WD)(y) = y+ H(px+ G(y)) and y + H(pz + G(y)) is a Smith variable.

EXAMPLE. If k is a UFD and Q C k, then y + z(zx + ty)? is a Smith
variable in A = k[z, t] and y+2(2%z+y?)? is not a Smith variable in A = k[2].

PrOPOSITION 5. If A is a UFD and Q C A then all Smith variables are
variables in LV3(A).

Proof. Let D be a triangular derivation of A[z,y] and W € ker D. We
write D = B(y)D, + bD, with B € Afy] and b € A. Further, we de-
note by §; B(y) the unique polynomial C' € Afy] such that C'(y) = B(y)
and C(0) = 0. We choose p = b, G(y) = {,B(y) and we remark that
bW (b~ 'z — b1 §  B(y),y) is in Alz] because D, (bW (b~ 'z —b~' §  B(y),y))
= 0 since DW = 0, hence we can choose H(z) = bW (b~ 'z —b~" {, B(y),y).
Now we have exp(WD)(y) = y + H(pz + G(y)) € LV5(A).

REMARK. Proposition 5 shows that Theorem 5 generalizes M. Smith’s
criterion.

5. Transfer. Theorems 3 and 4 can be used to find variables of VA,,(A)
(n > 2) by induction on n.
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NOTATIONS. Let Y be a non-empty set of indeterminates, y be an ele-
ment of Y and Z =Y ~ {y}.

THEOREM 7. Let p € A%, let a be a unit mod pA, and let G, F € A[Y].
If all the coefficients of G are nilpotent mod pA and if F is a variable in
A[Y] then aF(Y) 4+ G(Y) + px is a variable in Alz,Y].

Proof. Let a € Aut4 A[Y] such that a(y) = F(Y). By Theorem 3, there
exists 0 € Autapz) A[Z][x,y] such that o(y) = ay + a 'G(Y) + px. We
extend « and o to automorphisms of Alz, Y| by a(z) = x and o(z) = z for
all z € Z. Then ao(y) = alay + o 'G(Y) + px) = aF(Y) + G(Y) + pz.

COROLLARY 4 (generalised Choudary—Dimca’s hypersurfaces). Let m €
N~ {0}. Let p; € Alz] and G; € Alzxg,...,Ti—1,21,...,2i for 1 <
i < m. Let r; € Alz] be nilpotent mod p;Alz;] (1 < i < m). Then
zo+ Y ivy (1:Gi + xip;) is a variable in Alzo,. .., Tm, 21, .-, 2Zm].

Proof. We proceed by induction on m. Theorem 3 applied to the ring
Alz ] implies that o + r1G1 + p1x1 is a variable in A[zg, 21, 21] (z1 = =z,
To=1Y).

If o+ >0y (r:G; + a;p;) is a variable in A[zg, ..., Tm,21,. .., Zn] then
Theorem 7 applied to the ring Alzp,41] with Y = {zo,...,Tm, 21, ., 2m}
implies that zg + Z?:{l (riG; +x;p;) is a variable in Alzo,...,Tmt1,
21y ,Zm+1].

REMARK. In the case A = C, p; = zld_l, G; = xf__ll and r; = z; for

1 < i < m, these are Choudary-Dimca’s hypersurfaces (cf. [CD]) and this
corollary gives an answer to Question 1 in [CD].

THEOREM 8. Let p € AX, let H(y) = > hyy' € Aly|, and let G, F €
A[Y]. If h; (i > 1) is nilpotent mod pA and if F is a variable in A[Y] then
F(Y)+ H(pr+ G(Y)) is a variable in Alz,Y].

Proof. Let a € Auta A[Y] be such that a(y) = F(Y). By Theorem 4,
there exists o € Aut a7 A[Z][z, y] such that o(y) =y + H(pz + o *G(Y)).
We extend « and o to automorphisms of Az, Y] by a(z) =z and o(z) = z
for all z € Z. Then ao(y) = a(y + H(pz + o *G(Y))) = F(Y) + H(pz +
G(Y)).

ExaMpPLE. Using Theorems 7 and 8 one can prove that the following
polynomials of A[x,y, z,u, v] are variables:

(u—1)(y+ 2(2%z +yz + y>)* +ulu+ 1)z +u3(u + 1),
(z =Dy +z2(z+ Dy* + 2° (2 + 1?2 + u(w’v + ¢*)*,
y+ 2(2%z + y*)? + u(uv + zyz)°.
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