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Length 2 variables of A[x, y] and transfer

by Eric Edo (Talence) and Stéphane Vénéreau (Grenoble)

Abstract. We construct and study length 2 variables of A[x, y] (A is a commutative
ring). If A is an integral domain, we determine among these variables those which are
tame. If A is a UFD, we prove that these variables are all stably tame. We apply this
construction to show that some polynomials of A[x1, . . . , xn] are variables using transfer.

1. Introduction. Let A be a commutative ring. The automorphism
group GAn(A) is anti-isomorphic to AutAnA and has an obvious geometric
significance. A näıve question about automorphisms is: “What do they look
like?” This is already a difficult problem for n = 2 and we focus on this case.

The simplest automorphisms belong to the three subgroups Af2(A),
BA2(A) and Nn(A) (see Notations 1). When A is a field the situation is
well understood thanks to Jung–van der Kulk’s theorem (see Theorem 1):
all automorphisms are tame, i.e. belong to the subgroup generated by Af2(A)
and BA2(A). But there exist non-tame automorphisms as soon as A is no
longer a field.

Since n = 2, the study of automorphisms boils down to the study of
variables (see Corollary 2). When Q ⊂ A a general result (see Theorem 2)
gives a criterion for a polynomial to be a variable. Without assumptions
on A, we define the length of a variable (see Notation 3). Length 1 variables
were described by Russell and Sathaye (see Theorem 3).

The study of length 2 variables has begun only recently in the work
of Drensky and Yu [DY], but they use characteristic zero techniques; in
fact, they suppose A = K[z] with K a field of characteristic zero and in
this case the general criterion can be applied. We give a construction of
length 2 variables without any assumption on A (see Theorem 4) and we
study these variables. If A is an integral domain, we determine among these
variables those which are tame (see Proposition 3) using Jung–van der Kulk’s
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theorem. If A is a UFD, we prove that these variables are all stably tame
(see Theorem 5). This result was obtained with the help of D. Wright and is
a strong generalization of M. Smith’s result (see [S]). Finally, we apply this
construction to show that some polynomials of A[x1, . . . , xn] are variables
using transfer (see Theorems 7 and 8).

2. Notations and background. Throughout this paper, A and k de-
note commutative rings, A× is the set of non-zero divisors of A and qtA
denotes the total quotient ring of A, i.e. qtA = (A×)−1A.

Notations 1. We use the following classical notations:

• GAn(A) = AutAA[x1, . . . , xn] is the automorphism group of the
A-algebra A[x1, . . . , xn],
• Afn(A) is the affine automorphism subgroup,
• BAn(A) is the triangular automorphism subgroup (β ∈ GAn(A) is

triangular if β(xi) = aixi + Pi(xi+1, . . . , xn) where ai are units in A and
Pi ∈ A[xi+1, . . . , xn] for 1 ≤ i ≤ n),
• Nn(A) is the subgroup of nilpotency (β ∈ Nn(A) if β(xi) = xi+Pi with

Pi nilpotent elements in A[x1, . . . , xn])
• TAn(A) is the tame automorphism subgroup (i.e. the subgroup of

GAn(A) generated by Afn(A), BAn(A) and Nn(A)),
• STn(A) is the stably tame automorphism subgroup (σ ∈ GAn(A) is

stably tame if there exists m ≥ 1 such that σm ∈ TAn+m(A) where σm ∈
GAn+m(A) is defined by σm(xi) = σ(xi) if 1 ≤ i ≤ n and σm(xi) = xi if
n+ 1 ≤ i ≤ n+m).

If n ≤ 3 we will use the following notations: x = x1, y = x2 and z = x3.

The following result is well known (see for example [N] or [MW]):

Theorem 1 ([Jung, van der Kulk]). If A is a field then

GA2(A) = TA2(A) = Af2(A) ∗ BA2(A)

where ∗ is the amalgamated product of Af2(A) and BA2(A) along their in-
tersection.

Notations 2. We introduce new notations:
TAn

2 (A) = {σ ∈TA2(A) : σ = bnan . . . b1a1b0, bi ∈ BA2(A), ai ∈Af2(A)},
GAn

2 (A) = GA2(A) ∩ TAn
2 (qtA).

The Jung–van der Kulk theorem has the following useful consequence:

Corollary 1. If A is an integral domain then

GA2(A) =
⋃

n∈N
GAn

2 (A) and GAn
2 (A) ∩ TA2(A) = TAn

2 (A).
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Proof. Because A is an integral domain, qtA is a field and we can apply
the theorem in qtA. The first equality follows from GA2(qtA) = TA2(qtA).
The inclusion TAn

2 (A) ⊂ GAn
2 (A) ∩ TA2(A) is obvious, the opposite one

follows from TA2(A) = Af2(A) ∗ BA2(A) and the two inclusions Af2(A) r
BA2(A) ⊂ Af2(qtA) r BA2(qtA) and BA2(A) r Af2(A) ⊂ BA2(qtA) r
Af2(qtA).

One can easily describe GA1(A) (cf. [N], Proposition 3.1):

Proposition 1. We have

GA1(A) = {ax+ b(x) + c : a unit in A, b nilpotent in A[x], c ∈ A}.
Corollary 2. Let σ, σ′ ∈ GA2(A). If σ(y) = σ′(y) then σ−1σ′ ∈

BA2(A)N2(A).

This corollary shows that all the information about appearance and
tameness of an automorphism of A[x, y] is contained in one of its two com-
ponents, i.e. in a variable.

Notations 3. We define the following subsets of A[x, y]:

TV2(A) = {F ∈ A[x, y] : (∃σ ∈ TA2(A))σ(y) = F},
TVn

2 (A) = {F ∈ A[x, y] : (∃σ ∈ TAn
2 (A))σ(y) = F},

VA2(A) = {F ∈ A[x, y] : (∃σ ∈ GA2(A))σ(y) = F},
VAn

2 (A) = {F ∈ A[x, y] : (∃σ ∈ GAn
2 (A))σ(y) = F},

SV2(A) = {F ∈ A[x, y] : (∃σ ∈ ST2(A))σ(y) = F}.
Definitions. An element of TV2(A) (resp. VA2(A), resp. SV2(A)) is

called a tame variable (resp. a variable, resp. a stably tame variable).
A length n variable is an element of VAn

2 (A)r VAn−1
2 (A).

Here is a powerful criterion for proving that some polynomials are vari-
ables:

Theorem 2. Suppose Q ⊂ A and let F ∈ A[x, y]. Then F ∈ VA2(A) if
and only if the following two assumptions hold :

(i) F ∈ VA2(qtA),
(ii) 1 ∈ (∂xF, ∂yF ).

This theorem is based on the theory of locally nilpotent derivations de-
veloped recently by Daigle and Freudenburg when A is a UFD (see [DF],
Proposition 2.3 and Theorem 2.5), Bhatwadekar and Dutta when A is a
(normal) noetherian integral domain (see [BD], Theorem 4.7) and Berson,
van den Essen and Maubach in the general situation, i.e. when Q ⊂ A (see
[BEM], Theorem 3.7).

If Q 6⊂ A then Theorem 2 is not true if A is not a field.
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If char(A) = p > 0, let q ∈ A× and suppose q is not a unit in A. We
consider F = qx + y + yp ∈ VA2(qtA). Let M be a maximal ideal such
that q ∈ M. We have F = y(1 + yp−1) modM, hence F 6∈ VA2(A/M) and
F 6∈ VA2(A). Nevertheless, assumptions (i) and (ii) do hold.

If char(A) = 0, let q ∈ A× and suppose q is an integer and is not a unit
in A. We consider F = qx+ y + yq and we conclude as above.

On the other hand, we have (see [R]) the following old result (without
the assumption Q ⊂ A) which describes VA1

2(A):

Theorem 3 (Russell, Sathaye). Let F ∈ A[x, y]. Then F ∈ VA1
2(A) if

and only if F (x, y) = px +
∑
giy

i with p ∈ A× and
∑
giy

i ∈ A[y] such
that g1 (resp. gi for i ≥ 2) is a unit (resp. are nilpotent) mod pA.

Remark. If Q ⊂ A then Theorem 3 follows from Theorem 2.

Corollary 1 gives:

Proposition 2. If A is an integral domain then

VA1
2(A) ∩ TV2(A) =

{
px+

∑
giy

i ∈ VA1
2(A) : (∀i ≥ 2) gi = 0 mod pA

}
.

Remark. The Nagata polynomial is N = z2x+ y + zy2 ∈ A[x, y] with
A = k[z]. Theorem 3 and Proposition 2 show that N ∈ VA1

2(A)r TV2(A),
which is a result due to Nagata (see [N]).

3. Length 2 variables of A[x, y]

Notation. We denote by LV2
2(A) the the set of polynomials y+H(px+

G(y)) with p ∈ A×, G(y) =
∑
giy

i ∈ A[y] and H(y) =
∑
hiy

i ∈ A[y] such
that hi is nilpotent mod pA for i ≥ 1.

Theorem 4. We have the following inclusion: LV2
2(A) ⊂ VA2

2(A).

Proof. Let p ∈ A×, G(y) =
∑
giy

i ∈ A[y] and H(y) =
∑
hiy

i ∈ A[y]
such that hi (i ≥ 1) is nilpotent mod pA.

Lemma. Let H be the ideal of A[y] generated by hi (i ≥ 1). Define the
family (Qn)n∈N in A[y] by Q0(y) = 0 and Qn+1(y) = G(y−H(Qn(y))) for
n ∈ N. Then:

(1) (∀n ∈ N) Qn(y +H(G(y))) = G(y) mod Hn,
(2) (∀n ∈ N) Qn+1(y) = Qn(y) mod Hn.

Proof of the lemma. We prove (1) and (2) by induction. For n = 0 this
is trivial (indeed, H0 = A). Let n ∈ N r {0} and suppose (1) and (2) hold
at step n− 1. Then modulo Hn:

Qn(y +H(G(y))) = G(y +H(G(y))−H(Qn−1(y +H(G(y))))) = G(y)
and

Qn+1(y) = G(y −H(Qn(y))) = G(y −H(Qn−1(y))) = Qn(y).
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We return to the proof of Theorem 4. Let l be such that Hl ⊂ pA and let
Q(y) = Ql(y). If F = y+H(px+G(y)) (resp. F1 = y−H(px+Q(y))) then
by (1) (resp. (2)) of the lemma Q(F ) = G(y) mod pA[x, y] (resp. G(F1) =
Q(y) mod pA[x, y]), i.e. there exists K ∈ A[x, y] (resp. K1 ∈ A[x, y]) such
that Q(F ) = G(y)− pK(x, y) (resp. G(F1) = Q(y)− pK1(x, y)). We define
σ = (x + K,F ) and σ1 = (x + K1, F1). We have σσ1(y) = F1(x + K,F )
= F − H(px + pK + Q(F ) = y and σσ1(x) = x + K + K1(x + K,F ).
Since p(K +K1(x+K,F )) = Q(F )−G+Q(F )−G(F1(x+K,F )) = 0 we
have K + K1(x + K,F ) = 0 because p ∈ A×, hence σσ1(x) = x. A similar
computation shows that σ1σ(y) = y and σ1σ(x) = x, hence σ ∈ GA2

2(A)
and F ∈ VA2

2(A).

Remark. If Q ⊂ A then Theorem 4 follows from Theorem 2. The first
part of Theorem 3.10 in [DY] follows from Theorem 4 and also from Theo-
rem 2.

Remark. The lemma gives an algorithm to compute Ql(y) and find a
σ ∈ GA2

2(A) such that σ(y) = y + H(px+ G(y)) (i.e. find σ(x)) but we do
not know any general formula giving Ql(y) in terms of p, G and H. However,
here is an example of such a formula:

Example. Let p ∈ A×, and G(y) = ayj , H(y) = ryk with j, k ≥ 1,
r ∈ A nilpotent mod pA and a ∈ A. We can compute the sequence defined
in the lemma:

(∀n ∈ N) Qn(y) = ayj
n−1∑

i=0

ci,j,k(−rakyjk−1)i mod rnA[y]

where the coefficients ci,j,k are defined by the formula C(T ) =
∑∞
i=0 ci,j,kT

i

where C(T ) ∈ A[[T ]] is defined by C(T ) = (1 + TC(T )k)j .
In fact, by induction, modulo rn+1A[y]:

Qn+1(y) = G(y −H(Qn(y)))

= a
(
y − r

[
ayj

n−1∑

i=0

ci,j,k(−rakyjk−1)i
]k)j

= ayj
(

1− rakyjk−1
[ n−1∑

i=0

ci,j,k(−rakyjk−1)i
]k)j

= ayj
n∑

i=0

ci,j,k(−rakyjk−1)i.

So we can take one of the following automorphisms (if b ∈ A and b = 0
mod pA then p−1b means one of c ∈ A such that b = pc):
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


σ(x) = x+ p−1a

(
yj − σ(y)j

l−1∑

i=1

ci,j,k(−rakσ(y)jk−1)i
)
,

σ(y) = y + r(px+ ayj)k.

Example. With A = k[z, t], p = z, G(y) = ty and H(y) = zy2, we have
the following automorphism σ of k[z, t][x, y]:

{
σ(x) = x− t(zx+ ty)2,
σ(y) = y + z(zx+ ty)2.

This is Popov’s second automorphism [P], a variant of which is used by
van den Essen and Hubbers in [EH] as a counterexample to several conjec-
tures.

Example. With A = k[z], p = z2, G(y) = y2 and H(y) = zy2, we have
the following automorphism σ of k[z][x, y]:

{
σ(x) = x+ z−2(y2 − σ(y)2 − 2zσ(y)5),
σ(y) = y + z(z2x+ y2)2.

Questions. One can ask the following questions (the answers should
depend on A):

1. Let U(A) = {(x, ay) : a a unit in A}. Do we have VA2
2(A)rVA1

2(A) ⊂
U(A)LV2

2?
2. Does there exist an integer n such that GA2(A) is generated by Af2(A),

GAn
2 (A) and N2(A)?

Remark. The lemma of Theorem 5 is a partial answer to Question 1.

4. Tameness properties. Corollary 1 gives:

Proposition 3. If A is an integral domain, let F = y+H(px+G(y)) ∈
LV2

2(A). Then F ∈ TV2(A) if and only if the following three conditions are
satisfied :

(1) gi = 0 mod pA for all i ≥ 2,
(2) there exists s ∈ A such that pA+ g1A = sA,
(3) ski = 0 mod pA for all i ≥ 2 where H(sy + g0) =

∑
kiy

i.

Remark. The “moreover” part of Theorem 3.10 in [DY] follows from
Proposition 3.

Theorem 5. If A is a UFD , then LV2
2(A) ⊂ SV2(A).

Lemma. Suppose A is a UFD. Let p ∈ A×, G(y) =
∑
giy

i ∈ A[y] and
H(y) =

∑
hiy

i ∈ A[y]. If gcd(p, gi : i ≥ 1) is a unit and y +H(px+G(y))
∈ VA2

2(A) then for all i ≥ 1, hi is nilpotent mod pA.
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Proof of the lemma. We write p =
∏
p
nj
j with pj irreducible. For all

j, y + H(G(y)) is a variable in (A/pjA)[y]. Since degG ≥ 1, we have
degH ≤ 1, i.e. hi = 0 mod pjA for all i ≥ 1. Hence for all i ≥ 1 we have
hi = 0 mod

∏
pjA, which implies hi is nilpotent mod pA.

Proof of Theorem 5 (this argument follows an idea due to D. Wright (1)).
Let F = y + H(px + G(y)) ∈ VA2

2(A); we prove that F is stably tame by
induction on the number of irreducible factors of p. If p is a unit then F is
tame. Suppose p is not a unit. Let s = gcd{p, gi : i ≥ 1}.

(1) If s is not a unit then we change p to s−1p, G(y) to s−1(G(y)−g0) and
H(y) to H(sy+ g0). This does not change F and the number of irreducible
factors of p decreases.

(2) If s is a unit, by the lemma r = gcd{p, hi : i ≥ 1} is not a unit. Let
σ ∈ GA2

2(A) be such that σ(y) = F and let z = x3 be a new indeterminate.
We extend σ to σ1 by σ1(x) = σ(x), σ1(y) = σ(y) and σ1(z) = z. We write
H(y) = rH1(y) (one can suppose h0 = 0) with H1 ∈ A[y]. We consider
α = (x, z, y + rz), β = (z, y, x), γ = (y,−ry + z, x) ∈ Af3(A) and τ =
(x − H1(G(y) + pz), y, z) ∈ BA3(A). (Here % = (f, g, h) means %(x) = f ,
%(y) = g, %(z) = h.) Let σ2 = γτβσ1α. We have σ2(z) = z and σ2(y) =
y−H1(px+G(−ry+z)). Let G∗(y) =

∑
g∗i y

i = G(w−ry) ∈ A[w][y]; now r
divides s∗ = gcd{p, g∗i : i ≥ 1} and we can reduce the number of irreducible
factors of p as in case (1).

Proposition 4. Let F ∈ VA1
2(A). Then there exists α ∈ Af2(A) such

that α(F ) ∈ LV2
2.

Proof. Let F = px + G(y) ∈ VA1
2(A) with G(y) =

∑
giy

i. Let a, b ∈ A
be such that ag1 − pb = 1. We consider α = (g1x− by,−px+ ay) ∈ Af2(A);
then α(F ) ∈ LV2

2.

Corollary 3. If A is a UFD , then VA1
2(A) ⊂ TA2(A).

Example. Let ε ∈ C be such that ε2 + 3 = 0. By Theorem 3 we have
2(1+ε)x+y+2y2+(1+ε)y3 ∈ VA1

2(Z[ε]), and the proof of Theorem 5 cannot
be applied to this variable because the terms 2y2 and (1 + ε)y3 cannot be
cancelled simultaneously. So we do not know whether this variable is stably
tame or not.

Remark. Corollary 3 implies that the Nagata polynomial is stably
tame, which is a result due to M. Smith [S].

Definition. If Q ⊂ A, we say that σ ∈ GA2(A) is a Smith automor-
phism if there exists a triangular derivation D of A[x, y] and W ∈ kerD
such that σ = exp(WD); we say that F ∈ A[x, y] is a Smith variable if there
exists a Smith automorphism σ such that σ(y) = F .

(1) Private communication.
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Remark. M. Smith’s result [S] asserts that a Smith automorphism is
stably tame.

Theorem 6. If A is a UFD and Q ⊂ A, let F = y + H(px + G(y)) ∈
LV2

2(A) and suppose H 6∈ A. Then F is a Smith variable if and only if
H(G(y))G′(y) = 0 mod pA[y].

Proof. We write p =
∏
i∈I p

li
i (pi irreducible in A) and for i ∈ I we

denote by vi the pi-adic valuation in A[y]. We have the following equivalence
(K ∈ A[y]):

(∗) K = 0 mod pA[y] ⇔ (∀i ∈ I) vi(K) ≥ li.
(1) Suppose that y+H(px+G(y)) is a Smith variable. Then there exists

a triangular derivation D of A[x, y] and W ∈ kerD such that exp(WD)(y) =
y + H(px + G(y)). We write D = B(y)Dx + bDy with B ∈ A[y] and b ∈ A
and we obtain bW = H(px+G(y)). We have vi(b) ≤ vi(H(px+G(y))) for
i ∈ I and W = b−1H(px + G(y)). Hence 0 = D(W ) = B(y)b−1pH ′(px +
G(y))+G′(y)H ′(px+G(y)) and B(y)p+bG′(y) = 0 because H 6∈ A. Finally,
vi(p) ≤ vi(b) + vi(G′(y)) ≤ vi(px + H(G(y))G′(y)) for i ∈ I and we obtain
H(G(y))G′(y) = H(px+G(y))G′(y) = 0 mod pA[y] using (∗).

(2) Let h = gcd(H(G(y)), p) and suppose that H(G(y))G′(y) = 0 mod
pA[y]. Then −p−1hG′(y) ∈ A[y]. Let D = −p−1hG′(y)Dx + hDy, which is
a triangular derivation of A[x, y], and let W = h−1H(px+ G(y)). We have
D(W ) = −G′(y)H ′(px+G(y)) +G′(y)H ′(px+G(y)) = 0, i.e. W ∈ ker(D).

We have (WD)(y) = H(px + G(y)) and (WD)j(y) = 0 for j ≥ 2, hence
exp(WD)(y) = y+H(px+G(y)) and y+H(px+G(y)) is a Smith variable.

Example. If k is a UFD and Q ⊂ k, then y + z(zx + ty)2 is a Smith
variable in A = k[z, t] and y+z(z2x+y2)2 is not a Smith variable in A = k[z].

Proposition 5. If A is a UFD and Q ⊂ A then all Smith variables are
variables in LV2

2(A).

Proof. Let D be a triangular derivation of A[x, y] and W ∈ kerD. We
write D = B(y)Dx + bDy with B ∈ A[y] and b ∈ A. Further, we de-
note by

�
0 B(y) the unique polynomial C ∈ A[y] such that C ′(y) = B(y)

and C(0) = 0. We choose p = b, G(y) =
�
0 B(y) and we remark that

bW (b−1x− b−1
�
0B(y), y) is in A[x] because Dy(bW (b−1x− b−1

�
0 B(y), y))

= 0 since DW = 0, hence we can choose H(x) = bW (b−1x− b−1
�
0 B(y), y).

Now we have exp(WD)(y) = y +H(px+G(y)) ∈ LV2
2(A).

Remark. Proposition 5 shows that Theorem 5 generalizes M. Smith’s
criterion.

5. Transfer. Theorems 3 and 4 can be used to find variables of VAn(A)
(n ≥ 2) by induction on n.
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Notations. Let Y be a non-empty set of indeterminates, y be an ele-
ment of Y and Z = Y r {y}.

Theorem 7. Let p ∈ A×, let a be a unit mod pA, and let G,F ∈ A[Y ].
If all the coefficients of G are nilpotent mod pA and if F is a variable in
A[Y ] then aF (Y ) +G(Y ) + px is a variable in A[x, Y ].

Proof. Let α ∈ AutAA[Y ] such that α(y) = F (Y ). By Theorem 3, there
exists σ ∈ AutA[Z] A[Z][x, y] such that σ(y) = ay + α−1G(Y ) + px. We
extend α and σ to automorphisms of A[x, Y ] by α(x) = x and σ(z) = z for
all z ∈ Z. Then ασ(y) = α(ay + α−1G(Y ) + px) = aF (Y ) +G(Y ) + px.

Corollary 4 (generalised Choudary–Dimca’s hypersurfaces). Let m ∈
N r {0}. Let pi ∈ A[zi] and Gi ∈ A[x0, . . . , xi−1, z1, . . . , zi] for 1 ≤
i ≤ m. Let ri ∈ A[zi] be nilpotent mod piA[zi] (1 ≤ i ≤ m). Then
x0 +

∑m
i=1 (riGi + xipi) is a variable in A[x0, . . . , xm, z1, . . . , zm].

Proof. We proceed by induction on m. Theorem 3 applied to the ring
A[z1] implies that x0 + r1G1 + p1x1 is a variable in A[x0, x1, z1] (x1 = x,
x0 = y).

If x0 +
∑m
i=1 (riGi + xipi) is a variable in A[x0, . . . , xm, z1, . . . , zm] then

Theorem 7 applied to the ring A[zm+1] with Y = {x0, . . . , xm, z1, . . . , zm}
implies that x0 +

∑m+1
i=1 (riGi + xipi) is a variable in A[x0, . . . , xm+1,

z1, . . . , zm+1].

Remark. In the case A = C, pi = zd−1
i , Gi = xd−1

i−1 and ri = zi for
1 ≤ i ≤ m, these are Choudary–Dimca’s hypersurfaces (cf. [CD]) and this
corollary gives an answer to Question 1 in [CD].

Theorem 8. Let p ∈ A×, let H(y) =
∑
hiy

i ∈ A[y], and let G,F ∈
A[Y ]. If hi (i ≥ 1) is nilpotent mod pA and if F is a variable in A[Y ] then
F (Y ) +H(px+G(Y )) is a variable in A[x, Y ].

Proof. Let α ∈ AutAA[Y ] be such that α(y) = F (Y ). By Theorem 4,
there exists σ ∈ AutA[Z] A[Z][x, y] such that σ(y) = y +H(px+ α−1G(Y )).
We extend α and σ to automorphisms of A[x, Y ] by α(x) = x and σ(z) = z
for all z ∈ Z. Then ασ(y) = α(y + H(px + α−1G(Y ))) = F (Y ) + H(px +
G(Y )).

Example. Using Theorems 7 and 8 one can prove that the following
polynomials of A[x, y, z, u, v] are variables:

(u− 1)(y + z(z2x+ yz + y3)4 + u(u+ 1)x2 + u3(u+ 1)2v,

(z − 1)y + z(z + 1)y2 + z3(z + 1)2x+ u(u3v + y3)4,

y + z(z2x+ y2)2 + u(uv + xyz)3.
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Reçu par la Rédaction le 25.2.2000 (1189)


