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The sixtieth anniversary of the Jacobian Conjecture:
a new approach

by Arno van den Essen (Nijmegen)

Abstract. We investigate an approach of Bass to study the Jacobian Conjecture via
the degree of the inverse of a polynomial automorphism over an arbitrary Q-algebra.

Introduction and notations. This year we celebrate the 60th anniver-
sary of the Jacobian Conjecture. On the occasion of this event I would like
to present a new approach to attack this conjecture. In fact, the approach is
not completely new but is a continuation of an idea of Bass [1] which goes
back to 1983. This continuation was motivated by some more recent results
of Derksen [3] and Furter [6], to which I will come back below.

The main aim of this paper is to give a new impulse to this approach,
which hopefully will lead to the solution of the Jacobian Conjecture!

Throughout this paper we use the following notations: k denotes a field,
k[X] := k[X1, . . . ,Xn] the polynomial ring over k and if F = (F1, . . . , Fn) ∈
k[X]n then degF := maxi degFi, where degFi denotes the total degree
of Fi. Finally, by JC(C, n) we denote the n-dimensional Jacobian Conjecture,
i.e. the statement

if F ∈ C[X]n with det JF ∈ C∗, then C[F1, . . . , Fn] = C[X].

1. The degree of the inverse of a polynomial automorphism. To
start my story let us go back some twenty years. Then the first significant
result on the Jacobian Conjecture was obtained by Stuart Wang in [9] who
showed that the Jacobian Conjecture is true in case F : kn → kn is a
polynomial map with degF ≤ 2 and char k 6= 2. In fact, he even showed
that in case k is a UFD with 2 6= 0 the Jacobian Conjecture (i.e. its ob-
vious generalisation, with C replaced by k) holds. At the end of his paper
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he makes the following Degree Conjecture: if k is a UFD with 2 6= 0 and
F ∈ Autk k[X] with degF ≤ 2, then degF−1 ≤ 2n−1. This conjecture was
remarkable at that time since it contrasted with an earlier conjecture of
Sathaye which, as Wang writes, states that the degree of the inverse of a
polynomial automorphism is in general not bounded.

Wang’s conjecture was proved in the field case around 1980 by Rusek and
Winiarski [8] and simultaneously by Gabber (see [2]). In fact, they proved
a more general result.

Proposition 1.1 (Rusek, Winiarski, Gabber). Let k be a field and F ∈
Autk k[X]. Then degF ≤ (degF )n−1.

This most probably finished the Sathayer conjecture. I write “most prob-
ably” since I do not know what the exact meaning of “in general” was,
namely one can ask: what happens if one replaces k by an arbitrary com-
mutative ring R?

The first partial answer is

Proposition 1.2. If R is a reduced ring , i.e. R has no non-zero nilpo-
tent elements, then degF−1 ≤ (degF )n−1 for all F ∈ AutRR[X].

Proof. Write G = (G1, . . . , Gn) instead of F−1.

(i) If R is a domain, embed R in its quotient field and apply Proposi-
tion 1.1.

(ii) To prove the general case let 1 ≤ i ≤ n and α = (α1, . . . , αn) with
all αj ≥ 0 such that |α| > (degF )n−1. It suffices to show that c(i)α = 0,
where c(i)α is the coefficient of the monomial Xα in Gi. Therefore let p be
a prime ideal in R and consider the maps F and G, obtained by reducing
the coefficients of the Fi and Gj modulo p. Put R := R/p. Then we deduce
from (i) that

degG ≤ (degF )n−1 ≤ (degF )n−1.

So c(i)α = 0, i.e. c(i)α ∈ p. Since this holds for all prime ideals p in R we
deduce that c(i)α ∈

⋂
p = (0), since R is reduced.

So the next question to consider is: what happens if R does have non-zero
nilpotent elements?

Here we get a first surprise: consider n = 1 and R := Cm := C[T ]/(Tm),
where m ≥ 2. So ε := T satisfies εm = 0 and εm−1 6= 0. Define F = X+εX2

(so F is quadratic!).

Claim. F ∈ AutCm Cm[X] and degF−1 = m.
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To get F−1 we just have to solve forX the quadratic equation F (X) = Y ,
i.e. εX2 +X = Y . Every highschool student can do this and one finds

X =
−1 + (1 + 4εY )1/2

2ε
=

m∑

i=1

2
(

1/2
i

)
(4ε)i−1Y i.

So indeed F ∈ AutCm Cm[X] and degF−1 = m (this in spite of the fact
that degF = 2 !).

Conclusion. If we do admit non-zero nilpotent elements in the coeffi-
cient ring, Sathaye was not wrong after all, or to put it more precisely: for
d ≥ 2, there does not exist a positive integer C(n, d) such that degF−1 ≤
C(n, d) for all F ∈ AutRR[X] with degF ≤ d and all Q-algebras R.

Now you may wonder: what does all of this have to do with the Jacobian
Conjecture? The answer is given by the following results:

Theorem 1.3 ([2]). Let n ≥ 1. If JC(C, n) is true then the following
statement , denoted by UB(n), is true as well :

UB(n) For every d ≥ 1 there exists a positive integer C(n, d) such that
for any Q-algebra R and any F ∈ AutRR[X] with degF ≤ d and
det JF = 1 we have degF−1 ≤ C(n, d).

The point in UB(n) is that one only considers R-automorphisms F of
R[X] having det JF = 1 (or equivalently, det JF ∈ R∗, the group of units
of R). This is really a restriction, namely from the chain rule one easily
deduces that if F ∈ AutRR[X] then det JF ∈ R[X]∗. However, if R has
non-zero nilpotent elements then R∗  R[X]∗. Our example F = X + εX2

also illustrates this point:

det JF = 1 + 2εX ∈ R[X]∗ \R∗.
Apparently, the existence of such a uniform bound C(n, d) is a necessary
condition for the Jacobian Conjecture to be true.

However, there is more: it was observed by Hyman Bass in [1] around
1983 that the condition UB(n) is also sufficient:

Theorem 1.4 (Bass). Let n ≥ 1. Then UB(n) and JC(C, n) are equiv-
alent.

So the Jacobian Conjecture, if true, is reduced to finding a positive in-
teger C(n, d) such that degF−1 ≤ C(n, d) for all F ∈ AutRR[X] with
degF ≤ d and det JF = 1, independent of the Q-algebra R!

The next question which arises immediately is: what, in case the Jacobian
Conjecture is true, is a natural candidate for C(n, d)? (From now on we
denote by C(n, d) the smallest upper bound as in UB(n).)

Before addressing this question one may wonder: does the statement
UB(n) look much easier than JC(C, n)?
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At first glance one is inclined to say NO, because of various reasons. For
example:

• Instead of understanding automorphisms over C, one has to study
automorphisms over all Q-algebras R.
• Amongst all automorphisms over R (whose Jacobian determinant is a

unit in R[X]) one has to characterize those automorphisms whose Jacobian
determinant equals 1.
• One has to be able to compare F with F−1.

All of this seems to vote against studying the statement UB(n): this
might be the reason why it remained untouched since 1983. However, in
the remainder of this paper we will show how the above objections can be
overruled.

2. Bass’ theorem revisited. The first of the above objections is that
one has to study automorphisms over all Q-algebras R. The following beau-
tiful argument due to Harm Derksen ([3]) overcomes this objection: it shows
that one only has to study automorphisms over the simplest Q-algebras
having nilpotent elements, namely the C-algebras Cm, m ≥ 2, as introduced
in §1. More precisely, let us formulate the following statement.

UB(n) For every d ≥ 1 there exists a positive integer C(n, d) such that
for any C-algebra Cm, m ≥ 2, and every F ∈ AutCm Cm[X] with
degF ≤ d and det JF = 1 we have degF−1 ≤ C(n, d).

Theorem 2.1 (Derksen). UB(n) implies JC(C, n) (and hence these
statements are equivalent by Theorem 1.2).

Proof. Let F ∈ C[X]n with det JF = 1 and degF ≤ d. Let G ∈ C[[X]]n

be its formal inverse and denote by G(i) its homogeneous component of
degree i. We will show that G(l) = 0 for all l > C(n, d). Therefore introduce
a new variable T and define

FT := T−1F (TX) = X + TF(2) + T 2F(3) + . . .+ T d−1F(d)

and
GT := T−1G(TX) ∈ C[T ][[X]]n.

One easily verifies that detJXFT = det JF(TX) = 1. Furthermore,

(1) FT ◦GT = X = GT ◦ FT

(composition as formal power series in X). Now let l > C(n, d). Reducing
mod T l we deduce from (1) that

FT ∈ AutCl Cl[X] with inverse GT = X +G(2)T + . . .+G(l)T
l−1

.
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Also, detJXFT = 1 and degF T ≤ d. So by UB(n) we get

(2) degGT ≤ C(n, d).

However, GT = X + G(2)T + . . . + G(l)T
l−1

. So if G(l) 6= 0 then, using

T
l−1 6= 0, we get degGT = l > C(n, d), contradicting (2). So G(l) = 0 for

all l > C(n, d), i.e. G is a polynomial map as desired.

3. Some interesting automorphisms. Now let us return to the ques-
tion: what is a natural candidate for C(n, d)? By Proposition 1.2 we know
that in case R is a reduced ring, we have degF−1 ≤ dn−1 for all F ∈
AutRR[X] with degF ≤ d. Furthermore, the bound dn−1 is sharp as fol-
lows easily from the example

(X1 +Xd
2 ,X2 +Xd

3 , . . . ,Xn−1 +Xd
n,Xn).

Therefore it seems reasonable to hope that C(n, d) = dn−1. However, in
January 1996 Jean-Philippe Furter found the following counterexample ([6]).

Example 3.1. Let n = 2, R = C2 and ε = T . Define

F = (X + εX3, (1− 3εX2)Y +X2).

Then F ∈AutC2 C2[X,Y ], det JF = 1, degF = 3. However, F−1 = (X−εX3,
(1 + 3εX2)Y − (X2 + εX4)), so degF−1 = 4 > 32−1 = 3.

After this example was found, Furter, together with Fournié and Pinchon
and much help of a computer, were able to show in [5] that C(2, 3) = 9. In
order to guess some formula for C(2, d), d ≥ 3, it would be rather interesting
to know C(2, 4).

To get some feeling for what C(2, d) might be I looked at the Jacobian
equations and the formulas for F−1 in the paper [5] and was able to give
an explicit example of an automorphism of degree 3 whose inverse has the
maximal degree 9.

Example 3.2. Let R = C7, ε = T and define F = (F1, F2) by

F1 = X − 4
3
ε3X2 − 2εXY +

64
27
ε6X3 +

8
3
ε4X2Y + 4ε2XY 2 + Y 3,

F2 = Y +
8
3
ε3XY + εY 2.

Then F ∈ AutRR[X,Y ], det JF = 1, degF = 3 and degF−1 = 9.

Then there was another surprise: looking at this example I observed that
all monomials involved an ε, except the terms X + Y 3 in F1 and Y in F2.
Consequently, if we define F∗ := F ◦ (X − Y 3, Y ), we see that F∗ is of the
form (X + ε(. . .), Y + ε(. . .)). Then I computed degF∗ and degF−1

∗ and
found to my own surprise that both degrees are equal (to 9)!
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Of course, the above idea of constructing F∗ can be easily generalised:
namely, let F ∈ AutCm Cm[X] with det JF = 1. Let F ∈ AutCC[X] be
obtained by reducing F mod ε (= T ). Define

F∗ := F ◦ F−1.

Then F∗ ∈ AutCm Cm[X], det JF∗ = 1 and F ∗ = X, i.e. F = X + ε(. . .).
Now the point is that it suffices to find a uniform bound for the degrees of
all F−1

∗ . More precisely, define

UB∗(n) For every d ≥ 1 there exists a positive integer C∗(n, d) such
that for any C-algebra Cm, m ≥ 1, and any F ∈ AutCm Cm[X]
satisfying degF ≤ d, det JF = 1 and F = X, the degree of F−1

is bounded by C∗(n, d), i.e. independent of m.

Proposition 3.3. UB∗(n) implies UB(n).

Proof. Let F ∈ AutCm Cm[X] with det JF = 1 and degF ≤ d. Put
F∗ := F ◦ F−1. So F−1 = F−1 ◦ F−1

∗ , whence

(3) degF−1 ≤ degF−1 · degF−1
∗ ≤ (degF )n−1C∗(n,degF∗).

Since F∗ = F ◦ F−1 we have

(4) degF∗ ≤ degF · (degF )n−1 = (degF )n.

From (3) and (4) we get

degF−1 ≤ (degF )n−1C∗(n, (degF )n) ≤ dn−1C∗(n, dn),

which implies UB(n).

After my surprising discovery of the equality of degF∗ and degF−1
∗ ,

I tried to see if this was an accident. I tested Furter’s example: again equali-
ties of the degrees! Still not convinced I computed a new example in dimen-
sion 2 and degree 4. I found the following:

Example 3.4. Let R = C13, ε = T and define F = (F1, F2) by

F1 = X − 2ε4X2 − 2εXY − 4ε5X2Y

+ 24ε12X4 + 16ε9X3Y + 24ε6X2Y 2 + 8ε3XY 3 + Y 4,

F2 = Y + 4ε4XY + εY 2 − 16
3
ε11X3 + 16ε8X2Y + 8ε5XY 2 +

4
3
ε2Y 3.

Then F ∈ AutRR[X,Y ], det JF = 1, degF = 4 and degF−1 = 16.

Again I computed degF∗ and degF−1
∗ and found equalities of their de-

grees!! Of course, if this were always true, one would have C∗(2, d) = d,
which by Proposition 3.3 and Theorem 2.1 would imply JC(C, 2). So I made
the following conjecture:

Conjecture B. C∗(2, d) = d, i.e. if F ∈ AutCm Cm[X,Y ] with det JF
= 1 and F = (X,Y ), then degF−1 = degF .
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4. The nilpotency subgroup. To investigate Conjecture B we will
study the Cm-automorphisms F of Cm[X] satisfying F = X. Therefore we
recall some results of [4].

Let A be a Q-algebra. Then a Q-linear map l : A → A is called lo-
cally nilpotent if for every a ∈ A there exists a positive integer q such that
lq(a) = 0. For such a map define exp l : A→ A by the formula

exp l(a) :=
∑

i≥0

1
i!
li(a).

If furthermore l is a derivation on A, in which case we write D instead of l,
then expD is a Q-automorphism of A with inverse exp(−D) (see, for exam-
ple, Proposition 2.1.1 in [4]). Such an automorphism of A is called an expo-
nential automorphism. To decide if a given ring homomorphism f : A→ A
is an exponential automorphism, define E : A→ A by E := f − 1A.

Proposition 4.1 ([4], Proposition 2.1.3). Let f : A → A be a ring
homomorphism. Then f is an exponential automorphism of A if and only
if E is locally nilpotent. Furthermore, if E is locally nilpotent then the map
D : A→ A defined by

D(a) =
∑

i≥1

(−1)i+1E
i(a)
i

for all a ∈ A

is a locally nilpotent derivation on A and f = expD.

Proof. (i) If f is an exponential automorphism, then f = expD for some
locally nilpotent derivation D on A. Hence E = f − 1A = D + D/2! + . . . ,
which readily implies that E is locally nilpotent.

(ii) Conversely, suppose that E is locally nilpotent. From the definition
of D it follows that D is locally nilpotent as well. Since D = log(1A + E)
we get expD = 1A + E = f . So it remains to show that D is a derivation
on A. Therefore observe that expD = f implies that expnD = fn is a ring
homomorphism for all n ≥ 1. Then the desired result follows from

Lemma 4.2. Let D : A → A be a locally nilpotent Q-linear map. Then
D is a derivation on A if and only if expnD is a ring homomorphism for
all n ≥ 1.

Proof. (i) If D is a derivation on A then nD is a locally nilpotent deriva-
tion on A, which implies that expnD is a ring automorphism of A for all
n ≥ 1.

(ii) Conversely, suppose that expnD is a ring homomorphism for all
n ≥ 1. Let a, b ∈ A. We need to show that D(ab) = aD(b)+D(a)b. Therefore
introduce a new variable T and consider the polynomial ring A[T ]. Extend



84 A. van den Essen

D to a Q-linear map on A[T ] by defining

D
(∑

aiT
i
)

=
∑

D(ai)T i.

Define a(T ) = expTD(a), b(T ) = expTD(b) and c(T ) = expTD(ab). Since
expnD is a ring homomorphism for all n ≥ 1 we deduce that a(n)b(n) = c(n)
for all n ≥ 1, whence a(T )b(T ) = c(T ). Considering the coefficient of T on
both sides of the last equality we get aD(b) +D(a)b = D(ab), as desired.

Now let R be a commutative Q-algebra. The nilpotency subgroup of
AutRR[X], denoted by N(R,n), consists of all F of the form

(5) (X1 + g1, . . . ,Xn + gn)

where each gi is a nilpotent element of R[X] or equivalently belongs to
ηR[X], where η is the nilradical of R.

Indeed, we will show that each map of the form described in (5) is an
R-automorphism of R[X]. In fact, it turns out to be an exponential auto-
morphism. More precisely:

Proposition 4.3 ([4], Proposition 2.1.13). F ∈ N(R,n) if and only if
F = expD for some locally nilpotent R-derivation of R[X] satisfying D = 0
(D is obtained from D by reducing its coefficients mod η).

Proof. If F = expD with D a locally nilpotent R-derivation satisfying
D = 0 then obviously F ∈ N(R,n). Conversely, let F ∈ N(R,n). Put
A := R[X] and E := F − 1A. By Proposition 4.1 we need to show that
E is locally nilpotent. So let a ∈ A. We must prove that Ep(a) = 0 for
some p ≥ 1. Therefore replacing R by the subalgebra of R generated by all
coefficients appearing in a and F we may assume that R is noetherian and
hence that ηm = 0 for some m ≥ 1.

Now let h ∈ R[X]. Since each gi ∈ ηR[X] the same holds for E(h) =
h(X1 + g1, . . . ,Xn + gn)− h(X1, . . . ,Xn). So

(6) E(R[X]) ⊂ ηR[X].

Since E is R-linear, applying E to (6) gives E2(R[X]) ⊂ η2R[X].
Repeating this argument we finally arrive at Em(R[X]) ⊂ ηmR[X] = 0,

as desired. Finally, the formula for D given in Proposition 4.1 together
with (6) gives D = 0.

The next step is to characterize amongst the elements of N(R,n) those
F ’s which satisfy det JF = 1.

Theorem 4.4. Let F ∈ N(R,n) be of the form expD, where D is a
locally nilpotent R-derivation of R[X] satisfying D = 0. Then det JF = 1
if and only if divD = 0, where divD =

∑
∂i(DXi).
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The proof of this result is based on the following result of Nowicki. Let D
be any R-derivation on R[X] and let expTD : R[X]→ R[X][[T ]] be defined
by the usual formula

expTD(g) =
∑

i≥0

T i

i!
Di(g) for all g ∈ R[X].

Then expTD is a ring homomorphism (see [4], Proposition 1.2.14). To sim-
plify notations we write JX(expTD) for (∂ expTD(Xi)/∂Xj)1≤i,j≤n.

Theorem 4.5 (Nowicki, [7]). Define B0, B1, . . . in R[X] by

detJX(expTD) =
∑

p≥0

1
p!
BpT

p.

Then B0 = 1 and Bp+1 = dBp +D(Bp) for all p ≥ 0, where d := divD.

Proof of Theorem 4.4. (i) Suppose d := divD = 0. Then by Nowicki’s
theorem Bp = 0 for all p ≥ 1, whence detJX(expTD) = 1. So detJXF = 1.

(ii) Now assume that F = expD, where D = 0 and det JF = 1. Put
d = divD and suppose that d 6= 0. As in the proof of Proposition 4.3 we
may assume that R is noetherian and ηm = 0 for some m ≥ 1. Since D = 0
and d 6= 0, there exists r ≥ 1 such that d ∈ ηrR[X]\ηr+1R[X]. By Nowicki’s
theorem

detJX(expTD) =
∑

p≥0

1
p!
BpT

p

with B0 = 1 and Bp+1 = dBp + D(Bp) for all p ≥ 0. By induction on p it
follows that Bp ∈ ηr+p−1R[X] for all p ≥ 1. Consequently,

1 = detJX(expD) =
∑

p≥0

1
p!
Bp = 1 + d+B where B ∈ ηr+1R[X].

Hence d = −B ∈ ηr+1R[X], a contradiction.

As an immediate consequence of Theorem 2.1, Propositions 3.3 and 4.3
and Theorem 4.4 we get

Theorem 4.6. JC(C, n) is equivalent to the following statement. For
every d ≥ 1 there exists a positive integer C∗(n, d) such that for every
m ≥ 1 and every D ∈ DerCm Cm[X] with divD = 0 and D = 0 we have: if
deg expD ≤ d, then deg exp(−D) ≤ C∗(n, d).

5. Some remarks on the two-dimensional Jacobian Conjecture.
According to Theorem 4.6, in order to understand the two-dimensional Jaco-
bian Conjecture we need to study expD whereD is a derivation on Cm[X,Y ]
satisfying D = 0 and divD = 0. It is well known that the last two conditions
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are equivalent to D being of the form

Df := fY ∂X − fX∂Y
where f ∈ Cm[X,Y ] satisfies f = 0. This f is uniquely determined by D if
we assume (as we may) that f(0, 0) = 0. Using Theorem 4.6 we get

Proposition 5.1. JC(C, 2) is equivalent to the following statement : For
every d ≥ 1 there exists a positive integer C∗(d) such that for all m ≥ 1
and all f ∈ Cm[X,Y ] with f = 0 we have: if deg expDf ≤ d, then
deg exp(−Df ) ≤ C∗(d).

Also, we can reformulate Conjecture B as follows:

Conjecture B. Let m ≥ 1 and f ∈ Cm[X,Y ] with f = 0. Then
deg expDf = deg exp(−Df ).

Obviously by Proposition 5.1 a positive solution to Conjecture B would
imply JC(C, 2). However, in March 1998 Stefan Maubach found the first
family of counterexamples to Conjecture B! A little later the following ex-
ample was given by Charles Cheng:

Example 5.2. Let f = εX3 + ε2X3Y − 3
10ε

3X5, where ε4 = 0. Then

expDf = (X + ε2X3, Y − 3εX2 − 3ε2X2Y + 3ε3X4),

exp(−Df ) = (X − ε2X3, Y + 3εX2 + 3ε2X2Y ).

So deg expDf = 3 and deg exp(−Df ) = 4.

On the other hand, this example satisfies degY f ≤ 1. Consequently,
expDf (X) ∈ C[ε][X]. So expDf belongs to the family of R-automorphisms
F = (F1, F2) satisfying det JF = 1 and F1 ∈ R[X]. For such F ’s Furter
showed in [6], Proposition 3, that degF−1 ≤ 4(degF )4.

To conclude this paper I present a modified version of Conjecture B.

Conjecture B′. If deg expDf ≤d then there exists ϕ∈AutCmCm[X,Y ]
with degϕ ≤ d and such that deg expDϕ(f) = deg exp−Dϕ(f).

It is not difficult to verify that for all examples given in §3, Conjecture
B′ is verified. Furthermore, the importance of this conjecture comes from
the fact that it implies JC(C, 2): namely, we just observe that expDϕ(f) =
ϕ ◦ expDf ◦ ϕ−1 and then use an argument similar to the one given in the
proof of Proposition 3.3.
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