A class of counterexamples to the Cancellation Problem for arbitrary rings

by Arno van den Essen and Peter van Rossum (Nijmegen)

Abstract. We present a class of counterexamples to the Cancellation Problem over arbitrary commutative rings, using non-free stably free modules and locally nilpotent derivations.

1. Introduction. The Cancellation Problem for algebraic varieties asks the following question.

PROBLEM 1 (Cancellation Problem, geometric formulation). Let V be an algebraic variety over a field k and $n \in \mathbb{N}^*$. Does $V \times k \cong k^n$ imply that $V \cong k^{n-1}$?

This question can be reformulated as follows.

PROBLEM 2 (Cancellation Problem, algebraic formulation). Let B be an affine domain over a field k and $n \in \mathbb{N}$. Assume that $B[T] \cong_k k[X_1, \ldots, X_n]$. Does it then follow that $B \cong_k k[X_1, \ldots, X_{n-1}]$?

See also the paper by Kraft ([Kra89]) for background on these and other cancellation problems in algebraic geometry. This paper considers this question not for a field k, but for an arbitrary commutative ring A.

PROBLEM 3 (General Cancellation Problem). Let A be a commutative ring, B an A-domain, and $n \in \mathbb{N}$. Assume that $B[T] \cong_A A[X_1, \ldots, X_n]$. Does it then follow that $B \cong_A A[X_1, \ldots, X_{n-1}]$?

This paper shows how to construct a whole class of counterexamples to this problem.

The construction in Section 3 has two ingredients. On the one hand, it uses the existence of commutative rings A with a unimodular row (a_1, \ldots, a_n) over A that cannot be completed to an invertible square matrix. In other words, it uses the existence of commutative rings A for which

2000 Mathematics Subject Classification: 14R10, 13B25.

Key words and phrases: cancellation problem, locally nilpotent derivations.

there exists a stably free module of type 1 that is not free. This was in fact also a basic ingredient in a paper by Hochster ([Hoc72]) to construct a counterexample to the Biregular Cancellation Problem. He considered the ring $\mathbb{R}[x, y, z]/(x^2 + y^2 + z^2 - 1)$ and the unimodular row $(\overline{x}, \overline{y}, \overline{z})$. On the other hand, our construction uses the notion of locally nilpotent derivations. Section 2 contains a brief overview of the required facts about these derivations.

2. Derivations. Let k be a field of characteristic zero and let A be a commutative k-algebra. A k-derivation on A is a k-linear map $D: A \to A$ satisfying the Leibniz rule, D(ab) = a(Db) + (Da)b for all $a, b \in A$. It is said to be *locally nilpotent* if for all $a \in A$ there is an $n \in \mathbb{N}$ such that $D^n(a) = 0$. The kernel of such a derivation D is denoted by A^D . A slice of D is an element $s \in A$ such that D(s) = 1.

If D is locally nilpotent and $t \in A$, then we can define a map $\phi_t : A \to A$ by $\phi_t(a) := \sum_{i=0}^{\infty} (1/i!) D^i(a) t^i$. If D also has a slice s, this map can be used to easily describe the kernel of D.

PROPOSITION 4 ([Ess93], Proposition 2.1). Let D be a locally nilpotent derivation on a finitely generated commutative k-algebra $A = k[a_1, \ldots, a_n]$. Assume that D has a slice $s \in A$. Then

$$A^{D} = \phi_{-s}(A) = k[\phi_{-s}(a_{1}), \dots, \phi_{-s}(a_{n})].$$

PROPOSITION 5 ([Wri81], Proposition 2.1). Let D be a locally nilpotent derivation on a commutative k-algebra A and assume that D has a slice $s \in A$. Then

(1) $A = A^D[s];$

(2) s is algebraically independent over A [and therefore $A = A^{D}[s]$ is a polynomial ring in one variable over A^{D}];

(3) D = d/ds.

REMARK 6. Note that if, in the above situation, A is a domain and $\operatorname{trdeg}_k Q(A)$ is finite, it follows that $\operatorname{trdeg}_k Q(A^D) = \operatorname{trdeg}_k Q(A) - 1$. In particular, if A is of the form $A = B[X_1, \ldots, X_n]$ for some domain B whose quotient field is of finite transcendence degree over k and $A^D = B[F_1, \ldots, F_{n-1}]$ for certain polynomials $F_1, \ldots, F_{n-1} \in A$, then the F_i are algebraically independent over k.

For more information on locally nilpotent derivations see, for instance, [Ess00], Chapter 1, or [Now94].

3. Counterexamples. Let k be a field of characteristic zero and let A be a finitely generated commutative k-algebra without zero divisors. Let (a_1, \ldots, a_n) be a unimodular row over A, say $b_1, \ldots, b_n \in A$ with $b_1a_1 + b_2a_2$

 $\ldots + b_n a_n = 1$, and assume that it cannot be completed to an invertible square matrix.

Let A[X] denote the polynomial ring $A[X_1, \ldots, X_n]$ over A in n variables. Now define a k-derivation $D: A[X] \to A[X]$ by

$$D := b_1 \frac{\partial}{\partial X_1} + \ldots + b_n \frac{\partial}{\partial X_n}.$$

This derivation is locally nilpotent and has a slice, namely $s := a_1 X_1 + \ldots + a_n X_n$. Letting $B := A[X]^D$ be the kernel of the derivation, we deduce from Proposition 5 that A[X] = B[s], a polynomial ring over B in s, and from Proposition 4 that $B = A[X_1 - b_1 s, \ldots, X_n - b_n s]$.

NOTATION 7. For $F \in A[X]$ and $j \in \mathbb{N}$ we denote by $F_{(j)}$ the homogeneous part of F of degree j. So $F = F_{(0)} + F_{(1)} + \ldots + F_{(d)}$ where $d := \deg F$.

LEMMA 8. Let $F_1, \ldots, F_{n-1} \in A[X]$ and assume $B = A[F_1, \ldots, F_{n-1}]$. Take $f_i := F_{i(1)}$ (i.e. the linear part of F_i). Then $B = A[f_1, \ldots, f_{n-1}]$.

Proof. " \subseteq " We may assume, without loss of generality, that the polynomials F_1, \ldots, F_{n-1} do not have a constant term. Now consider $X_i - b_i s \in B = A[F_1, \ldots, F_{n-1}]$. Then there is a polynomial $p(T_1, \ldots, T_{n-1}) \in A[T_1, \ldots, T_{n-1}]$ such that $X_i - b_i s = p(F_1, \ldots, F_{n-1})$. Then

$$\begin{aligned} X_i - b_i s &= (p(F_1, \dots, F_{n-1}))_{(1)} & \text{(because } X_i - b_i s \text{ is linear}) \\ &= (p_{(1)}(F_1, \dots, F_{n-1}))_{(1)} & \text{(because } F_1, \dots, F_{n-1} \text{ have} \\ & \text{no constant term}) \\ &= p_{(1)}(F_{1(1)}, \dots, F_{n-1(1)}) & \text{(because } p_{(1)} \text{ is linear}) \\ &= p_{(1)}(f_1, \dots, f_{n-1}) \in A[f_1, \dots, f_{n-1}]. \end{aligned}$$

"⊇" Because $F_i \in B = A[X]^D$, every homogeneous part $F_{i(j)}$ of F_i is also in B. In particular, $f_i \in B$. ■

LEMMA 9. Let $f_1, \ldots, f_m \in A[X]$ be linear polynomials. Then

$$A[f_1,\ldots,f_m] \cap AX_1 \oplus \ldots \oplus AX_n = Af_1 + \ldots + Af_m$$

[i.e. every polynomial expression $p(f_1, \ldots, f_m)$ in the f_i which is linear in the X_i is in fact an A-linear combination of the f_i].

Proof. " \subseteq " Take $p(T_1, \ldots, T_m) \in A[T_1, \ldots, T_m]$ and let $g:=p(f_1, \ldots, f_m)$ be a polynomial expression in the f_i . Assume that g is in fact linear in the X_i . Then, using essentially the same argument as in the proof of the previous lemma, we get

A. van den Essen and P. van Rossum

$$g = (p(f_1, \dots, f_m))_{(1)} = (p_{(1)}(f_1, \dots, f_m))_{(1)}$$

= $p_{(1)}(f_1, \dots, f_m) \in Af_1 + \dots + Af_n.$

"⊇" This is obvious. ■

LEMMA 10. Let $f_1, \ldots, f_{n-1} \in A[X]$ be linear polynomials and assume that $B = A[f_1, \ldots, f_{n-1}]$. Then

 $As \oplus Af_1 \oplus \ldots \oplus Af_{n-1} = AX_1 \oplus \ldots \oplus AX_n$

[i.e. every linear polynomial in A[X] can be written in a unique way as an A-linear combination of s, f_1, \ldots, f_{n-1}].

Proof. We first show that $As + Af_1 + \ldots + Af_{n-1} = AX_1 \oplus \ldots \oplus AX_n$. " \subseteq " This is obvious.

"⊇" Take $g \in AX_1 \oplus \ldots \oplus AX_n$. Then $Dg \in A$ and therefore we have $D(g - (Dg)s) = Dg - (D^2g)s - (Dg)(Ds) = Dg - Dg = 0$. So

$$g - (Dg)s \in B \cap AX_1 \oplus \ldots \oplus AX_n = A[f_1, \ldots, f_{n-1}] \cap AX_1 \oplus \ldots \oplus AX_n$$
$$= Af_1 + \ldots + Af_{n-1} \quad \text{(by Lemma 9)}$$

and hence $g \in As + Af_1 + \ldots + Af_{n-1}$.

To see that $As + Af_1 + \ldots + Af_n$ is in fact a direct sum, take $\mu, \lambda_1, \ldots, \lambda_{n-1} \in A$ and assume that $\mu s + \lambda_1 f_1 + \ldots + \lambda_{n-1} f_{n-1} = 0$. Applying D to both sides yields $\mu = 0$, so $\lambda_1 f_1 + \ldots + \lambda_{n-1} f_{n-1} = 0$. The f_i , however, are even algebraically independent (by Remark 6) and therefore $\lambda_1 = \ldots = \lambda_{n-1} = 0$. \blacksquare

THEOREM 11. We have $B \not\cong_A A[X_1, \ldots, X_{n-1}]$, even though $B[s] = A[X_1, \ldots, X_{n-1}][X_n]$.

Proof. Assume that $B \cong_A A[X_1, \ldots, X_{n-1}]$. Then $B = A[F_1, \ldots, F_{n-1}]$ for certain polynomials $F_1, \ldots, F_{n-1} \in A[X]$ and by Lemma 8 even $B = A[f_1, \ldots, f_{n-1}]$ for certain linear polynomials $f_1, \ldots, f_{n-1} \in A[X]$. Now Lemma 10 implies that

$$As \oplus Af_1 \oplus \ldots \oplus Af_{n-1} = AX_1 \oplus \ldots \oplus AX_n,$$

say $f_i = \lambda_{i1}X_1 + \ldots + \lambda_{in}X_n$ (and $s = a_1X_1 + \ldots + a_nX_n$). This is an equality between free A-modules of rank n and the base transformation matrix is

$$\begin{pmatrix} a_1 & \dots & a_n \\ \lambda_{11} & \dots & \lambda_{1n} \\ \vdots & & \vdots \\ \lambda_{n-1,1} & \dots & \lambda_{n-1,n} \end{pmatrix}$$

This is an invertible matrix and hence the unimodular row (a_1, \ldots, a_n) has been completed to an invertible matrix, which contradicts the assumption.

So, every coordinate ring A of an affine variety that has a unimodular row that cannot be completed to an invertible matrix, gives rise to a counterexample to the General Cancellation Problem.

Over the real numbers, we recover Hochster's example mentioned in the Introduction. Over the complex numbers, one can consider the "generic" example $A = \mathbb{C}[a, b, c, x, y, z]/(ax+by+cz-1)$. The unimodular row $(\overline{x}, \overline{y}, \overline{z})$ cannot be completed to an invertible square matrix. This was shown by Raynaud [Ray68] using homological methods and, in a more general setting, by Suslin [Sus82] (Theorem 2.8) using K-theory.

Acknowledgments. We would like to thank Wilberd van der Kallen for pointing out the references to the results of Raynaud and Suslin.

References

- [Ess93] A. van den Essen, An algorithm to compute the invariant ring of a G_a -action on an affine variety, J. Symbolic Comput. 16 (1993), 551–555.
- [Ess00] —, Polynomial Automorphisms and the Jacobian Conjecture, Progr. Math. 190, Birkhäuser, 2000.
- [Hoc72] M. Hochster, Nonuniqueness of coefficient rings in a polynomial ring, Proc. Amer. Math. Soc. 34 (1972), 81–82.
- [Kra89] H. Kraft, Algebraic automorphisms of affine space, in: Topological Methods in Algebraic Transformation Groups, Progr. Math. 80, H. Kraft, T. Petrie and G. Schwarz (eds.), Birkhäuser, 1989, 81–105.
- [Now94] A. Nowicki, Polynomial Derivations and Their Rings of Constants, Univ. of Toruń, 1994.
- [Ray68] M. Raynaud, *Modules projectifs universels*, Invent. Math. 6 (1968), 1–26.
- [Sus82] A. A. Suslin, Mennicke symbols and their applications in the K-theory of fields, in: Algebraic K-theory, Part I (Oberwolfach, 1980), R. K. Dennis (ed.), Lecture Notes in Math. 966, Springer, 1982, 344–356.
- [Wri81] D. Wright, On the Jacobian Conjecture, Illinois J. Math. 25 (1981), 423–440.

Department of Mathematics University of Nijmegen Toernooiveld 1 6525 ED Nijmegen, The Netherlands E-mail: essen@sci.kun.nl petervr@sci.kun.nl

Reçu par la Rédaction le 25.2.2000

(1153)