A class of counterexamples to the Cancellation Problem for arbitrary rings

by Arno van den Essen and Peter van Rossum (Nijmegen)

Abstract

We present a class of counterexamples to the Cancellation Problem over arbitrary commutative rings, using non-free stably free modules and locally nilpotent derivations.

1. Introduction. The Cancellation Problem for algebraic varieties asks the following question.

Problem 1 (Cancellation Problem, geometric formulation). Let V be an algebraic variety over a field k and $n \in \mathbb{N}^{*}$. Does $V \times k \cong k^{n}$ imply that $V \cong k^{n-1}$?

This question can be reformulated as follows.
Problem 2 (Cancellation Problem, algebraic formulation). Let B be an affine domain over a field k and $n \in \mathbb{N}$. Assume that $B[T] \cong_{k} k\left[X_{1}, \ldots, X_{n}\right]$. Does it then follow that $B \cong_{k} k\left[X_{1}, \ldots, X_{n-1}\right]$?

See also the paper by Kraft ([Kra89]) for background on these and other cancellation problems in algebraic geometry. This paper considers this question not for a field k, but for an arbitrary commutative ring A.

Problem 3 (General Cancellation Problem). Let A be a commutative ring, B an A-domain, and $n \in \mathbb{N}$. Assume that $B[T] \cong{ }_{A} A\left[X_{1}, \ldots, X_{n}\right]$. Does it then follow that $B \cong_{A} A\left[X_{1}, \ldots, X_{n-1}\right]$?

This paper shows how to construct a whole class of counterexamples to this problem.

The construction in Section 3 has two ingredients. On the one hand, it uses the existence of commutative rings A with a unimodular row $\left(a_{1}, \ldots, a_{n}\right)$ over A that cannot be completed to an invertible square matrix. In other words, it uses the existence of commutative rings A for which

[^0]there exists a stably free module of type 1 that is not free. This was in fact also a basic ingredient in a paper by Hochster ([Hoc72]) to construct a counterexample to the Biregular Cancellation Problem. He considered the ring $\mathbb{R}[x, y, z] /\left(x^{2}+y^{2}+z^{2}-1\right)$ and the unimodular row $(\bar{x}, \bar{y}, \bar{z})$. On the other hand, our construction uses the notion of locally nilpotent derivations. Section 2 contains a brief overview of the required facts about these derivations.
2. Derivations. Let k be a field of characteristic zero and let A be a commutative k-algebra. A k-derivation on A is a k-linear map $D: A \rightarrow A$ satisfying the Leibniz rule, $D(a b)=a(D b)+(D a) b$ for all $a, b \in A$. It is said to be locally nilpotent if for all $a \in A$ there is an $n \in \mathbb{N}$ such that $D^{n}(a)=0$. The kernel of such a derivation D is denoted by A^{D}. A slice of D is an element $s \in A$ such that $D(s)=1$.

If D is locally nilpotent and $t \in A$, then we can define a map $\phi_{t}: A \rightarrow A$ by $\phi_{t}(a):=\sum_{i=0}^{\infty}(1 / i!) D^{i}(a) t^{i}$. If D also has a slice s, this map can be used to easily describe the kernel of D.

Proposition 4 ([Ess93], Proposition 2.1). Let D be a locally nilpotent derivation on a finitely generated commutative k-algebra $A=k\left[a_{1}, \ldots, a_{n}\right]$. Assume that D has a slice $s \in A$. Then

$$
A^{D}=\phi_{-s}(A)=k\left[\phi_{-s}\left(a_{1}\right), \ldots, \phi_{-s}\left(a_{n}\right)\right]
$$

Proposition 5 ([Wri81], Proposition 2.1). Let D be a locally nilpotent derivation on a commutative k-algebra A and assume that D has a slice $s \in A$. Then
(1) $A=A^{D}[s]$;
(2) s is algebraically independent over A [and therefore $A=A^{D}[s]$ is a polynomial ring in one variable over A^{D}];
(3) $D=d / d s$.

Remark 6. Note that if, in the above situation, A is a domain and $\operatorname{trdeg}_{k} Q(A)$ is finite, it follows that $\operatorname{trdeg}_{k} Q\left(A^{D}\right)=\operatorname{trdeg}_{k} Q(A)-1$. In particular, if A is of the form $A=B\left[X_{1}, \ldots, X_{n}\right]$ for some domain B whose quotient field is of finite transcendence degree over k and $A^{D}=B\left[F_{1}, \ldots, F_{n-1}\right]$ for certain polynomials $F_{1}, \ldots, F_{n-1} \in A$, then the F_{i} are algebraically independent over k.

For more information on locally nilpotent derivations see, for instance, [Ess00], Chapter 1, or [Now94].
3. Counterexamples. Let k be a field of characteristic zero and let A be a finitely generated commutative k-algebra without zero divisors. Let $\left(a_{1}, \ldots, a_{n}\right)$ be a unimodular row over A, say $b_{1}, \ldots, b_{n} \in A$ with $b_{1} a_{1}+$
$\ldots+b_{n} a_{n}=1$, and assume that it cannot be completed to an invertible square matrix.

Let $A[X]$ denote the polynomial ring $A\left[X_{1}, \ldots, X_{n}\right]$ over A in n variables. Now define a k-derivation $D: A[X] \rightarrow A[X]$ by

$$
D:=b_{1} \frac{\partial}{\partial X_{1}}+\ldots+b_{n} \frac{\partial}{\partial X_{n}}
$$

This derivation is locally nilpotent and has a slice, namely $s:=a_{1} X_{1}+\ldots+$ $a_{n} X_{n}$. Letting $B:=A[X]^{D}$ be the kernel of the derivation, we deduce from Proposition 5 that $A[X]=B[s]$, a polynomial ring over B in s, and from Proposition 4 that $B=A\left[X_{1}-b_{1} s, \ldots, X_{n}-b_{n} s\right]$.

Notation 7. For $F \in A[X]$ and $j \in \mathbb{N}$ we denote by $F_{(j)}$ the homogeneous part of F of degree j. So $F=F_{(0)}+F_{(1)}+\ldots+F_{(d)}$ where $d:=\operatorname{deg} F$.

Lemma 8. Let $F_{1}, \ldots, F_{n-1} \in A[X]$ and assume $B=A\left[F_{1}, \ldots, F_{n-1}\right]$. Take $f_{i}:=F_{i(1)}$ (i.e. the linear part of $\left.F_{i}\right)$. Then $B=A\left[f_{1}, \ldots, f_{n-1}\right]$.

Proof. " \subseteq " We may assume, without loss of generality, that the polynomials F_{1}, \ldots, F_{n-1} do not have a constant term. Now consider $X_{i}-$ $b_{i} s \in B=A\left[F_{1}, \ldots, F_{n-1}\right]$. Then there is a polynomial $p\left(T_{1}, \ldots, T_{n-1}\right) \in$ $A\left[T_{1}, \ldots, T_{n-1}\right]$ such that $X_{i}-b_{i} s=p\left(F_{1}, \ldots, F_{n-1}\right)$. Then

$$
\begin{array}{rlrl}
X_{i}-b_{i} s & =\left(p\left(F_{1}, \ldots, F_{n-1}\right)\right)_{(1)} & & \text { (because } X_{i}-b_{i} s \text { is linear) } \\
& =\left(p_{(1)}\left(F_{1}, \ldots, F_{n-1}\right)\right)_{(1)} & & \text { (because } F_{1}, \ldots, F_{n-1} \text { have } \\
& =p_{(1)}\left(F_{1(1)}, \ldots, F_{n-1(1)}\right) & & \text { (because } p_{(1)} \text { is linear) } \\
& =p_{(1)}\left(f_{1}, \ldots, f_{n-1}\right) \in A\left[f_{1}, \ldots, f_{n-1}\right] .
\end{array}
$$

$" \supseteq$ " Because $F_{i} \in B=A[X]^{D}$, every homogeneous part $F_{i(j)}$ of F_{i} is also in B. In particular, $f_{i} \in B$.

Lemma 9. Let $f_{1}, \ldots, f_{m} \in A[X]$ be linear polynomials. Then

$$
A\left[f_{1}, \ldots, f_{m}\right] \cap A X_{1} \oplus \ldots \oplus A X_{n}=A f_{1}+\ldots+A f_{m}
$$

[i.e. every polynomial expression $p\left(f_{1}, \ldots, f_{m}\right)$ in the f_{i} which is linear in the X_{i} is in fact an A-linear combination of the f_{i}].

Proof. " \subseteq " Take $p\left(T_{1}, \ldots, T_{m}\right) \in A\left[T_{1}, \ldots, T_{m}\right]$ and let $g:=p\left(f_{1}, \ldots, f_{m}\right)$ be a polynomial expression in the f_{i}. Assume that g is in fact linear in the X_{i}. Then, using essentially the same argument as in the proof of the previous lemma, we get

$$
\begin{aligned}
g & =\left(p\left(f_{1}, \ldots, f_{m}\right)\right)_{(1)}=\left(p_{(1)}\left(f_{1}, \ldots, f_{m}\right)\right)_{(1)} \\
& =p_{(1)}\left(f_{1}, \ldots, f_{m}\right) \in A f_{1}+\ldots+A f_{n} .
\end{aligned}
$$

" \supseteq " This is obvious.
Lemma 10. Let $f_{1}, \ldots, f_{n-1} \in A[X]$ be linear polynomials and assume that $B=A\left[f_{1}, \ldots, f_{n-1}\right]$. Then

$$
A s \oplus A f_{1} \oplus \ldots \oplus A f_{n-1}=A X_{1} \oplus \ldots \oplus A X_{n}
$$

[i.e. every linear polynomial in $A[X]$ can be written in a unique way as an A-linear combination of $\left.s, f_{1}, \ldots, f_{n-1}\right]$.

Proof. We first show that $A s+A f_{1}+\ldots+A f_{n-1}=A X_{1} \oplus \ldots \oplus A X_{n}$.
" \subseteq " This is obvious.
" \supseteq " Take $g \in A X_{1} \oplus \ldots \oplus A X_{n}$. Then $D g \in A$ and therefore we have $D(g-(D g) s)=D g-\left(D^{2} g\right) s-(D g)(D s)=D g-D g=0$. So
$g-(D g) s \in B \cap A X_{1} \oplus \ldots \oplus A X_{n}=A\left[f_{1}, \ldots, f_{n-1}\right] \cap A X_{1} \oplus \ldots \oplus A X_{n}$

$$
=A f_{1}+\ldots+A f_{n-1} \quad(\text { by Lemma } 9)
$$

and hence $g \in A s+A f_{1}+\ldots+A f_{n-1}$.
To see that $A s+A f_{1}+\ldots+A f_{n}$ is in fact a direct sum, take $\mu, \lambda_{1}, \ldots, \lambda_{n-1}$ $\in A$ and assume that $\mu s+\lambda_{1} f_{1}+\ldots+\lambda_{n-1} f_{n-1}=0$. Applying D to both sides yields $\mu=0$, so $\lambda_{1} f_{1}+\ldots+\lambda_{n-1} f_{n-1}=0$. The f_{i}, however, are even algebraically independent (by Remark 6) and therefore $\lambda_{1}=\ldots=\lambda_{n-1}$ $=0$.

Theorem 11. We have $B \not \not_{A} A\left[X_{1}, \ldots, X_{n-1}\right]$, even though $B[s]=$ $A\left[X_{1}, \ldots, X_{n-1}\right]\left[X_{n}\right]$.

Proof. Assume that $B \cong_{A} A\left[X_{1}, \ldots, X_{n-1}\right]$. Then $B=A\left[F_{1}, \ldots, F_{n-1}\right]$ for certain polynomials $F_{1}, \ldots, F_{n-1} \in A[X]$ and by Lemma 8 even $B=$ $A\left[f_{1}, \ldots, f_{n-1}\right]$ for certain linear polynomials $f_{1}, \ldots, f_{n-1} \in A[X]$. Now Lemma 10 implies that

$$
A s \oplus A f_{1} \oplus \ldots \oplus A f_{n-1}=A X_{1} \oplus \ldots \oplus A X_{n}
$$

say $f_{i}=\lambda_{i 1} X_{1}+\ldots+\lambda_{i n} X_{n}$ (and $s=a_{1} X_{1}+\ldots+a_{n} X_{n}$). This is an equality between free A-modules of rank n and the base transformation matrix is

$$
\left(\begin{array}{ccc}
a_{1} & \ldots & a_{n} \\
\lambda_{11} & \ldots & \lambda_{1 n} \\
\vdots & & \vdots \\
\lambda_{n-1,1} & \ldots & \lambda_{n-1, n}
\end{array}\right)
$$

This is an invertible matrix and hence the unimodular row $\left(a_{1}, \ldots, a_{n}\right)$ has been completed to an invertible matrix, which contradicts the assumption.

So, every coordinate ring A of an affine variety that has a unimodular row that cannot be completed to an invertible matrix, gives rise to a counterexample to the General Cancellation Problem.

Over the real numbers, we recover Hochster's example mentioned in the Introduction. Over the complex numbers, one can consider the "generic" example $A=\mathbb{C}[a, b, c, x, y, z] /(a x+b y+c z-1)$. The unimodular row $(\bar{x}, \bar{y}, \bar{z})$ cannot be completed to an invertible square matrix. This was shown by Raynaud [Ray68] using homological methods and, in a more general setting, by Suslin [Sus82] (Theorem 2.8) using K-theory.

Acknowledgments. We would like to thank Wilberd van der Kallen for pointing out the references to the results of Raynaud and Suslin.

References

[Ess93] A. van den Essen, An algorithm to compute the invariant ring of a G_{a}-action on an affine variety, J. Symbolic Comput. 16 (1993), 551-555.
[Ess00] - , Polynomial Automorphisms and the Jacobian Conjecture, Progr. Math. 190, Birkhäuser, 2000.
[Hoc72] M. Hochster, Nonuniqueness of coefficient rings in a polynomial ring, Proc. Amer. Math. Soc. 34 (1972), 81-82.
[Kra89] H. Kraft, Algebraic automorphisms of affine space, in: Topological Methods in Algebraic Transformation Groups, Progr. Math. 80, H. Kraft, T. Petrie and G. Schwarz (eds.), Birkhäuser, 1989, 81-105.
[Now94] A. Nowicki, Polynomial Derivations and Their Rings of Constants, Univ. of Toruń, 1994.
[Ray68] M. Raynaud, Modules projectifs universels, Invent. Math. 6 (1968), 1-26.
[Sus82] A. A. Suslin, Mennicke symbols and their applications in the K-theory of fields, in: Algebraic K-theory, Part I (Oberwolfach, 1980), R. K. Dennis (ed.), Lecture Notes in Math. 966, Springer, 1982, 344-356.
[Wri81] D. Wright, On the Jacobian Conjecture, Illinois J. Math. 25 (1981), 423-440.
Department of Mathematics
University of Nijmegen
Toernooiveld 1
6525 ED Nijmegen, The Netherlands
E-mail: essen@sci.kun.nl
petervr@sci.kun.nl

[^0]: 2000 Mathematics Subject Classification: 14R10, 13B25.
 Key words and phrases: cancellation problem, locally nilpotent derivations.

