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On locally bounded solutions
of Schilling’s problem

by JANUSZ MoORAwWIEC (Katowice)

Abstract. We prove that for some parameters g € (0,1) every solution f : R — R of
the functional equation

flgz) = }qu S )+ fla+ 1)+ 2f(2)]

which vanishes outside the interval [—¢/(1 — ¢), ¢/(1 — ¢)] and is bounded in a neighbour-
hood of a point of that interval vanishes everywhere.

Introduction. Considering a physical problem R. Schilling [18] came
to the functional equation

1) flgz) = 4—1q[f<a: 1)+ S+ 1)+ 2f ()],

where g € (0,1) is a fixed number, and to its solutions f : R — R satisfying
the boundary condition

(2) flx)=0 for |z| >Q
where

o q
Q=1+

The physical background of this problem can also be found in [9] by G.
Derfel and R. Schilling and in [11] by R. Girgensohn.

In what follows any solution f : R — R of (1) satisfying (2) will be called
a solution of Schilling’s problem.

The first nontrivial continuous solution of Schilling’s problem was given
by R. Schilling himself for ¢ = 1/2. This solution is defined by

fi(z) = max{l — |z],0} for x € R.
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170 J. Morawiec

K. Baron, A. Simon and P. Volkmann [3] showed that if n is a positive
integer and ¢ = 1/%/2, then the convolution

fi(@)* fi(gz) *...x fi(q" ' x)

is a nontrivial continuous solution of Schilling’s problem. They also proved
that if ¢ € (0,1/2) and f is a nontrivial Lebesgue integrable solution of
Schilling’s problem, then

g

S |f(x)|(logq)/log(2q) dx = 400

0

for every € > 0. In particular, for every q € (0,1/2) every bounded Lebesgue
measurable solution of Schilling’s problem vanishes almost everywhere.
(Note that in [3] by K. Baron, A. Simon and P. Volkmann and in [19] by
A. Simon and P. Volkmann distributional solutions of Schilling’s problem are
considered.) The case ¢ € (1/2,1) is quite different. Namely, from the paper
[9] by G. Derfel and R. Schilling it follows that for almost all ¢ € (1/2,1)
there are nontrivial continuous solutions. However, if the inverse of ¢ is a
Salem number [6], then such solutions do not exist (cf. also [15] where nonex-
istence of nontrivial continuous solutions of Schilling’s problem was proved
for the golden ratio ¢ = (v/5 —1)/2).

K. Baron and P. Volkmann [4] (see also [8] by I. Daubechies and J. C.
Lagarias) proved that for every g € (0,1) the vector space of Lebesgue in-
tegrable solutions of Schilling’s problem is at most one-dimensional. (The
same concerns Riemann integrable solutions; see [10] by W. Foérg-Rob.) It is
known that the vector space of Lebesgue integrable solutions of Schilling’s
problem is zero-dimensional for ¢ € (0,1/(2v/2)) (see [16] by Y. Peres and
B. Solomyak) and also for those ¢ # 1/2 for which the inverse of ¢ is a
Pisot number (see [7] by J. M. Borwein and R. Girgensohn). However, it is
one-dimensional for almost all ¢ € (1/(2v/2),1) (see [16] by Y. Peres and
B. Solomyak). Up to now the only explicitly given ¢’s for which the vector
space of integrable solutions is one-dimensional are 1/ {/2 given by K. Baron,
A. Simon and P. Volkmann [3]. If the vector space of Lebesgue integrable
solutions of Schilling’s problem is one-dimensional, then every nonzero func-
tion from this space is either positive or negative (almost everywhere) on
its support (see [12]) and according to [5] by L. Bartlomiejczyk, Schilling’s
problem has also strange solutions; e.g. such that their graph meets every
Borel subset of [-Q, @] x R with uncountable vertical projection.

Bounded solutions interesting from the physical point of view were first
examined by K. Baron [5]. His result says that for ¢ € (0,v/2 — 1] the zero
function is the only solution of Schilling’s problem which is bounded in a
neighbourhood of the origin. Generalizations of this result can be found in
[14] and [13] where it is proved among other things that for ¢ < 1/3 the



Schilling’s problem 171

zero function is the only solution of Schilling’s problem which is bounded in
a neighbourhood of a point of the set

n
(3) {EZqi:nENU{O,+oo}, se{—l,l}}

i=1
and no point outside (3) has this property. Note that for ¢ = 1/3 the set (3)
coincides with the interval [-Q, Q].

More details on Schilling’s problem can be found in [11] by R. Girgen-
sohn, in [2, Section 5] by K. Baron and W. Jarczyk and in [17].

In the present paper we are interested in finding parameters g € (1/3,1/2)
for which the zero function is the only solution of Schilling’s problem which
is bounded in a neighbourhood of a point of [-Q, @]. We make the following
definition.

DEFINITION. Let z € [-Q, Q).

We say x € B, if the zero function is the only solution of Schilling’s
problem which is bounded in a neighbourhood of .

We say x € Cy if the zero function is the only solution of Schilling’s
problem which is continuous at x.

We say x € Z, if the zero function is the only solution of Schilling’s
problem which vanishes in a neighbourhood of z.

It is easily seen that
B, cC,C Z;C[-Q,Q]
for every ¢ € (0,1).

Main results. For the convenience of the reader we repeat four relevant
facts from [13] without proofs.

REMARK 1. Assume f is a solution of Schilling’s problem. If q # 1/4,
then f(—Q) = f(Q) =0. If ¢ <1/2, then f(0) =0.

REMARK 2. If f is a solution of Schilling’s problem, then so is the
function g : R — R defined by g(x) = f(—x).

LEMMA 1. Assume q € (0,1/2). If a solution of Schilling’s problem
vanishes either on (—q,0) or on (0, q), then it vanishes everywhere.

LEMMA 2. Assume q € (0,1/2). If f is a solution of Schilling’s problem,

then .
M N+M
f(qN+Mﬂc ey, qm) = (%) <2iq> f(x)
m=1

for every x € (Q — 1,1 — Q) (for every x € [Q — 1,1 — Q] if ¢ # 1/4), every
e € {—1,1}, and any nonnegative integers M and N.
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We first deal with the number ¢ = (3 — v/5)/2.

LEMMA 3. Let g = (3—+/5)/2. If f is a solution of Schilling’s problem,
then
(4) fa¥e ") = (L)
2\ 2¢q
for every x € [0,1 — Q] and every positive integer N.
Proof. Observe that ¢ € (1/3,1/2),
(5) ?—-3¢+1=0 and Q=1—gq.

Fix 29 € [0,1 — Q] and put x = 29 — 1. Since x — 1 < = < —Q, by (1),

(2) and Remark 1 we have
1 1
flazo —q) = f(qz) = 4—q[f($ D+ fl@+1)+2f(x)] = 4—qf(300)-

Fix now a positive integer N and assume that (4) holds for every x €
[0,1 — Q]. Fixing ¢ € [0,1 — Q] and putting z = ¢Vz¢ — ¢" we see that
r—1<-1<—-Qandzx+1>—q¢+ 1= Q. Consequently,

1
F(@" g — gVt = 4—q[f(3? — 1)+ fl@z+1)+2f(z)]
! 1, N Ny 1Y
— @) = 5o - = 3 (5] s

LEMMA 4. Let g = (3—+/5)/2. If f is a solution of Schilling’s problem,

then for any monnegative integers k and | satisfying

(6) |k —1lgl <@
there exist a positive real oy and a positive integer ny; such that
1 n
U e+ k—10) = awa5-) (@)
® @ - — ko) = 2o =) 1)
qgT—q q—2ak,l 2 z),

for every integer n > ny; and every x € [0,1 — Q)].

Proof. With the help of (5) we check at once that if nonnegative integers
k and [ < 4 satisfy (6), then

(k1) €{(0,0),(0,1),(1,2),(1,3),(1,4), (2,4)}.
Put
ao=1, a1 =a13=1/2, apa=aia=1/4, azs=1/8,

np,o ="nNp,1 =N12 ="N13="N14 = N4 =4.



Schilling’s problem 173

If z € [0,1 — @], then using Lemma 2, (5), (1), (2), Remark 1 and
Lemma 3 we find that for every integer n > 2 the following equalities hold:

s = () @) = ana( 5 ) 160

rare -0 =3(5:) o) =au(5:) 1@
fl@" e +1-29) = f(¢"z — ¢* +q)
1

I n—1, n—1_
—4q{f(q r—q)+ f¢" T —q+2)

+2f(q" tr — g+ 1)]

1

_ = n—1,
—4qf(q T —q)

“gaa(z) 1
=1 (2—1q>nf($),

-3(a) (5)
= 041,3<2iq>nf($)a
e +1—4q) = f(¢"v —q" —q) = (%)2 <2iq>nf(fc)

=14 (2—1q>nf($),

and if n > 3, then using also the third of the above equalities we get
F(q"z +2 —4q) = f(g"z — 24" + 2q)
1 n—1
= — —2q+1
17 [f(¢" ' —2¢+1)
+ f(¢" ' = 2¢ + 3) + 2f(¢"tx — 2q + 2)]

1
= qu(qn_lx +1—2q)

1 1 n—1
= 4—qa1,2 (2_(1) f(ff)
= 042,4<2iq> f(x);
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similarly we obtain equalities which correspond to (8):

s =" =352 ) 70 = 0005 ) @)

2q
1 n—1 n—1
17 fl@" "z —q")

+ " e ="+ 2) 4 2f (¢ — ¢ 4+ 1)
n—1
= if(qn_l:v—q"_l) Ll (i> f(x)

fl@"z—q"+q) =

4q “492\2g
1 1\"
~ 300a(5:) 1@
f(@"e—q"—1+2¢9) = f(¢"zv —q" + ¢* — q)
1

=@z - ¢ +q-2)

+f(@" e —q" +9)
+2f(¢" = ¢" T+ q—1)]

_ 1 n—1 n—1
= 4qf(q r—q"" +q)
11 1\"!
“greoi(y) e
1 1\"
= §a1’2(2_q> f((ll‘),
f(@"r —q" —1+3q) = f(¢"r — ¢" + ¢*)
1 —1 -1
- n M . 1
17 fl@" e —q¢" +q-1)

+ @ =g g+ 1)
+2f(¢" = " + q)]

1 ~
= 2—qf(qn Lz —¢" 1+ ¢q)
11 1\"!
“mizeoi(z) IO

= %m,s (2—1q> f(z),
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f(@"e—q" —1+49) = f(¢"r — "+ ¢ +q)
= %[f(q"_lx - """ +q)
+ (e =" +q+2)
+2f(¢" e — "+ q+ 1)

1 _
= @f(q" Lz —¢" ! +q)

11 1\"!
= 5504071 <%> f(l’)

1 1\"
— ona(5. ) f@)
flg"r — ¢" —2+4q) = f(¢"z — ¢" + 2¢° — 2q)
1 _ _
qu[f(q" 'z —¢" ' +2¢-3)

+f@" e — g+ 29— 1)
+2f(¢" e — ¢" 7t + 29 — 2)]

1 _ _

= 4—qf(q” 'z — gt +2¢-1)
11 1\ !

= 4_q§a1’2 (2_q> f(x)

= %a2’4 <%> f(l’)

175

Fix now a nonnegative integer L > 5 and assume that for any nonneg-
ative integers k and [ < L satisfying (6) there exist a positive real ay; and
a positive integer ny; such that (7) and (8) hold for every integer n > ny

and every x € [0,1 — Q]. Let k be a nonnegative integer such that

|k — Lq| < Q.
Then
9) 1<k<L.
Putting
k — Lq
y =
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and using (5) we see that |y| < @/¢=Q + 1 and

— Ak —
y = q;k ST -

Applying (5) again we see that y belongs to one of the intervals

It follows that there exists a positive integer N such that for every integer
n > N and z € [0,1 — Q] the number y belongs to one of the intervals (10)
together with the numbers

n—lx n—l.

y+q"l, y—q"lrtg
Moreover, making also use of (9) we have: if y > —Q — 1, then
3k—L4+1=y+kq+1>-Q+kq=—-1+(k+1)g>—1+3q> 0;
if y > —Q, then
3k—L=y+kqg>—-Q-+kqg>0;
and if y > 1 — @, then
3k—L—-1=y+kqg—1>—-Q+kqg>0.

This allows us to define a7, and ny 1, by

(Losk—r41k if —Q-1<y<-Q,
$lose— 11k + 20861 if-Q<y<@-1,
QL = § O3k—Lk fQ-1<y<1-0Q,
Slosk—r—1k + 200351 1] ifl1-0Q<y<aQ,
SQ3k— L1k fQ<y<@+1,
max{ngr_r+1k + 1, N} if—Q—-1<y<—Q,
max{ngr_r+1k + Lngr—rp + 1, N} if —Q<y<Q—1,
ng,L = max{ngk_L7k+1,N} fQ-1l<y<l1l-0Q,
max{ngr_r—1k + 1,n3p—rr + 1, N} if1-0Q<y<Q,
\ max{ngx_r—1+ 1, N} fQ<y<Q@+1.

If n > ny 1, is an integer and z € [0,1 — @], then putting

n—1

nilxv Z2=Y—- qnil‘r + q ’

w=yY-+q
we have

quw=q"v+qy=q"v+k—Lqg, qz=—(¢"v—q"—k+ Lq)
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and, in consequence,

(@' + k — Lg) = f(qu) = —[f(w— 1)+ f(w +1) +2f (w)]

4q
4% (w+1) if—-Q-1<w<—-Q,
Llfw+ 1) +2/ ()] if-Q<w<Q-1,

_ 2%; (w) ifQ-1l<w<l-Q,
Llfw=1D+2f(w)] f1-Q<w<Q,
\4% (w—1) ifQ<w<Q+1,

1o f(w+1) if —Q-1<y<-Q,
LW+ +2f(w)] if -Q<y<Q-1,

—{ L f(w) fQ-1<y<1-Q,
Llfw=1)+2f(w)] f1-Q<y<Q,
\4%] (w—1) fQ<y<Q@+1,

:ak,L<%> f(z),

and
f(q”ﬂc—q”—k‘—l—Lq) :f(_qz) = %q[f(—z—1)+f(—2+1)+2f(_z)]
(Lf(-2-1) if —Q-1<y<-Q,
Llf(—z=D)+2f(—2)] F-Q<y<Q-1,
—{ Lf(-2) f-1<y<1-Q,
L2+ 1) +2f(=2)] f1-Q<y<Q,
4%] (—z+1) fQ<y<@+1,
1 1\"
:iak,L<2_q> f(z).

THEOREM 1. If ¢ = (3 —/5)/2, then
(11) By =Cq =2, =[-Q,q).

Proof. Assume f is a solution of Schilling’s problem which is bounded
in a neighbourhood of zy € [—Q, Q]. Since Z + ¢Z is a dense subset of the
real line, we may (and do) assume that z is of the form k —lq, where k and
[ are integers satisfying (6). This jointly with (5) implies that k-1 > 0.

If x € [0,1 — @], then either the left-hand side of (7) or the left-hand
side of (8) is bounded with respect to n. From Lemma 4 we then infer that
f vanishes on [0,1 — Q]. Now by the second part of (5) and Lemma 1 it is
obvious that f vanishes everywhere.
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Putting = 0 in (7) and using Remarks 1 and 2 we get one of the main
results of [15].

COROLLARY 1. If ¢ = (3 — /5)/2, then every solution of Schilling’s
problem vanishes on Z + qZ.

In the second part of this paper we will show that in Theorem 1 the
number (3 — v/5)/2 may be replaced by any ¢ € (1/3,1/2) satisfying
K

(12) 2> ¢ At =1
k=1
with a positive integer K and a A € {1,2}.

LEMMA 5. If there exist K € N and \ € {1,2} satisfying (12), then

N
1—Q#> end"

n=0
for all N e NU{0} and eq,...,en € {—1,0,1}.

Proof. Suppose that there exist N € NU{0} and €y, ...,enx € {—1,0,1}
such that

N
(13) 1-Q =) eug"
n=0
and put
N
(14) o = Zanqn.
n=0

We conclude from (12) that

K 00
n=1 n=1
hence

(15) xo—Zq +(A— 1) - Z q".

n=K+2
Moreover, ¢ < 1/2 implies

00
Z qn <qK—|—1 <qK

n=K+2
which jointly with (15) gives

(16) Zq <Zq - Z ¢" < xo.

n=K+2
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We are now in a position to show
(17) e0=0, N>K, ¢e,=1 forne{l,...,K—1}.

In fact, if g9 # 0, then using (13) and (14) we have xp —eg =1—Q — ¢ €
{—Q,2— @} which contradicts g — eg € (—Q, Q) resulting from (14). Thus
eo = 0. Hence (14) yields

N N
ro= ) enq" < 5 q".
n=1 n=1

By (16) we therefore get N > K. Suppose now that ¢; # 1 for some i €
{1,..., K — 1}. Then

N i—1 N K—2 N K-1
To=D ed" D q"+ D ") d"+ D d" <} d"
n=1 n=1 n=i+1 n=1 n=K n=1

contrary to (16).
From (14) and (17) we have

K-1 N
0= d"+ D cad",
n=1 n=K

which jointly with (15) gives
N—-K [e'e)
(18) exng =1+ (A =1g—> q"
n=0 n=2

Consider first the case A = 2. Then (18) reads

N-K 0o
(19) > ekind"=1+q-Y q"
n=0 n=2
If ex # 1, then

N—-K N—-K o)
Y ekind" <) exnd" <Q<1<14q-> "

n=0 n=1 n=2
This contradicts (19), so ex = 1. Thus (19) leads to
N-K-1 00

Y eknmd"=1-) ¢"=1-Q,
n=0 n=1

ie.,

N-K
n=0
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where €], = eg414n for n € {0,...,N — K — 1} and €/y_j = 0. Of course
(21) e, €{-1,0,1} forne{0,...,N—K}.
Assume now that A = 1. Then (18) reduces to
N-K 00
(22) > exnd"=1-) q"
n=0 n=2

In particular, N # K. This and (17) give N > K + 1.
If ex11 # —1, then ex+1 — 1 € {—1,0} and (22) can be written in the

form
N—-K

ek + ek — g+ Y exnd" =1-Q,

n=2

i.e., in the form (20), where now e(, = ek, €] = ex41 — 1 and €], = ex 4, for
n € {2,...,N — K}. Moreover, (21) holds as well.

Finally assume that ex41 = —1. From (22) we have
N-K )
ek —q+ Y exmd"=1-> ¢">1-q
n=2 n=2
Hence
N-K
1l <ex+ Z Exing” < egx + 1.

n=2

Therefore e = 1 and equality (22) can also be written in the form
N-K-1

Z Ek+14nq" =1 —Q.
n=1

In each of the cases considered we have represented 1 — () in the form
(20) with (21). Consequently, we have shown that if 1 —() is of the form (13),
then N > K and 1 — @ is of the form (20) as well. Consequently, N > mK
for every positive integer m, a contradiction.

LEMMA 6. Assume that (12) holds for some K € N and A € {1,2}. If N
is a positive integer, g € {—1,1}, €1,...,enx € {—1,0,1}, and the number
xo defined by (14) belongs to [—Q,Q], then N > K and e, = —eg for all
ne{l,...,K}. Moreover, if \ =2, then N > K + 1 and ex11 # €o.

Proof. Combining (14) with (12) we obtain

N K N
Zl_zqn:2zqn+)\qK+l_an.
n=1 n=1 n=1

N
(23) ool = [eo + D =0a”
n=1
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Suppose that N < K. Then

vao|>Zq + Z q" +/\qK+1>Zq +q¢% > Q,

n=1 n=N-+1

a contradiction.

Suppose now that e; # —eg for some i € {1,..., K}. Then

Iivol—‘éoJrZenq +eig’ + Z

n=t+1
>1- Zq” - Z ¢"
n=1 n=i+1
K N
:2an—}-)\qK+1— Z qn
n=1 n=1,n#i
K N
22an+>\qK+l_ Z qn
n=1 n=1,n#K
K N
:Zq"+)\qK+l+qK— Z qn
n=1 n=K+1
K o0
>an+qK+l+qK_ an
n=1 n=K+1
0
n=K+1

Moreover, since (12) implies 2¢ + ¢ < 1, we have

o0
QZq”:

n=K+1

qK+1
9 < qK +qK+1_
1—g¢q

Hence |zp| > @, which contradicts our assumption.
Assume now A = 2. If N = K, then from (23) we get

K K+1
wol =D " +2¢" T =D "+ " > @,
n=1 n=1

181

a contradiction which shows that N > K + 1. It remains to show that
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Ex+1 7 €0- Indeed, if e 41 = €0, then

K N
’1‘0’ = }50 + Z 5nqn + quK—l—l + Z 5nqn
n=1 n=K-+2

K N
Zl_zqn+qK+1_ Z qn

n=1 n=K-+2
K K N
:2an+2qK+l_an+qK+l_ Z qn
n=1 n=1 n=K+2
K+1 [es)
>an+2qK+l_ Z qn
n=1 n=K+2
K+1
>Zq"+qK+1>Q,
n=1

contrary to the assumption.

LEMMA 7. Assumeq € (0,1/2). If f is a solution of Schilling’s problem,
then

N+1 N+1 > n) _ 1 A
e f(d e e ) = () o)
n=1

for all N e NU{0}, e € {—1,1}, and |y| < 1.
Proof. Notice that if ¢ = —1, then y + 2¢ < —1, and if ¢ = 1, then
y + 2¢ > 1. This gives

Fay + 26q) = %my L9 1) 4 fly 428+ 1)+ 2f(y + 20)]

1
:4—qf(y+5)

and (24) remains true for N = 0.
Assuming (24) to hold for a nonnegative integer N, put

N
2= Nty 4 25Nt +5an

n=1

and observe that if e = —1, then

N N+1
z=¢" Ty —2¢"" > "g"<-> ¢"<0<1-Q,
n=1 n=1

while if e = 1, then



Schilling’s problem 183

N N+1
2=y +2" 1> "> " >0>Q-1.
n=1 n=1
It follows that
N+1
f(qN“y +2eq" P +e ) q”) = f(gz +¢2)
n=1
1 1
=—[fz+e—-1D+fz+e+ 1)+ f(z+e)] = —f(2)
4q 4q
1 N+1 N+1 Al 1 N2
4qf(q y + 22q +6;q <4q) fly+e)

LEMMA 8. Assume that (12) holds for some K € N and X € {1,2}, n is
a nonnegative integer, o, ...,en € {—1,0,1} and the number xy defined by
(14) belongs to [—Q, Q). If f is a solution of Schilling’s problem, then there
exist gy, e > 0 and a positive integer ne,... o Such that

2%
for every integer n > ng, .oy and z € [Q — 1,1 — Q).

Proof. If N = 0, then |g¢| = |xg] < @ < 1. Consequently, £9 = 0 and
xo = 0. Hence for N = 0 it is enough to put a,, = 1, n,, = 1 and use
Lemma 2.

Fix now a nonnegative integer M and assume that for every nonnegative
integer N < M and every eg,...,eny € {—1,0,1} such that zy belongs to
[—Q, Q] there exist g, .y > 0 and a positive integer n., . ., such that
(25) holds for all n > ng, .y and z € [Q — 1,1 — Q.

Fix €9,...,enm41 € {—1,0,1} and assume that

N+4n
(25) f<qN+"x-kzo>=:amww@V<‘l) f(@)

M+1

W= eng™ € [-Q,Q).
m=0

Consider the following three cases:

(i) €0 =0,
(ii) leo| =1 and A =1,
(iii) |eg] =1 and A = 2.

In case (i) from Lemma 5 we see that y = ¢~ lyo belongs to one of the
intervals (10). Then there exists a positive integer L such that for every
n > L and every x € [@Q — 1,1 — Q] the number y belongs to one of the
intervals (10) together with ¢™*"x 4-y. Observe also that if y < @ — 1, then
g1 #1,and if y > 1 — @, then &1 # —1. In particular, we can define
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1 .

?a81+1,€2,-~,8M+1 f-Q-1<y<-0Q,

§[a51+1752’~-->5M+1 + 2a€1,€2,~--,€M+1] if _Q <y< Q - 17
Aeg,.enre1 — Aeq,enri if Q -1< y < 1- Qv

%[0461—1,62,...,61\4“ + 20 5, o] H1-Q<y<Q,
ifQ<y<@+1,

7Qe1—1e2,..E041

max{Ne, {1,e0,....e0r41> L} if —Q—-1<y<—-Q,
max{n€1+1,€2,...,€A{+17nel,...,6M+17L} If _Q < Yy < Q - 17
Neg,enrir — max{n€17--~7€M+1’L} }f RQ-1<y<1-Q,
max{nal—l,az,...,EM+17nal,...,aj\4+17L} if1- Q <y< Qa
\ max{ne, ~1,eq,....e0741> L} fQ<y<@+1.
If n > ney,. ey and 2 € [Q — 1,1 — Q], then putting w = gMtry 4y
we have
1
F@ 2 4 y0) = flqw) = —[f(w =D+ flw+1) +2f(w)]
%f(w+1) if —Q—-1<y<-Q,
%VW+U+ZN)]ﬁ—Q<y<Q—L
= %ﬂ) fQ-1<y<1-Q,
lfw=1+2f(w)] ifl1-Q<y<Q,
Li(w-1) fQ<y<Q+1,
1 M+14n
g a607,..7€M+1 (%) f(.%').
Consider now case (ii). According to Lemma 6, M+1 > K, and &, = —&
for m € {1,..., K}. Applying now (12) we see that
M+1 K+1 M+1
(26) yo =e0— Z cod"+ D emq" Z cog™+ Y emq™
m=K+1 m=K+1
Put
1\ K+1 . .
(3) it M+1=K,
. Q0,£0,...,60,E K +1FE0,E K425 EM+1 tM+1> K7
an,...,EM+1 - T EK+1 € {07 _60}7
K+1 .
( (%) Qg e 2, EM 41 if M+1> K, g1 = €o,
1 ifM+1=K,
N0,e0,...,£0,6 K +1+€0,EK+25-EM+1 itM+1> K,
Neg,enenitr — Hfg_/ EK+1 € {0; _50}7
\ Meo,ert2,mEMt1 if M+1>K, exq1 = eo,

and fix n > neg ey, and 2 € [Q — 1,1 - Q).
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If M +1 = K, then by (26) and Lemma 2 we get

M+14n K4n — m 1 fodt 1 foam
s ) - () (2) e
m=1

2q
1 M+14n
= Qgg,...epmt1 (Z) f(cﬁ}

If M+1> K and ex41 € {0, —¢0}, then by (26) and the proof of case (i)
we have

L\ Mtin
M+1
flq tltng Yo) = Q0,60,.-,£0,E K +11H€0,€K+25EM 41 < ) )

2
1 M+1+n
— OZE(),...,EAHJ < ) f(ﬂf)

2q
If M+ 1> K and ex4+1 = €0, then (26) takes the form
K M+1
(27) yo=> g™ +2e0¢" T+ D emg™,
m=1 m=K+2
and, since yp € [-Q, Q] and Q = ¢5+t1(Q +1) + Zizl g™, we have
M-K
20+ Y exp1imd™ €[-Q—1,Q +1].
m=1
Hence, because |eg| = 1 and the remaining €’s are from {—1,0, 1}, we get
M-K
c0t+ Y exiirmd™ € [-Q, Q).
m=1

Applying (27), Lemma 7 and the induction hypothesis for z € [Q — 1,1 — Q]
we obtain
M—-K

(28)  F(@M T+ o) = (T (AT DT cacinimd™)

m=1

K
+ 260(]K+1 + &0 Z qm)

m=1
1 K+1 M—-K
=\ f(qM_K+"33 + Z EK+1+mq" +80)
4q m=1

1 K+1 1 M—-K+n
= <@> Qeg,e k42, mEM+1 <Z> f(:C)

1 M+1+n
= an,...76]\4+1 (%) f(:l:)
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Finally assume (iii) holds. Now Lemma 6 says that M + 1 > K + 1,
em = —¢p forallm e {1,..., K} and ex41 € {0, —eo}. Applying (12) again,
we obtain

K M+1
K+1
(29) Yo = €0 — E c0g” +exd™ T+ D emg”
K M+1
K+1
g e0q™ + (260 + ex+1)q + E emq™
m=1 m=K+2
Put
K+1 .
(i) Qe e t2, - EM+1 if ex+1 =0,
a50,~~,5M+1 = aO,Eo,..,7€0,€K+2,...,E]\4+1 if EK+1 = —¢€o0,
——
K41
Neg e 125mmEMA1 ifegir =0,
Neg,onerrar = § TW0,£0,00E0,E K425 EM A1 if e 1 = —eo,
——
K41

and fix n > ng; ey, and z € [Q — 1,1 - Q).
If eg+1 =0, then (29) implies (27) and hence also (28).
If exy1 = —&0, then using (29) and part (i) we get

B 1\ M+1+n
f(q tlng Yo) = Q0,80,....0,E K425+, EM+1 (2_(1> o

1 M+1+4n
e (2—q) 7).

THEOREM 2. If there exist K € N and A € {1,2} satisfying (12), then
(11) holds.

Proof. Assume f is a solution of Schilling’s problem which is bounded
in a neighbourhood of zy € [—Q, @]. Since

N
(30) {Zanq":50,...,5N€{—1,0,1}, NeN}
n=0

is dense in [—@Q, @], applying Lemma 8 and arguing as in Theorem 1 we see
that f vanishes on [@Q — 1,1 — Q]. We will show that f vanishes on [0, q),
which jointly with Lemma 1 will complete the proof.

From (12) we get 2¢+¢> < 1,80 ¢ 1(1-Q) > Q. If x € (1 - Q, q), then
Q<q¢'(1-Q)<glrandQ-1<q¢glr—-1<0<1-Q, whence

f(x) = j—qmq—lx )+ fl e )+ fg )] =0,
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We conclude with the following simple consequence of Lemma 8 and

Remark 1.

COROLLARY 2. If there exist K € N and A € {1,2} satisfying (12), then

every solution of Schilling’s problem vanishes on the set (30).
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