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The complex Monge–Ampère equation for
complex homogeneous functions in Cn

by Rafał Czyż (Kraków)

Abstract. We prove some existence results for the complex Monge–Ampère equation
(ddcu)n = gdλ in Cn in a certain class of homogeneous functions in Cn, i.e. we show that
for some nonnegative complex homogeneous functions g there exists a plurisubharmonic
complex homogeneous solution u of the complex Monge–Ampère equation.

0. Introduction. In this paper we consider the following problem: for
which nonnegative complex homogeneous functions g in Cn does there ex-
ist a complex homogeneous plurisubharmonic function u in Cn solving the
complex Monge–Ampère equation

(0.1) (ddcu)n = gdλ,

where dλ denotes the Lebesgue measure in Cn?
The problem of the existence of global solutions of the complex Monge–

Ampère equations in Cn has been treated only in a few cases. In [K1]
Kołodziej showed some sufficient conditions which guarantee that a finite
measure µ in Cn admits a solution of the equation (ddcu)n = dµ in the class
L+ (for definition of L+ see Section 1). Uniqueness, up to an additive con-
stant, in this case was proved by Bedford and Taylor in [BT2]. In [J] Jeune
proved that a perturbation of the Lebesgue measure in Cn by a smooth func-
tion which, together with all its derivatives, tends to 0 fast enough at infinity,
admits a smooth solution of the complex Monge–Ampère equation. Monn
[M] proved the existence of a solution of the complex Monge–Ampère equa-
tion in the class of radial functions in Cn, i.e. for every nonnegative radial
function g in Cn there exists a radial, entire plurisubharmonic function satis-
fying (0.1). Kołodziej [K3] showed that for given two entire locally bounded
plurisubharmonic functions v and w satisfying w ≤ v, (ddcv)n ≤ (ddcw)n
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and lim|z|→∞(v(z)−w(z)) = 0, one can solve the Monge–Ampère equation
for any measure µ such that

(ddcv)n ≤ dµ ≤ (ddcw)n.

Furthermore, the solution u is unique among functions satisfying w ≤ u ≤ v.
In this paper we prove the existence of a solution of the complex Monge–

Ampère equation for a certain class of homogeneous functions in Cn. In the
complex plane every complex homogeneous function is of the form c|z|α
and a simple computation shows that the function u(z) = 2

(α+2)2 |z|α+2 is
a solution of ddcu = |z|αdλ, where α > 0. For this reason in this paper we
always assume that n ≥ 2.

In the first section we prove that for any nonnegative, smooth (out-
side the origin), complex homogeneous function g of order of homogeneity
n(t−2), where 0 < t < 1/(n− 1), there exists a smooth (outside the origin)
solution u of the equation (0.1). We also establish a connection, which plays
a major role in proving the theorem mentioned before, between the existence
of a solution of an equation of complex Monge–Ampère type in the complex
projective space Pn−1 and the existence of a solution of the Monge–Ampère
equation in the class of homogeneous functions in Cn. Namely, we show that
a solution in Pn−1 allows us to construct a corresponding solution in Cn.
The existence of a solution for some equations of Monge–Ampère type on
special compact Kähler manifolds was proved by Ben Abdesselem [BA].

At the end of Section 1 we prove that, under an additional assumption
on g, it is possible to solve (0.1) with a weaker restriction on the order of
homogeneity.

In the second section we prove the existence of a solution of (0.1) for g
locally bounded. To prove this we need a generalization of Tian’s theorem
from [T]. Tian solved the following equation on compact Kähler manifolds
(M,ω) with a positive first Chern class:

(0.2) (ddcϕ+ ω)n = e−tϕ+fωn,

where ddcϕ+ω ≥ 0, f is C∞ smooth and 0 ≤ t ≤ 1. For t = 1 this equation
provides the existence of a Kähler–Einstein metric on M . We prove that
(0.2) has a solution for every bounded function f and 0 ≤ t ≤ α(M), where
α(M) is a global holomorphic invariant on M introduced by Tian.

1. Existence of a solution for smooth data

Definition 1.1. We say that a function f : Cn → R is complex homo-
geneous of order α where α > 0 if

f(λz) = |λ|αf(z) for all λ ∈ C and z ∈ Cn.
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We denote by Hα
C (Cn) the space of all complex homogeneous functions of

order α in Cn.

Sometimes we call a complex homogeneous function simply a homoge-
neous function.

We denote (see [Kl]) by L+ the set of all entire plurisubharmonic func-
tions u in Cn for which there exist constants C1 and C2 (depending on u)
such that

C1 + log(1 + |z|) ≤ u(z) ≤ C2 + log(1 + |z|).

We denote by H+ the set of all entire plurisubharmonic functions u in
Cn which satisfy

u(λz) = log |λ|+ u(z) for all λ ∈ C and z ∈ Cn.

It is well known that H+ ⊂ L+ and
�

Cn
(ddcu)n = (2π)n for all u ∈ L+.

Now we recall that for a function from H+ much more is known about
its Monge–Ampère measure.

Proposition 1.2. If u ∈ H+ then (ddcu)n = (2π)nδ0, where δ0 is the
Dirac measure at zero.

Proof. First we prove our proposition for smooth functions. Suppose
that u ∈ H+ ∩ C∞(Cn \ {0}). Then taking the ∂2/∂zj∂zk derivative of the
equation u(λz) = log |λ|+ u(z) for z 6= 0 we obtain

ujk(z) = |λ|2ujk(λz) for λ 6= 0 and z 6= 0,

where ujk(z) := ∂2u
∂zj∂zk

(z). Taking z = z/|z| and λ = |z| we have

ujk(z) = |z|−2ujk(z/|z|).

Recall that if a plurisubharmonic function u is C2 smooth then

(ddcu)n = 4nn! det
(

∂2u

∂zj∂zk

)
dλ.

Using this equation we can show that for any R > 0,
�

B(0,R)\{0}
(ddcu)n = n!4n

�

B(0,R)\{0}
det(ujk(z)) dλ

= n!4n
�

B(0,R)\{0}
|z|−2n det(ujk(z/|z|)) dλ
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= lim
ε→0

n!4n
R�

ε

r−1 dr
�

∂B(0,1)

det(ujk(z/|z|)) dσ

=

{
0 if �

∂B(0,1) det(ujk(z/|z|)) dσ = 0,
∞ if � ∂B(0,1) det(ujk(z/|z|)) dσ 6= 0.

However we know that � Cn(ddcu)n = (2π)n <∞, so det(ujk(z)) must vanish
on ∂B(0, 1). From that we conclude that (ddcu)n = 0 in Cn \ {0}. This
implies that the measure (ddcu)n is supported at the origin, so (ddcu)n =
(2π)nδ0.

To finish the proof of Proposition 1.2 it is enough to find for every u ∈ H+

a sequence of smooth functions from H+ decreasing to u. First we recall the
standard way of regularization of u.

Define a function h : R→ R by the formula

h(t) =
{

exp(−1/t) for t > 0,
0 for t ≤ 0.

Set θ(x) = Ah(1 − |x|2) for x ∈ Rm, where A = ( �
B(0,1) h(1 − |x|2) dλ)−1.

Obviously θ ∈ C∞(Rm), supp θ = B(0, 1) and � Rm θ(x) dλ = 1. For δ > 0
we define θδ(x) = (1/δm)θ(x/δ). Note that � Rm θδ(x) dλ = 1 and supp θδ =
B(0, δ). It is well known that vδ := u ∗ θδ ∈ PSH ∩ C∞ and vδ is decreasing
to u as δ ↘ 0. We call the sequence {vδ} the standard regularization of u.

Now we define another regularization of u which preserves homogeneity.
Set

uδ(z) := |z|−2n
�
u(w)θδ

(
z − w
|z|

)
dλ(w) =

�
u(z − |z|w)θδ(w) dλ(w).

We claim that uδ is the desired sequence. Obviously uδ ∈ C∞(Cn \ {0}).
First we show that if u satisfies u(µz) = log |µ|+ u(z) for all µ ∈ C and

z ∈ Cn then also the functions uδ satisfy this equation. To see this observe
that

uδ(µz) =
�
u(µz − |µz|w)θδ(w) dλ(w)

= log |µ|+
�
u

(
z − |µ|

µ
|z|w

)
θδ(w) dλ(w)

= log |µ|+
�
u

(
z − |µ|

µ
|z|w

)
θδ

( |µ|
µ
w

)∣∣∣∣
µ

|µ|

∣∣∣∣
2n

dλ

( |µ|
µ
w

)

= log |µ|+ uδ(z).

Now we show that uδ ↘ u as δ ↘ 0. From the above equation it is enough
to check this for |z| = 1. But for such z our regularization is the standard
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regularization uδ = vδ. For the standard regularization we know that vδ
decreases to u, so also uδ decreases to u.

To end the proof it is enough to check that uδ ∈ PSH(Cn). To see this,
note that we can write uδ as

uδ(z) = log |z|+ uδ(z/|z|) = log |z|+ vδ(z/|z|),
where vδ is the standard regularization of u.

We denote by Pn−1 the (n−1)-dimensional complex projective space, i.e.
the set of all one-dimensional linear subspaces of Cn. Set Uk = {[Z1, . . . , Zn] :
Zk 6= 0}. Then we have Pn−1 =

⋃n
k=1 Uk. In Uk we have local coordinates

(z1, . . . , ẑk, . . . , zn), where zj = Zj/Zk. The Kähler metric h on Pn−1 is
given by

hλµ(z) = n∂λ∂µ log
(

1 +
∑

j 6=k
|zj |2

)
on Uk.

We denote by ω the form given by the formula

ω =
n

2
ddc log

(
1 +

∑

j 6=k
|zj |2

)
on Uk.

We define a mapping Π : Cn \ {0} → Pn−1 by Π(z) = [z1, . . . , zn].

Lemma 1.3. Let g : Cn → R+ be a complex homogeneous function of
order n(α − 2), where α > 0 and suppose that there exists a solution v of
the following Monge–Ampère equation on Pn−1:

(1.1) (ddcv + ω)n−1 = G(v, ·)ωn−1 and ddcv + ω ≥ 0,

where G : R× Pn−1 → R+ and

G(t, z) = C(n, α)g̃(Π−1(z))e−αt,

with

g̃(z) = |z|−n(α−2)g(z) and C(n, α) =
1

n!2n+1αn+1 .

Then there exists a solution u ∈ PSH(Cn) ∩ Hα
C of the complex Monge–

Ampère equation on Cn:

(1.2) (ddcu)n = gdλ.

Proof. First we define w(z) := log |z| + 1
nv(Π(z)). Observe that w ∈

PSH(Cn∗ ) and

w(λz) = log |λz|+ 1
n
v(Π(λz)) = log |λ|+ log |z|+ 1

n
v(Π(z))

= log |λ|+ w(z),

for all λ ∈ C and z ∈ Cn. So we have checked that w ∈ H+ and Proposi-
tion 1.2 gives (ddcw)n = (2π)nδ0. Now we can define u(z) := exp(αw(z))
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for z 6= 0 and u(0) = 0. Then u ∈ PSH(Cn) and for all λ ∈ C and z ∈ Cn,

u(λz) = eαw(λz) = eα(log |λz|+n−1v(Π(λz)))

= eα log |λ|eα log |z|+αn−1v(Π(z)) = |λ|αu(z).

Now we compute the Monge–Ampère measure for u:

(ddcu)n = (ddceαw)n = (α2eαwdw ∧ dcw + αeαwddcw)n

= αnenαw(αdw ∧ dcw + ddcw)n

= αnenαw((ddcw)n + nαdw ∧ dcw ∧ (ddcw)n−1).

Note that from the fact that w ∈ H+ we obtain

αnenαw(ddcw)n = αn|z|nαeαv(Π(z)) · (2π)nδ0 ≡ 0.

So
(ddcu)n = nαn+1enαwdw ∧ dcw ∧ (ddcw)n−1.

Denote by T the current T =enαw(ddcw)n−1 and z=(z1, z
′)=(z1, z2, . . . , zn).

Now fix a point z ∈ Cn\{0}. We can assume (applying rotation if necessary)
that z = (a, 0, . . . , 0) and |a| = |z|.

Recall that Π denotes the canonical projection from Cn \ {0} to Pn−1;
we denote by Πa the restriction of Π to {z1 = a}. Then it is easy to see
that

Πa(a, z2, . . . , zn) = (z2/a, . . . , zn/a) ∈ U1,

Π−1
a (z2, . . . , zn) = (a, az2, . . . , azn) ∈ {z1 = a},

Πa ◦Π−1
a = idU1 and Π−1

a ◦Πa = id{z1=a} .

Now we express the current (ddcw)n−1 on the set {z1 = a} using our as-
sumptions:

(ddcw)n−1 = (Π−1
a ◦Πa)∗(ddcw)n−1 = Π∗a(ddc(w ◦Π−1

a ))n−1(1.3)

= Π∗a

(
ddc
(

1
2

log |Π−1
a (z′)|2 +

1
n
v(Πa ◦Π−1

a (z′))
))n−1

= Π∗a

(
ddc
(

1
2

log(|a|2(1 + |z′|2)) +
1
n
v(z′)

))n−1

= Π∗a

(
1
2
ddc log(1 + |z′|2) +

1
n
ddcv

)n−1

=
1

nn−1Π
∗
a(ω + ddcv)n−1

=
1

nn−1Π
∗
a(Gωn−1) =

1
nn−1 (G ◦Πa)(Π∗aω)n−1

=
1

nn−1 (G ◦Πa)
(
n

2
ddc log(1 + |z′/a|2)

)n−1
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= 21−n(G ◦Πa)(ddc log(|a|2 + |z′|2))n−1

= 2n−1(n− 1)!|a|2(G ◦Π)(|a|2 + |z′|2)−n

· i
2
dz2 ∧ dz2 ∧ . . . ∧

i

2
dzn ∧ dzn.

Note that

(1.4) dw ∧ dcw = 4
∂w

∂z1

∂w

∂z1

i

2
dz1 ∧ dz1 + . . .

Since v(Π(z)) is constant on the set {(ζ, 0, . . . , 0) : ζ ∈ C} we conclude that

∂w

∂z1

∂w

∂z1
(z) =

|z1|2
|z|4 .

According to (1.3) and (1.4), on the set {z1 = a} we obtain (remembering
that |a| = |z| = |z1|)

dw ∧ dcw ∧ (ddcw)n−1

= 4
|z1|2
|z|4

i

2
dz1 ∧ dz1 ∧ 2n−1(n− 1)!|a|2(G ◦Π)(|a|2 + |z′|2)−n

· i
2
dz2 ∧ dz2 ∧ . . . ∧

i

2
dzn ∧ dzn

= (G ◦Π)2n+1(n− 1)!|z|−2ndλ.

So at our fixed point z we have checked that

(ddcu)n = n2n+1(n− 1)!αn+1enαwG ◦Π|z|−2ndλ

= n!2n+1αn+1|z|n(α−2)eαv(Π(z))G ◦Π(z)dλ = g(z)dλ.

This completes the proof of Lemma 1.3.

Our main theorem is

Theorem 1.4. Let g : Cn → R+ be a complex homogeneous function of
order n(α− 2), where 0 < α < 1/(n− 1), such that g ∈ C∞(Cn \ {0}). Then
there exists a solution u ∈ PSH(Cn)∩Hα

C (Cn)∩C∞(Cn\{0}) of the complex
Monge–Ampère equation (ddcu)n = gdλ on Cn. Moreover if g is only Cr+β
smooth for some r ≥ 1 and 0 < β < 1, then u is C2+r+β smooth.

To prove Theorem 1.4 we need some facts about existence of solutions of
the complex Monge–Ampère equation on Pn−1 (for more details see [A1]–
[A3], [BA], [T], [R]).

Let (M,h) be a compact complex Kähler manifold of dimension n. We
denote by ω its first fundamental form. Consider the equation (see [A1])

(1.5) (ddcϕ+ ω)n = e−tϕ+fωn and ddcϕ+ ω ≥ 0,
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where f is a given C∞ smooth function and t ∈ R. The following inequality
plays an important role in solving the above equation:

(1.6)
�

M

e−αϕωn ≤ C exp

(
−α

vol(M)

�

M

ϕωn

)
,

for any ϕ such that ddcϕ+ω ≥ 0, where C,α > 0. We also recall an invariant
α(M) for M :

α(M) = sup{α > 0 : there exists a constant C such that

(1.6) is satisfied for all ϕ with ddcϕ+ ω ≥ 0}.
The following theorems give partial answers to the question: for which t does
the equation (1.5) have a solution?

Theorem 1.5 [BA]. Let (M,h) be a compact complex Kähler manifold
of dimension n with the first Chern class positive. Then the equation (1.5)
has a solution for 0 ≤ t < n+1

n α(M).

Theorem 1.6 [R]. We have

α(Pn) =
1

n+ 1
.

In particular on Pn−1 the equation (1.5) has a solution for 0 ≤ t < 1/(n− 1).

The following theorem tells us about the regularity of the solution.

Theorem 1.7 [A1]. Let (M,h) be as in Theorem 1.5. Consider the fol-
lowing equation on M :

(1.7) (ddcϕ+ ω)n = eF (ϕ,·)ωn,

where F : R×M → R+. If F is C∞ smooth, then every solution of (1.7) is
C∞ smooth. Moreover , if F is only Cr+β smooth with r ≥ 1 and 0 < β < 1,
then every solution of (1.7) is C2+r+β smooth.

Now we can prove Theorem 1.4.

Proof of Theorem 1.4. Observe that the smoothness of g implies the
smoothness of the function G from Lemma 1.3. Thus Theorems 1.5 and 1.6
yield the existence of a solution of the equation (1.1), which implies the
existence of a solution of (1.2). For the regularity of the solution u, observe
that if g is C∞ (resp. Cr+β) smooth then G is also C∞ (resp. Cr+β) smooth
(recall that g > 0); then Theorem 1.7 shows that the solution v of the
equation (1.1) is C∞ (resp. C2+r+β) and by the definition so is u. This
completes the proof of Theorem 1.4.

The statement of Theorem 1.4 can be strengthened if we assume addi-
tional symmetries of the function g. Suppose that g : Cn → R+ satisfies the
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following conditions:

g(z1, . . . , zj , . . . , zn) = g(z1, . . . , e
i2π/pzj , . . . , zn)

for 1 ≤ j ≤ n and some p ∈ N,
(1.8)

g(z1, . . . , zj, . . . , zk, . . . , zn) = g(z1, . . . , zk, . . . , zj , . . . , zn)

for 1 ≤ j, k ≤ n.
Theorem 1.8. Let g : Cn → R+ be a complex homogeneous function

of order n(α − 2), where 0 < α < min(n/(n− 1), p/(n− 1)), satisfying
conditions (1.8) and such that g ∈ C∞(Cn\{0}). Then there exists a solution
u ∈ PSH ∩Hα

C (Cn) ∩ C∞(Cn \ {0}) of (ddcu)n = gdλ on Cn satisfying also
conditions (1.8). Moreover if g is only Cr+β smooth for some r ≥ 1 and
0 < β < 1, then u is C2+r+β smooth.

To prove Theorem 1.8 we recall another invariant for M . Suppose that
the manifold M has a nontrivial group of automorphisms. Then for any
compact subgroup G of Aut(M) we can define the following invariant:

αG(M) = sup{α > 0 : there exists a constant C such that (1.6) is

satisfied for all G-invariant ϕ with ddcϕ+ ω ≥ 0}.
For the invariant αG(M) we have theorems analogous to Theorems 1.5
and 1.6.

Theorem 1.9 [BA]. Let (M,h) be a compact complex Kähler manifold
of dimension n with the first Chern class positive and let G be a compact
subgroup of Aut(M). Then the equation

(ddcϕ+ ω)n = e−tϕ+fωn,

where ddcϕ+ω ≥ 0 and f is C∞ smooth and G-invariant , has a C∞ smooth,
G-invariant solution for 0 ≤ t < n+1

n αG(M).

For k, j ∈ {0, . . . , n} and θ ∈ [0, 2π] we define a class of automorphisms
on Pn:

γj,θ([Z0, . . . , Zj , . . . , Zn]) = [Z0, . . . , Zje
iθ, . . . , Zn],

σk,j([Z0, . . . , Zj , . . . , Zk, . . . , Zn]) = [Z0, . . . , Zk, . . . , Zj , . . . , Zn].

We denote by G the compact subgroup of Aut(Pn) generated by γj,θ, σj,k
for k, j ∈ {0, . . . , n} and θ ∈ [0, 2π], and by Gp the compact subgroup of
Aut(Pn) generated by γj,θ, σj,k for k, j ∈ {0, . . . , n} and θ = 2π/p.

Theorem 1.10 [R]. We have

αGp(Pn) ≥ min
(

1,
p

n+ 1

)
and αG(Pn) = 1,
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where Gp and G are as above. In particular on Pn−1 the equation

(ddcϕ+ ω)n = e−tϕ+fωn,

where ddcϕ+ω ≥ 0 and f is C∞ smooth and Gp-invariant , has a C∞ smooth,
Gp-invariant solution for 0 ≤ t < min(n/(n− 1), p/(n− 1)).

Now we can prove Theorem 1.8.

Proof of Theorem 1.8. First observe that from the assumptions on g, the
function g̃ ◦Π−1 is G-invariant, where g̃(z) = |z|−n(α−2)g(z) for z 6= 0. Now
the proof of Theorem 1.8 is analogous to that of Theorem 1.4.

From the above theorems we have the following corollary.

Corollary 1.11. Suppose that g : Cn → R+ is a complex homogeneous
function of order n(α − 2), where 0 < α < n/(n− 1), which satisfies the
following conditions:

(1.9)
g(z1, . . . , zj , . . . , zn) = g(z1, . . . , |zj |, . . . , zn) for 1 ≤ j ≤ n,

g(z1, . . . , zj , . . . , zk, . . . , zn) = g(z1, . . . , zk, . . . , zj , . . . , zn)
for 1 ≤ j, k ≤ n,

and such that g ∈ C∞(Cn \ {0}). Then there exists a solution u ∈ PSH ∩
Hα
C (Cn) ∩ C∞(Cn \ {0}) of (ddcu)n = gdλ on Cn satisfying also conditions

(1.9). Moreover if g is only Cr+β smooth for some r ≥ 1 and 0 < β < 1,
then u is C2+r+β smooth.

2. Existence of a solution for bounded data. The main purpose
of this section is to prove the existence of a solution of (ddcu)n = gdλ in
the class of homogeneous functions for bounded data, but with a stronger
restriction on the order of homogeneity.

Theorem 2.1. Let g : Cn → R+ be a complex homogeneous function of
order n(α−2), where 0 < α < 1/n, such that g ∈ L∞(∂B(0, 1)). Then there
exists a solution u ∈ PSH ∩ L∞loc ∩Hα

C (Cn) of Cn(ddcu)n = gdλ on Cn.

First we need to prove the existence of a solution of (ddcϕ + ω)n =
e−tϕ+fωn for bounded data f on a compact Kähler manifold. This is a
generalization of Tian’s theorem [T] for bounded data, but with a stronger
assumption on the parameter t.

Theorem 2.2. Let (M,h) be a compact complex Kähler manifold of di-
mension n with the first Chern class positive and let f ∈ L∞(M) be non-
negative with � M fωn = vol(M). Then the equation

(ddcϕ+ ω)n = fe−tϕωn

has a solution ϕ with ddcϕ+ ω ≥ 0 for 0 ≤ t < α(M).
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If f ∈ L∞(M) then there exists an approximating sequence {fj} such
that fj ∈ C∞(M), fj > 0, {fj} is uniformly bounded and fj → f in L1(M)
as j → ∞. Multiplying fj by constants which tend to 1 as j → ∞ we can
get �

M

fjω
n = vol(M).

Let φt,j denote a solution of

(2.1) (ddcφt,j + ω)n = fje
−tφt,jωn and ddcφt,j + ω > 0

for 0 ≤ t < α(M), provided by Theorem 1.5.
Now we show that for fixed t the sequence φt,j is uniformly bounded.

Lemma 2.3. For fixed 0 ≤ t < α(M) the sequence {φt,j} is uniformly
bounded.

To prove Lemma 2.3 we need some results from [K1] and [T].

Theorem 2.4 [T]. Let (M,ω) be a compact complex Kähler manifold of
dimension n with the first Chern class positive. Then for all 0 < t < α(M)
there exists a constant C, depending only on M , such that

(2.2)
�

M

e−tϕωn ≤ C

for any functions ϕ ∈ C2 with ddcϕ+ ω ≥ 0 and supM ϕ = 0.

We also need a theorem which gives us a lower bound for the infimum
of the solution φt,j .

Theorem 2.5 [K1]. Let Ω be a strictly pseudoconvex subset of Cn and
let u be a smooth solution of

(ddcu)n = fdλ

on Ω with ‖f‖Lp(Ω) ≤ A for some p > 1. Suppose that u < 0 and u(0) > C
(0 ∈ Ω). If the sets U(s) := {z : u(z) < s}∩Ω′′ are nonempty and relatively
compact in Ω′′ ⊂ Ω′ ⊂⊂ Ω for s ∈ [S, S + D] then infΩ u is bounded
from below by a constant depending on A, C , D , p, Ω′, Ω, but independent
of u,Ω′′.

Now we can prove Lemma 2.3.

Proof of Lemma 2.3. First we recall that the functions fj satisfy � M fjω
n

= vol(M) and note that by Stokes’ theorem,
�

M

fje
−tφt,jωn =

�

M

(ddcφt,j + ω)n = vol(M) =
�

M

fjω
n.

Hence

(2.3) sup
M

φt,j ≥ 0.
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We define ψt,j := φt,j−supM φt,j . Then the functions ψt,j satisfy the Monge–
Ampère equation

(ddcψt,j + ω)n = fje
−tψt,j−t supφt,jωn.

We also set Fj(x, z) = fj(z)e−tx. Fix 0 < t < α(M) and choose ε > 0
such that (1 + ε)t < α(M). Now we show that the sequence {Fj(ψt,j −
supφt,j , z)} is uniformly bounded in L1+ε(M), and from that we conclude
that ψt,j satisfies the assumptions of Theorem 2.5. Indeed, from (2.3) and
Theorem 2.4 we obtain�

M

(fje−tψt,j−t supφt,j )1+εωn ≤
�

M

(fje−tψt,j )1+εωn

≤ (sup fj)1+ε
�

M

e−(1+ε)tψt,jωn ≤ C1,

where C1 does not depend on j.
Now fix a covering of M by strictly pseudoconvex coordinate patches

V ′′ν , and another two coverings of M : V ′ν , Vν such that Vν ⊂ V ′ν ⊂⊂ V ′′ν .
Fix j and take z ∈ Vν such that ψt,j(z) = infM ψt,j . We may assume

that there is a smooth, bounded function v such that ddcv = ω in V ′′ν , v ≤ 0
and v(z) ≤ inf∂Vν v − c0 for some positive c0 > 0. Hence,

v(z) + ψt,j(z) ≤ inf
∂Vν

(v + ψt,j)− c0.

So if we take D = c0, S = v(z) + ψt,j(z) and u = ψt,j + v in Theorem 2.5
the set U(s) = {v+ψt,j − s < 0} is nonempty and relatively compact in Vν
for s ∈ [S, S+D]. Hence from Theorem 2.5 we have infM (v+ψt,j) ≥ const,
but v is bounded so infM ψt,j ≥ −C2 and C2 > 0 does not depend on j.
Then by the definition of ψt,j ,

(2.4) sup
M

φt,j − inf
M
φt,j ≤ C2.

To finish the proof note that

(2.5) lim
x→+∞

�

M

Fj(x, z)ωn <
�

M

ωn < lim
x→−∞

�

M

Fj(x, z)ωn.

Hence, by (2.4), (2.5) and the equality � M Fj(φt,j , z)ωn = � M ωn we conclude
that there is a constant C3 > 0 such that

sup
M

φt,j < C3 and inf
M
φt,j > −C3,

for j ≥ j0. This means that the sequence {φt,j} is uniformly bounded, which
completes the proof of Lemma 2.3.

Now we can prove Theorem 2.2. The proof is based on [K2].

Proof of Theorem 2.2. First we recall that by {fj} we have denoted an
approximating sequence such that fj ∈ C∞(M), fj > 0, � M fjω

n = vol(M),
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{fj} is uniformly bounded and fj → f in L1(M) as j → ∞. Furthermore,
φt,j denotes the solution of

(ddcφt,j + ω)n = fje
−tφt,jωn and ddcφt,j + ω ≥ 0.

By Lemma 2.3 we know that the sequence φt,j is uniformly bounded for any
0 ≤ t < α(M).

Fix 0 ≤ t < α(M). We may take a subsequence of φt,j (denoted also by
φt,j) such that φt,j → φ in L1(M) as j → ∞, where φ = (lim supj φt,j)

∗.
We show that φ is the desired solution.

First we prove that fje−tφt,j → fe−tφ in L1(M). Note that
∣∣∣

�

M

(fje−tφt,j − fe−tφ)ωn
∣∣∣ ≤

∣∣∣
�

M

fj(e−tφt,j − e−tφ)ωn
∣∣∣

+
∣∣∣

�

M

e−tφ(fj − f)ωn
∣∣∣ = I1 + I2.

Then

I1 ≤ sup fj
�

M

e−tφt,j |1− et(φt,j−φ)|ωn

≤ sup fje−tφt,j
�

M

t|φt,j − φ|et|φt,j−φ|ωn

≤ sup fje−tφt,j+t|φt,j−φ|
�

M

t|φt,j − φ|ωn → 0 as j →∞.

Similarly
I2 ≤ sup e−tφ

�

M

|fj − f |ωn → 0 as j →∞.

We have proved that fje−tφt,j → fe−tφ in L1(M), so we may choose a
subsequence (denoted also by φt,j) such that

(2.6) ‖fje−tφt,j − fe−tφ‖L1(M) ≤ 2−j−1.

Let us introduce some auxiliary functions:

νkl = max
k≤j≤l

φt,j , νk = ( lim
j→∞

↑ νkl)∗,

Rkl = min
k≤j≤l

fje
−tφt,j , Rk = lim

l→∞
↓ Rkl.

Since, locally, ω is representable by ddcv, where v is a plurisubharmonic
function, we can apply [BT1, Proposition 2.8] to get

(ω + ddcνkl)n ≥ Rklωn.
Hence by the convergence theorem [BT3],

(2.7) Rk ≤ lim
l→∞

(ω + ddcνkl)n = (ω + ddcνk)n.
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Note that φ = limk→∞ ↓ νk. We can apply the convergence theorem once
more to get

(2.8) (ω + ddcνk)n → (ω + ddcφ)n.

Now we show that Rk → fe−tφ in L1(M). To prove this we shall use (2.6)
and the simple fact that

fe−tφ−Rk = fe−tφ− fk+1e
−tφt,k+1 + (fk+1e

−tφt,k+1 − fk+2e
−tφt,k+2) + . . . ,

and then

‖fe−tφ −Rk‖L1 ≤ ‖fe−tφ − fk+1e
−tφt,k+1‖L1(2.9)

+ ‖fk+1e
−tφt,k+1 − fk+2e

−tφt,k+2‖L1 + . . .

≤ 2−k+2 + (2−k+2 + 2−k+3) + . . .

= 2−k.

So Rk → fe−tφ in L1(M). Combining (2.9) with (2.7) and (2.8) we obtain

fe−tφωn ≤ (ω + ddcφ)n.

Since the integrals over M of both currents in the above inequality are equal
to vol(M) we get

fe−tφωn = (ω + ddcφ)n.

This completes the proof of Theorem 2.2.

Proof of Theorem 2.1. Let g̃(z) = |z|−n(α−2)g(z). Then g̃ is a complex
homogeneous function of order 0 and also g̃ ∈ L∞. Let

gj(z) := |z|−2n
�
g̃(w)θ1/j

(
z − w
|z|

)
dλ(w)

be the regularization of g̃ defined in Proposition 1.2. Hence we know that gj
are complex homogeneous functions of order 0 and we can also assume that
gj > 0 by adding, if necessary, positive constants tending to zero. Moreover
{gj} is uniformly bounded and gj → g̃ in L1.

Define the following functions on Pn−1:

(2.10)
f(z) =

1
n!2n+1αn+1 g̃(Π−1(z)),

fj(z) =
1

n!2n+1αn+1 gj(Π
−1(z)).

Multiplying g and gj by constants which tend to 1, we can assume that
�

Pn−1

fωn−1 =
�

Pn−1

fjω
n−1 = vol(Pn−1).

Moreover f ∈ L∞(Pn−1), {fj} is uniformly bounded and fj→f in L1(Pn−1).
So we can apply Theorems 1.4 and 2.2 to get a function ϕ on Pn−1 such
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that ddcϕ + ω ≥ 0 and (ddcϕ + ω)n−1 = fe−tϕωn−1. Then we know from
the proof of Lemma 1.3 that the function

u(z) = |z|αe(α/n)ϕ(Π(z))

is plurisubharmonic and (ddcu)n = gdλ. This completes the proof.

As a direct consequence of Theorem 2.1 we obtain the following corol-
laries.

Corollary 2.6. Let p ∈ N and let g : Cn → R+ be a complex homo-
geneous function of order n(α − 2), where 0 < α < min(1, p/n), satisfying
conditions (1.8) and such that g ∈ L∞(∂B(0, 1)). Then there exists a solu-
tion u ∈ PSH ∩Hα

C (Cn) ∩ L∞loc(Cn) of (ddcu)n = gdλ on Cn satisfying also
conditions (1.8).

Proof. It is enough to note that, if g satisfies conditions (1.8), then the
functions (2.10) are Gp-invariant. Then the Corollary follows from the proof
of Theorems 2.2 and the proofs of Theorems 2.1 and 1.10.

Corollary 2.7. Let p ∈ N and let g : Cn → R+ be a complex homo-
geneous function of order n(α − 2), where 0 < α < 1, satisfying condi-
tions (1.9) and such that g ∈ L∞(∂B(0, 1)). Then there exists a solution
u ∈ PSH ∩ Hα

C (Cn) ∩ L∞loc(Cn) of (ddcu)n = gdλ on Cn satisfying also
conditions (1.9).
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