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On distance between zeros of solutions of
third order differential equations

by N. Parhi and S. Panigrahi (Berhampur)

Abstract. The lower bounds of the spacings b− a or a′ − a of two consecutive zeros
or three consecutive zeros of solutions of third order differential equations of the form

(∗) y′′′ + q(t)y′ + p(t)y = 0

are derived under very general assumptions on p and q. These results are then used to
show that tn+1 − tn →∞ or tn+2 − tn →∞ as n→∞ under suitable assumptions on p
and q, where 〈tn〉 is a sequence of zeros of an oscillatory solution of (∗). The Opial-type
inequalities are used to derive lower bounds of the spacings d − a or b − d for a solution
y(t) of (∗) with y(a) = 0 = y′(a), y′(c) = 0 and y′′(d) = 0 where d ∈ (a, c) or y′(c) = 0,
y(b) = 0 = y′(b) and y′′(d) = 0 where d ∈ (c, b).

1. It is well known (see [9]) that if y(t) is a solution of

(1) y′′ + p(t)y = 0

with y(a) = 0 = y(b) (a < b) and y(t) 6= 0 for t ∈ (a, b), then

(2) (b− a)
b�

a

|p(t)| dt > 4.

In [8], Hartman obtained an inequality which is more general than (2). The
inequality (2) is used to study the disconjugacy of (1) on an interval. It was
generalized to second order nonlinear differential equations by Eliason [4], to
delay-differential equations of second order by Eliason [5, 6] and Dahiya and
Singh [2] and to higher order differential equations by Pachpatte [11]. How-
ever, the results in [11] are not applicable to odd order differential equations.
In a recent work [13], the authors have obtained Lyapunov-type inequality
for third order differential equations of the form

(3) y′′′ + p(t)y = 0.
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This inequality is used to study many interesting properties of the zeros of
an oscillatory solution of (3) (see Theorems 5 and 6 in [13]). In particular,
the following result is obtained :

Theorem A. Let p ∈ Lσ([0,∞),R), where 1 < σ < ∞. If 〈tn〉 is
an increasing sequence of zeros of an oscillatory solution y(t) of (3), then
tn+1 − tn →∞ or tn+2 − tn →∞ as n→∞.

A result similar to Theorem A concerning (1) was obtained by Patula
[14]. In [16], Yan extended the result of Patula to hold for 0 < σ < ∞. He
obtained the following result:

Theorem B. Let 0 < σ <∞. Suppose that p(t) is a real-valued function
on [0,∞) with |p(t)|σ locally integrable and , for a constant δ0 > 0,

lim
t→∞

t+δ0�

t

|p(s)|σ ds = 0.

If y(t) is any oscillatory solution of (1), then the distance between consec-
utive zeros of y(t) must become infinite.

In a recent paper [1], Brown and Hinton used Opial’s inequality to obtain
lower bounds for the spacing of zeros of a solution of (1) and to obtain
lower bounds for the spacing β − α where y(t) is a solution of (1) satisfying
y(α) = y′(β) = 0 or y′(α) = y(β) = 0 (α < β).

The purpose of this work is (i) to extend the results in [13] to third order
differential equations of the form

(4) y′′′ + q(t)y′ + p(t)y = 0,

where p and q are real-valued functions on [0,∞) such that q is once differ-
entiable and each of p(t) and q′(t) is locally integrable, (ii) to obtain a result
similar to Theorem A under weaker assumption on p and for 0 < σ <∞ and
(iii) to obtain lower bounds for the spacing d−a with the help of Opial-type
inequalities, where y(t) is a solution of (4) with y(a) = y′(a) = 0, y′(c) = 0
and y′′(d) = 0 (a < d < c). We consider the problems (i) and (ii) in Section 2
and the problem (iii) in Section 3.

2. We need the following lemma (see [16]).

Lemma 1. Let f be a locally integrable nonnegative function on [0,∞).
If

lim
t→∞

t+δ0�

t

f(s) ds = 0
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for some δ0 > 0, then

lim
t→∞

t+δ�

t

f(s) ds = 0

for every δ > 0.

Let y(t) be a solution of (4) with y(a) = y(b) = 0 (0 ≤ a < b) and
y(t) 6= 0 for t ∈ (a, b). We consider the following two cases:

Case I: y′′(d) = 0 for some d ∈ [a, b].

Case II: y′′(t) 6= 0 for t ∈ [a, b]. In this case we consider three consec-
utive zeros of y(t), viz., y(a) = 0, y(b) = 0, y(a′) = 0 (0 ≤ a < b < a′),
y(t) 6= 0 for t ∈ (a, b) and y(t) 6= 0 for t ∈ (b, a′).

Theorem 2. Consider Case I. Then

(5) (b− a)
[ b�

a

|q(t)| dt+ (b− a)|q(d)|+ (b− a)
b�

a

|q′(t)− p(t)| dt
]
≥ 4.

Proof. Let M = max{|y(t)| : t ∈ [a, b]} = |y(c)|, where c ∈ (a, b). Hence

M = |y(c)| =
∣∣∣
c�

a

y′(t) dt
∣∣∣ ≤

c�

a

|y′(t)| dt

and

M = |y(c)| =
∣∣∣
b�

c

y′(t) dt
∣∣∣ ≤

b�

c

|y′(t)| dt.

Thus

2M ≤
b�

a

|y′(t)| dt.

Applying the Cauchy–Schwarz inequality first and then integrating by parts,
we obtain

4M2 ≤
[ b�

a

|y′(t)| dt
]2
≤ (b− a)

b�

a

(y′(t))2 dt

= −(b− a)
b�

a

y(t)y′′(t) dt ≤ (b− a)
b�

a

|y(t)| · |y′′(t)| dt.

Integrating (4) from d to t (a ≤ d < t or t < d ≤ b) we get

y′′(t) = −
t�

d

q(s)y′(s) ds−
t�

d

p(s)y(s) ds

= −q(t)y(t) + q(d)y(d) +
t�

d

(q′(s)− p(s))y(s) ds,
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that is,

|y′′(t)| ≤M
[
|q(t)|+ |q(d)|+

∣∣∣
t�

d

|q′(s)− p(s)| ds
∣∣∣
]

≤M
[
|q(t)|+ |q(d)|+

b�

a

|q′(t)− p(t)| dt
]
.

Hence

4M2 ≤ (b− a)M2
[ b�

a

|q(t)| dt+ (b− a)|q(d)|+ (b− a)
b�

a

|q′(t)− p(t)| dt
]
,

that is,

4 ≤ (b− a)
[ b�

a

|q(t)| dt+ (b− a)|q(d)|+ (b− a)
b�

a

|q′(t)− p(t)| dt
]
.

Thus the theorem is proved.

Theorem 3. Consider Case II. Then

(6) (a′ − a)
[ a′�

a

|q(t)| dt+ (a′ − a)|q(d)|+ (a′ − a)
a′�

a

|q′(t)− p(t)| dt
]
≥ 4.

Proof. There exist c1 ∈ (a, b) and c2 ∈ (b, a′) such that y′(c1) = 0 and
y′(c2) = 0. Hence there exists a d ∈ (c1, c2) such that y′′(d) = 0. Setting
M = max{|y(t)| : t ∈ [a, a′]} = |y(c)|, where c ∈ (a, b) ∪ (b, a′), we get

M = |y(c)| =
∣∣∣
c�

a

y′(t) dt
∣∣∣ ≤

c�

a

|y′(t)| dt

and

M = |y(c)| =
∣∣∣
a′�

c

y′(t) dt
∣∣∣ ≤

a′�

c

|y′(t)| dt.

Hence 2M ≤ � a′
a
|y′(t)| dt. Then proceeding as in the proof of Theorem 2 we

obtain the required inequality. Thus the proof of the theorem is complete.

Remark. In Case II, d ∈ (b, a′] such that y′′(d) = 0. By Theorem 2,

(7) (a′ − b)
[ a′�

b

|q(t)| dt+ (a′ − b)|q(d)|+ (a′ − b)
a′�

b

|q′(t)− p(t)| dt
]
≥ 4.

However, one cannot get the lower bound of the spacing b − a from (6)
and (7).
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Remark. If q(t) ≡ 0, t ∈ [0,∞), then (5) and (6) reduce, respectively,
to

(8) (b− a)2
b�

a

|p(t)| dt ≥ 4

and

(9) (a′ − a)2
a′�

a

|p(t)| dt ≥ 4.

These inequalities were obtained in [13].

Remark. If y(t) is a solution of (4) with y(a) = 0 = y′(a), y(b) = 0 and
y(t) 6= 0 for t ∈ (a, b), then there exists a d ∈ (a, b) such that y′′(d) = 0
and hence (5) holds. Similarly, if y(t) is a solution of (4) with y(a) = 0,
y(b) = 0 = y′(b) and y(t) 6= 0 for t ∈ (a, b), then there exists a d ∈ (a, b)
such that y′′(d) = 0 and hence (5) holds.

Remark. In many cases it is not easy to find d explicitly in (a, b) such
that y′′(d) = 0. Hence the following corollaries will be useful.

Corollary 4. Consider Case I. If q(t) ≥ 0 and q′(t) ≤ 0, t ∈ [0,∞),
then

(10) (b− a)2
[
2q(a) +

b�

a

|q′(t)− p(t)| dt
]
≥ 4.

This follows from the inequality (5) of Theorem 2.

Corollary 5. Consider Case II. If q(t) ≥ 0 and q′(t) ≤ 0, t ∈ [0,∞),
then

(11) (a′ − a)2
[
2q(a) +

a′�

a

|q′(t)− p(t)| dt
]
≥ 4.

This follows from the inequality (6) of Theorem 3.

Theorem 6. Let q(t) ≥ 0, q′(t) ≤ 0 for t ∈ [0,∞) and q(t) → 0 as
t→∞. Suppose that

lim sup
t→∞

[
δ2

t+δ�

t

|q′(s)− p(s)| ds
]
< 4

for every δ > 0. If 〈tn〉 is an increasing sequence of zeros of an oscillatory
solution y(t) of (4), then tn+1 − tn →∞ or tn+2 − tn →∞ as n→∞.

Proof. Suppose that y′′(dn) = 0 for some dn ∈ [tn, tn+1] for all large n.
We claim that, in this case, tn+1 − tn → ∞ as n → ∞. Otherwise, there
exists a subsequence 〈tnk〉 of 〈tn〉 such that tnk → ∞ as k → ∞ and 0 <
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tnk+1 − tnk ≤ L for every k, where L > 0 is a constant. From Corollary 4,
we obtain

(tnk+1 − tnk)2
[
2q(tnk) +

tnk+1�

tnk

|q′(t)− p(t)| dt
]
≥ 4,

that is,

L2

tnk+L�

tnk

|q′(t)− p(t)| dt ≥ 4− 2L2q(tnk).

Hence

L2 lim sup
k→∞

tnk+L�

tnk

|q′(t)− p(t)| dt ≥ 4,

a contradiction to the given hypothesis.
Next suppose that for every integer N > 0 there exists an integer n ≥

N such that y′′(t) 6= 0 for t ∈ [tn, tn+1]. In this case, we consider three
consecutive zeros tn < tn+1 < tn+2 and show that tn+2 − tn → ∞ as
n → ∞. On the contrary, assume that there exists a subsequence 〈tnk〉 of
〈tn〉 such that tnk → ∞ as k → ∞ and 0 < tnk+2 − tnk ≤ λ for every k,
where λ > 0 is a constant. From Corollary 5 we obtain

(tnk+2 − tnk)2
[
2q(tnk) +

tnk+2�

tnk

|q′(t)− p(t)| dt
]
≥ 4.

Hence

λ2 lim sup
k→∞

tnk+λ�

tnk

|q′(t)− p(t)| dt ≥ 4,

a contradiction. Thus the proof of the theorem is complete.

Theorem 7. Suppose that q(t) ≥ 0, q′(t) ≤ 0 for t ∈ [0,∞) and q(t)→ 0
as t→∞. Let

lim
t→∞

t+δ0�

t

|q′(s)− p(s)| ds = 0

for some δ0 > 0. If 〈tn〉 is an increasing sequence of zeros of an oscillatory
solution y(t) of (4), then tn+1 − tn →∞ or tn+2 − tn →∞ as n→∞.

This follows from Lemma 1 and Theorem 6.

Theorem 8. Let 0 < σ < ∞. Let q(t) ≥ 0, q′(t) ≤ 0 for t ∈ [0,∞) and
q(t)→ 0 as t→∞. Suppose that |q′(t)−p(t)|σ is locally integrable on [0,∞)
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and

(12) lim
t→∞

t+δ0�

t

|q′(s)− p(s)|σ ds = 0

for some δ0 > 0. If 〈tn〉 is an increasing sequence of zeros of an oscillatory
solution y(t) of (4), then tn+1 − tn →∞ or tn+2 − tn →∞ as n→∞.

Proof. The proof is divided into two parts: (i) σ > 1 and (ii) 0 < σ ≤ 1.

(i) Let σ > 1. From Lemma 1 it follows that

(13) lim
t→∞

t+δ�

t

|q′(s)− p(s)|σ ds = 0

for every δ > 0. Suppose that y′′(dn) = 0 for some dn ∈ [tn, tn+1] for every
large n. If possible, suppose there exists a subsequence 〈tnk〉 of 〈tn〉 such
that tnk →∞ as k →∞ and 0 < tnk+1 − tnk ≤ λ for every k, where λ > 0
is a constant. From Corollary 4 we obtain

(tnk+1 − tnk)2
[
2q(tnk) +

tnk+1�

tnk

|q′(t)− p(t)| dt
]
≥ 4.

Hence, by Hölder’s inequality,

4− 2λ2q(tnk) ≤ λ2

tnk+1�

tnk

|q′(t)− p(t)| dt

≤ λ2(tnk+1 − tnk)1/µ
[ tnk+1�

tnk

|q′(t)− p(t)|σ dt
]1/σ

≤ λ2+1/µ
[ tnk+λ�

tnk

|q′(t)− p(t)|σ dt
]1/σ

,

where 1/σ + 1/µ = 1. Letting k → ∞ and using (13) we obtain a contra-
diction. Next suppose that for every integer N > 0 there exists an integer
n ≥ N such that y′′(t) 6= 0 for t ∈ [tn, tn+1]. Considering three consecutive
zeros tn < tn+1 < tn+2, we notice that y′′(t) = 0 for some t ∈ (tn+1, tn+2].
We claim that tn+2 − tn → ∞ as n → ∞. Otherwise, there exists a subse-
quence 〈tnk〉 of 〈tn〉 such that tnk →∞ as k →∞ and 0 < tnk+2 − tnk ≤ λ
for every k, where λ > 0 is a constant. From Corollary 5 we have

(tnk+2 − tnk)2
[
2q(tnk) +

tnk+2�

tnk

|q′(t)− p(t)| dt
]
≥ 4.
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Then proceeding as above and using (13) we arrive at a contradiction. Thus
tn+1 − tn →∞ or tn+2 − tn →∞ as n→∞.

(ii) Let 0 < σ ≤ 1. Setting, for t ≥ 0,

E1(t) = {s ∈ (t, t+ δ0) : |q′(s)− p(s)| ≤ 1},
E2(t) = {s ∈ (t, t+ δ0) : |q′(s)− p(s)| > 1},

we observe that E1(t) and E2(t) are Lebesgue measurable sets (see [15]) for
each t ≥ 0. Since E1(t) ∩ E2(t) = ∅, we have

t+δ0�

t

|q′(s)− p(s)|σ ds =
( �

E1(t)

+
�

E2(t)

)
|q′(s)− p(s)|σ ds.

Clearly,

mE2(t) ≤
�

E2(t)

|q′(s)− p(s)|σ ds ≤
t+δ0�

t

|q′(s)− p(s)|σ ds

where mE denotes the Lebesgue measure of a measurable set E. Hence
mE2(t) → 0 as t → ∞ by (12). Since |q′(t)− p(t)| is locally integrable, for
every ε > 0, there exists a T1 > 0 such that

�

E2(t)

|q′(s)− p(s)| ds < ε/2

for t ≥ T1. Further,

�

E1(t)

|q′(s)− p(s)| ds ≤
�

E1(t)

|q′(s)− p(s)|σ ds ≤
t+δ0�

t

|q′(s)− p(s)|σ ds

implies, in view of (12), that
�

E1(t)

|q′(s)− p(s)| ds < ε/2

for t ≥ T2, where T2 > 0 is very large. Choosing T = max{T1, T2}, we obtain
t+δ0�

t

|q′(s)− p(s)| ds =
( �

E1(t)

+
�

E2(t)

)
|q′(s)− p(s)| ds < ε/2 + ε/2 = ε

for t ≥ T , that is,

lim
t→∞

t+δ0�

t

|q′(s)− p(s)| ds = 0

for some δ0 > 0. Now Theorem 7 shows that tn+1−tn →∞ or tn+2−tn →∞
as n→∞.

Thus the theorem is proved.
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Remark. If σ > 1, then the local integrability of |f(t)|σ implies the
local integrability of |f(t)|. On the other hand, for 0 < σ < 1, |f(t)|σ is
locally integrable if |f(t)| is locally integrable. These statements can be
proved using Hölder’s inequality.

Remark. Let 0 < σ <∞. If f ∈ Lσ([0,∞),R), then

lim
t→∞

t+δ�

t

|f(s)|σ ds = 0

for every δ > 0. However, the converse is not necessarily true. Let f(t) =
(log t)−1, t ≥ 2. Then (log t)2σ < t for large t. Hence, for large T0,

∞�

T0

dt

(log t)σ
>

∞�

T0

dt

t1/2
=∞

implies that f 6∈ Lσ([2,∞),R). But, for every δ > 0,

lim
t→∞

t+δ�

t

|f(s)|σ ds = 0.

Remark. In view of the above remark, Theorem 8 is more general than
Theorem A. Also the following example confirms this.

Example 1. Consider

(14) y′′′ + (log t)−1y = 0, t ≥ 2.

Theorem A cannot be applied to (14) since (log t)−1 6∈ Lσ([2,∞),R) for
σ > 1. On the other hand,

lim
t→∞

t+δ�

t

(log s)−σ ds = 0

for every δ > 0 implies, by Theorem 8, that tn+1−tn →∞ or tn+2−tn →∞
as n → ∞, where 〈tn〉 is an increasing sequence of zeros of an oscillatory
solution of (14). Since

∞�

2

(log t)−1 dt >

σ�

2

t−1 dt =∞,

from [12] (see Theorem 8) it follows that (14) admits an oscillatory solution.

Example 2. A basis of the solution space of the equation

(15) y′′′ + t−2y′ + 7t−3y = 0, t ≥ 1,

is given by
{t−1, t2 cos(

√
3 log t), t2 sin(

√
3 log t)}.
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The zeros of the oscillatory solution u(t) = t2 cos(
√

3 log t) of (15) are of the
form

tn = exp
(

(2n− 1)π

2
√

3

)
, n = 1, 2, . . .

Clearly, q(t) = 1/t2 > 0, q′(t) = −2/t3 < 0, limt→∞ q(t) = 0 and

|q′(t)− p(t)|σ = 9σt−3σ

is locally integrable on [1,∞) for 0 < σ <∞. Further, for every δ > 0,
t+δ�

t

|q′(s)− p(s)|σ ds < 9σδt−3σ

implies that

lim
t→∞

t+δ�

t

|q′(s)− p(s)|σ ds = 0.

Since u′′(t) = −3
√

3 sin(
√

3 log t)− cos(
√

3 log t), we have

u′′(tn) = −3
√

3 sin (n− 1/2)π − cos (n− 1/2)π,

u′′(tn+1) = −3
√

3 sin (n+ 1/2)π − cos (n+ 1/2)π.

Hence u′′(tn)u′′(tn+1) < 0 for n = 1, 2, . . . , because u′′(tn) > 0 or < 0
according as n is even or odd. Then there exists a dn ∈ (tn, tn+1) such that
u′′(dn) = 0. From Theorem 8 it follows that tn+1 − tn → ∞ as n → ∞.
Indeed,

tn+1 − tn = (eπ/
√

3 − 1) exp
(

(2n− 1)π

2
√

3

)
→∞ as n→∞.

As we are in Case I, (10) yields

(t2 − t1)2
[
2q(t1) +

t2�

t1

|q′(t)− p(t)| dt
]
≥ 4.

Indeed,

(t2 − t1)2
[
2q(t1) +

t2�

t1

|q′(t)− p(t)| dt
]

= eπ/
√

3(eπ/
√

3 − 1)2
[
2e−π/

√
3 +

9
2

(e−π/
√

3 − e−
√

3π)
]

= 3547.4982[5.4695653− 5.4608985]

= 30.745457 > 4.

Thus, this example illustrates Corollary 4 and Theorem 8.
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Remark. In Example 2, it is not easy to determine dn explicitly. Hence
it is not possible to verify (5). We can do this in the following example.

Example 3. Consider

(16) y′′′ − (sin t)y′ + (cos t)y = 0, t ≥ 0.

Clearly, y(t) = 1 + sin t is an oscillatory solution of the equation with
y(3π/2) = 0, y(7π/2) = 0, y(t) > 0 for t ∈ (3π/2, 7π/2), y′(3π/2) = 0,
y′(5π/2) = 0, y′(7π/2) = 0, y′′(2π) = 0 and y′′(3π) = 0. Here q(t) = − sin t
and p(t) = cos t. Since |q(2π)| = 0 = |q(3π)|, we may take d = 2π or 3π. Let
d = 2π. Then

b�

a

|q(t)| dt =
7π/2�

3π/2

|sin t| dt

=
2π�

3π/2

(− sin t) dt+
3π�

2π

sin t dt+
7π/2�

3π

(− sin t) dt = 4

and
b�

a

|q′(t)− p(t)| dt = 2
7π/2�

3π/2

|cos t| dt = 2
5π/2�

3π/2

cos t dt− 2
7π/2�

5π/2

cos t dt = 8.

Hence

(b− a)
[ b�

a

|q(t)| dt+ (b− a)|q(d)|+ (b− a)
b�

a

|q′(t)− p(t)| dt
]

= 2π[4 + 16π] = 8π + 32π2 > 4.

Remark. Example 3 indicates that the inequalities (5) and (6) could
be improved substantially.

3. The following two Opial-type inequalities (see [1]) are needed for our
work in this section:

Theorem 9. If f is absolutely continuous on [a, b] with f(a) = 0 and
g ∈ L2([a, b],R), then

(17)
b�

a

g(t)|f(t)| · |f ′(t)| dt ≤ k
b�

a

|f ′(t)|2 dt,

where

(18) k =
1√
2

( b�

a

g2(t)(t− a) dt
)1/2

,

with equality if and only if f ≡ 0 or f is linear and g is constant.
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If f(a) = 0 in Theorem 9 is replaced by f(b) = 0, then (17) holds with
k given by

(19) k =
1√
2

( b�

a

g2(t)(b− t) dt
)1/2

.

Theorem 10. If f is absolutely continuous on [a, b] with f(a) = 0 or
f(b) = 0 and 1 ≤ σ ≤ 2, then

(20)
b�

a

|f(t)|σ|f ′(t)|σ dt ≤ T (σ)(b− a)
b�

a

|f ′(t)|2 dt

where

(21) T (σ) =





1/2, σ = 1,

4/π2, σ = 2,

2− σ
2σ

(
1
σ

)2σ−2

I−σ, 1 < σ < 2,

with

I =
1�

0

[
1 +

2(σ − 1)
2− σ t

]−2

[1 + (σ − 1)t](1/σ)−1 dt.

For σ = 1, equality holds in (20) only for f linear.

We consider

(4′) y′′′ + q(t)y′ + p(t)y = 0,

where p, q ∈ C([a, b],R) and 0 ≤ a < b.

Theorem 11. Suppose that y(t) is a solution of (4′) with y(a) = 0,
y′(a) = 0, y′(c) = 0 (a < c < b) and y(t) has no extreme value in (a, c).
Then

(22) 8(d− a)2
d�

a

[
P (t) +

1
2
q(t)

]2

(t− a) dt ≥ 1,

where y′′(d) = 0, a < d < c, and P (t) = � d
t
p(s) ds.

If y′(c) = 0, y(b) = 0 = y′(b) and y(t) has no extreme value in (c, b),
then

(23) 8(b− d′)2
b�

d′

[
P (t) +

1
2
q(t)

]2

(b− t) dt ≥ 1,

where y′′(d′) = 0, c < d′ < b, and P (t) = � t
d′ p(s) ds.
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Proof. Consider the case y(a) = 0 = y′(a) and y′(c) = 0. Integrating

y(t)y′′′(t) + q(t)y(t)y′(t) + p(t)y2(t) = 0

from a to d we obtain
d�

a

y′(t)y′′(t) dt =
d�

a

q(t)y(t)y′(t) dt+
d�

a

p(t)y2(t) dt.

Hence
1
2

(y′(d))2 =
d�

a

q(t)y(t)y′(t) dt−
d�

a

P ′(t)y2(t) dt

=
d�

a

q(t)y(t)y′(t) dt+ 2
d�

a

P (t)y(t)y′(t) dt.

Thus, by Theorem 9,

1
4

(y′(d))2 =
d�

a

[
P (t) +

1
2
q(t)

]
y(t)y′(t) dt

≤
d�

a

∣∣∣∣P (t) +
1
2
q(t)

∣∣∣∣ · |y(t)| · |y′(t)| dt

≤ 1√
2

[ d�

a

(
P (t) +

1
2
q(t)

)2

(t− a) dt
]1/2 d�

a

(y′(t))2 dt

≤ (y′(d))2(d− a)√
2

[ d�

a

(
P (t) +

1
2
q(t)

)2

(t− a) dt
]1/2

.

Dividing by (y′(d))2 and then squaring yields the required inequality. Pro-
ceeding as above we can get the other inequality when y′(c) = 0 and
y(b) = 0 = y′(b). This completes the proof of the theorem.

Remark. If q(t) ≡ 0, then (22) and (23) take, respectively, the forms

2(d− a)2 max
a≤t≤d

∣∣∣
d�

t

p(s) ds
∣∣∣ ≥ 1

and

2(b− d′)2 max
d′≤t≤b

∣∣∣
t�

d′

p(s) ds
∣∣∣ ≥ 1.

Remark. The inequalities (22) and (23) fail to provide us the lower
bound of the spacing c−a or b−c. In the following we derive some inequalities
for this purpose.
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Theorem 12. Let q be once continuously differentiable. If y(t) is a so-
lution of (4′) with y(a) = 0, y′(a) = 0, y′(c) = 0 (a < c < b) and y(t) has
no extreme value in (a, c), then

(c− a)
[ c�

a

|q(t)| dt+ |q(d)|(c− a) + (c− a)
c�

a

|q′(t)− p(t)| dt
]
≥ 1,

where y′′(d) = 0, a < d < c. If y′(c) = 0, y(b) = 0, y′(b) = 0 and y(t) has
no extreme value in (c, b), then

(b− c)
[ b�

c

q(t) dt+ q(d′)(b− c) + (b− c)
b�

c

|q′(t)− p(t)| dt
]
≥ 1,

where y′′(d′) = 0, c < d′ < b.

Proof. There exists d ∈ (a, c) such that y′′(d) = 0. Setting

M = max{|y(t)| : t ∈ [a, c]} = |y(c)|,
we may write

M = |y(c)| =
∣∣∣
c�

a

y′(t) dt
∣∣∣ ≤

c�

a

|y′(t)| dt.

Hence using the Cauchy–Schwarz inequality first and then integrating by
parts we get

M2 ≤
[ c�

a

|y′(t)| dt
]2
≤ (c− a)

c�

a

(y′(t))2 dt

= −(c− a)
c�

a

y(t)y′′(t) dt ≤ (c− a)
c�

a

|y(t)| · |y′′(t)| dt.

Proceeding as in the proof of Theorem 2 we obtain

|y′′(t)| ≤M
[
|q(t)|+ |q(d)|+

c�

a

|q′(t)− p(t)| dt
]
.

Hence

1 ≤ (c− a)
[ c�

a

|q(t)| dt+ (c− a)|q(d)|+ (c− a)
c�

a

|q′(t)− p(t)| dt
]
.

Similarly, setting M ′ = max{|y(t)| : t ∈ [c, b]} = |y(c)| and observing that
there exists a d′ ∈ (c, b) such that y′′(d′) = 0, we obtain the other inequality.
Thus the theorem is proved.

Remark. It is not always easy to locate the point d or d′ where y′′

vanishes.
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Theorem 13. Let y(t) be a solution of (4′) with y(a) = 0, y′(a) = 0,
y′(c) = 0 (a < c < b) and let y(t) have no extreme value in (a, c). Then

4T 1/σ(σ)(d− a)(σ+1)/σ
[ d�

a

∣∣∣∣P (t) +
1
2
q(t)

∣∣∣∣
σ′

dt

]1/σ′

≥ 1,

where 1 ≤ σ ≤ 2, 1/σ + 1/σ′ = 1, T (σ) is given by (21) and y′′(d) = 0
(a < d < c). If σ = 1, then

[ d�

a

∣∣∣∣P (t) +
1
2
q(t)

∣∣∣∣
σ′

dt

]1/σ′

= max
{∣∣∣∣P (t) +

1
2
q(t)

∣∣∣∣ : a ≤ t ≤ d
}
.

If y(t) is a solution of (4′) with y′(c) = 0, y(b) = 0, y′(b) = 0 (a < c < b)
and y(t) has no extreme value in (c, b), then

4T 1/σ(σ)(b− d′)(σ+1)/σ
[ b�

d′

∣∣∣∣P (t) +
1
2
q(t)

∣∣∣∣
σ′

dt

]1/σ′

≥ 1,

where y′′(d′) = 0 (c < d′ < b). If σ = 1, then
[ b�

d′

∣∣∣∣P (t) +
1
2
q(t)

∣∣∣∣
σ′

dt

]1/σ′

= max
{∣∣∣∣P (t) +

1
2
q(t)

∣∣∣∣ : d′ ≤ t ≤ b
}
.

Proof. Consider the case y(a) = 0, y′(a) = 0 and y′(c) = 0. Proceeding
as in the proof of Theorem 11 and using Hölder’s inequality and Theorem 10,
we obtain

1
4

(y′(d))2 ≤
d�

a

∣∣∣∣P (t) +
1
2
q(t)

∣∣∣∣ · |y(t)| · |y′(t)| dt

≤
[ d�

a

∣∣∣∣P (t) +
1
2
q(t)

∣∣∣∣
σ′

dt

]1/σ′[ d�

a

(|y(t)| · |y′(t)|)σ dt
]1/σ

≤ T 1/σ(σ)(d− a)1/σ
[ d�

a

∣∣∣∣P (t) +
1
2
q(t)

∣∣∣∣
σ′

dt

]1/σ′[ d�

a

(y′(t))2 dt
]

≤ T 1/σ(σ)(d− a)(σ+1)/σ(y′(d))2
[ d�

a

∣∣∣∣P (t) +
1
2
q(t)

∣∣∣∣
σ′

dt

]1/σ′

.

Cancelling (y′(d))2 yields the required inequality. Similarly, the other in-
equality is obtained by considering y′(c) = 0, y(b) = 0 = y′(b). In this case,
there exists a d′ ∈ (c, b) such that y′′(d′) = 0. Thus the theorem is proved.

Example 4. Consider (16) with its solution y(t) = 1 + sin t, t ≥ 0.
We have y(3π/2) = 0, y′(3π/2) = 0, y′(5π/2) = 0 and y′′(2π) = 0. Thus
a = 3π/2, c = 5π/2 and d = 2π. Clearly, y(t) has no extreme value in
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(3π/2, 5π/2). Since

P (t) =
d�

t

p(θ) dθ =
2π�

t

cos θ dθ = − sin t,

we have
d�

a

[
P (t) +

1
2
q(t)

]2

(t− a) dt =
9
4

2π�

3π/2

(
t− 3π

2

)
sin2 t dt

=
9
8

2π�

3π/2

t(1− cos t) dt− 27π
16

2π�

3π/2

(1− cos t) dt

=
9
8

(
7π2

8
− 1

2

)
− 27π2

32
=

9
16

[
π2

4
− 1
]

and hence

8(d− a)2
d�

a

[
P (t) +

1
2
q(t)

]2

(t− a) dt =
9π2

8

[
π2

4
− 1
]
> 1.

Similarly, the inequality (23) may be verified taking c = 5π/2, d′ = 3π and
b = 7π/2.

4. Discussion. (i) If y(t) is a solution of

y′′′ + q(t)y′ + p(t)y = f(t),

where p and q are as in (4) and f is a real-valued locally integrable function
on [0,∞), with y(a) = 0 = y(b) (0 ≤ a < b) and y(t) 6= 0 for t ∈ (a, b), then
proceeding as in the proof of Theorem 2 we may obtain

(b− a)
[ b�

a

|q(t)| dt+ (b− a)|q(d)|+ (b− a)
b�

a

|q′(t)− p(t)| dt

+
b− a
M

b�

a

|f(t)| dt
]
≥ 4

provided that there exists a d ∈ [a, b] such that y′′(d) = 0, where M =
max{|y(t)| : t ∈ [a, b]}. If y′′(t) 6= 0 for t ∈ [a, b], then we consider three
consecutive zeros a, b and a′ (0 ≤ a < b < a′) of y(t) to obtain

(a′ − a)
[ a′�

a

|q(t)| dt+ (a′ − a)|q(d)|+ (a′ − a)
a′�

a

|q′(t)− p(t)| dt

+
a′ − a
M ′

a′�

a

|f(t)| dt
]
≥ 4,
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where M ′ = max{|y(t)| : t ∈ [a, a′]} and d ∈ [b, a′] is such that y′′(d) = 0.
If 0 ≤ a′ ≤ a < b, then the above inequality changes accordingly. In the
following, we consider an example where the second situation indeed occurs.

Example 5. We may observe that y(t) = 5t2 − t4 − 4 ≡ (t2 − 1)(4− t2)
is a solution of

y′′′ + 4y′ + 4ty = 4t3(t2 − 1), t ≥ −2,

with y(−1) = 0, y(1) = 0, y(2) = 0, y′(0) = 0 and y′(
√

5/2) = 0. It is
interesting to note that y′′(t) 6= 0 for t ∈ [1, 2]. However, y′′(±

√
5/6) = 0

where ±
√

5/6 ∈ (−1, 1).
It would be interesting to obtain a homogeneous equation where this

situation occurs.

(ii) Some authors (see [3, 7, 10] and the references therein) have suc-
ceeded in obtaining an upper bound of (b − a) � b

a
|p(t)| dt and improved its

lower bound concerning (1). Yet no such attempt has been made for (3).
It would be interesting to obtain upper bounds of the inequalities (8) and
(9) concerning (3) and of the inequalities (5) and (6) concerning (4). It has
already been remarked that the lower bounds of these inequalities could be
improved.

(iii) If 〈tn〉 is a sequence of zeros of 1+sin t, then 〈tn+1− tn〉 is bounded.
It would be interesting to obtain sufficient conditions on p and q so that
〈tn+1 − tn〉 or 〈tn+2 − tn〉 is bounded, where 〈tn〉 is a sequence of zeros of
an oscillatory solution of (4).
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