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Oscillation of nonlinear neutral delay
differential equations with applications

by Wan-Tong Li (Lanzhou) and S. H. Saker (Mansoura)

Abstract. We consider nonlinear neutral delay differential equations with variable
coefficients. Finite and infinite integral conditions for oscillation are obtained. As an ex-
ample, the neutral delay logistic differential equation is discussed.

1. Introduction. A neutral delay differential equation is a differen-
tial equation in which the highest order derivative of the unknown function
appears both with and without delays. The study of the asymptotic and
oscillatory behavior of solutions of neutral differential equations is of im-
portance in applications. This is due to the fact that such equations appear
in various phenomena including networks containing lossless transmission
lines (as in high-speed computers where such lines are used to interconnect
switching circuits), in the study of vibrating masses attached to an elastic
bar, as the Euler equations for the minimization of functionals involving a
time delay in some variational problems, in the theory of automatic con-
trol and in neuromechanical systems in which inertia plays an important
role (see Hale [11], Driver [3], Brayton and Willoughby [2], Popov [26] and
Boe and Chang [1] and references cited therein). The construction of these
models using delays has been paralleled by mathematical investigation of
nonlinear equations.

Many authors have considered linear neutral delay differential equations
and established sufficient conditions for oscillation of all solutions. We refer
to the articles [6, 7, 28, 17, 20, 22, 27, 31] and the references cited therein.

In recent years there has been much research activity concerning the lin-
earized oscillation theory for nonlinear neutral delay differential equations,
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which is in some sense parallel to the so-called linearized stability theory
(see [5, 8, 19, 25, 29]).

In this paper we consider the first-order nonlinear neutral delay differ-
ential equation with variable coefficients

(1)
d

dt
[x(t)− P (t)x(t− τ)] +Q(t)f(x(t− σ)) = 0,

where

0 < P (t) < 1, σ, τ are positive constants, Q ∈ C[[t0,∞),R+],(2)

f ∈ C[R,R], uf(u) > 0 for u 6= 0,(3)

and there exists a positive number δ such that

(4)
{
f(u) ≤ u for u ∈ [0, δ],
f(u) ≥ u for u ∈ [−δ, 0],

and

(5) lim
u→0

u

f(u)
= β > 0,

or the more general one,

(6)
d

dt

[
x(t)−

n∑

i=1

Pi(t)x(t− τi)
]

+
m∑

j=1

Qj(t)f(x(t− σj)) = 0,

where τi, σj , Pi, Qj and f satisfy the same assumptions as τ, σ, P,Q and f
for i = 1, . . . , n and j = 1, . . . ,m.

Our aim in this paper is to give some finite and infinite integral suffi-
cient conditions for oscillation of solutions of (1) and (6). In Section 2, we
present some lemmas which will be used in the proofs of our main results. In
Section 3, we give oscillation criteria for (1). In Section 4 the neutral delay
logistic differential equation is considered to illustrate our results.

Let γ = max{σ, τ} and let t1 ≥ t0. By a solution of (1) on [t1,∞)
we mean a function x ∈ C[[t1 − γ,∞),R] such that x(t) − P (t)x(t − τ) is
continuously differentiable for t1 ≥ t0 and (1) is satisfied.

Let t1 ≥ t0 be a given initial point and let φ ∈ C[[t1 − γ,∞),R] be a
given initial function. Then by the step-by-step method one can see that (1)
has a unique solution on [t1,∞) satisfying the initial condition

(7) x(t) = φ(t) for −γ ≤ t ≤ t1.
As usual, when we say that every solution of (1) oscillates we mean

that for every initial point t1 ≥ t0 and for every initial function φ ∈
C[[t1 − γ,∞),R], the unique solution of (1) with (7) has arbitrarily large
zeros. Otherwise the solution is called nonoscillatory .

In what follows, when we write a functional inequality we will assume
that it holds for all sufficiently large values of t.
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2. Some lemmas. In this section we present some lemmas that are
used in the proofs of our main results.

Lemma 2.1 [10, Lemma 1.5.4]. Let a ∈ (−∞, 0), τ ∈ (0,∞), t0 ∈ R
and suppose that x ∈ C[[t0,∞),R] satisfies the inequality

x(t) ≤ a+ max
t−τ≤s≤t

x(s) for t ≥ t0.

Then x(t) cannot be a nonnegative function.

Lemma 2.2 [10, Lemma 1.5.5]. Let F,G, P ∈ C[[t0,∞),R], and c ∈
(0,∞) be such that

F (t) = G(t)− P (t)G(t− c), t ≥ t0 + c.

Assume that

F (t) > 0 and G(t) > 0 for t ≥ t0, lim
t→∞

F (t) = 0,

and 0 < P (t) < 1. Then limt→∞G(t) = 0.

Lemma 2.3 Assume that (2) and (3) are satisfied. Set

(8) z(t) = x(t)− P (t)x(t− τ),

where x(t) is an eventually positive solution of (1). Then z(t) is an eventu-
ally nonincreasing positive function, limt→∞ z(t) = 0, and limt→∞ x(t) = 0.

Proof. Since x(t) is an eventually positive solution of (1), we have

z′(t) ≤ −Q(t)f(x(t− σ)).

Then from (2) and (3) we have

(9) z′(t) ≤ −Q(t)f(x(t− σ) ≤ 0,

where z′(t) = dz(t)/dt. This shows that z(t) is nonincreasing. Now we show
that z(t) is positive. For otherwise there exists a t2 ≥ t such that z(t2) < 0.
Because ż(t) ≤ 0 for t ≥ t1 + % and ż(t) 6= 0 on [t1 + %,∞) there exists
t3 ≥ t2 such that z(t) ≤ z(t3) for t ≥ t3. Then from (8) it follows that for
t ≥ t3,

x(t) = z(t) + P (t)x(t− τ) ≤ z(t3) + P (t)x(t− τ).

Hence
x(t) ≤ z(t2) + max

t−%≤s≤t
x(s)P (t).

From (2) we have

x(t) ≤ z(t2) + max
t−%≤s≤t

x(s) for t ≥ t3.

Thus by Lemma 2.1, x(t) cannot be a non-negative function on [t3,∞), and
this is a contradiction. Hence z(t) is non-increasing and positive.
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Now we show that x(t) is bounded. Otherwise there exists a sequence
{tn} such that limn→∞ tn=∞, limn→∞ x(tn)=∞ and x(tn)=maxs≤tn x(s).
From (8) we have

z(tn) = x(tn)− P (tn)x(tn − τ).

Hence by (2) we obtain

z(tn) ≥ x(tn)[1− P (tn)]→∞ as n→∞,
which contradicts (9). Then by (8) and (9) we see that z(t) is also bounded,
and

(10) lim
t→∞

z(t) = k ∈ [−∞,∞).

If k = −∞, then there is a t1 ≥ t0 such that z(t) < 0 for t ≥ t1. From
(8) we have lim supt→∞ x (t) = +∞, which contradicts the fact that x(t) is
bounded. Thus k 6= −∞.

From (9) and (10) it follows that the function z(t) is monotonic. By
integrating both sides of (9) from t1 to∞ for t1 sufficiently large, we obtain

(11) k − z(t1) = −
∞�

t1

Q(t)f(x(t− σ)) dt.

We claim that

(12) lim inf
t→∞

x(t) = 0.

Otherwise there exist a positive constant c and a t2 ≥ t1 such that x(t) ≥ c
for t ≥ t2. Then from (2) and (3) and for t sufficiently large, Q(t)f(x(t−σ))
is bounded from below by a positive constant. This contradicts (11) and so
(12) holds.

Let {tk} be a sequence of points such that

lim
k→∞

tk =∞ and lim
k→∞

x(tk) = 0.

From (8) we see that

z(tk) ≤ x(tk)→ 0 as k →∞
and also

z(tk + τ) ≥ −P (tk + τ)x(tk)→ 0 as k →∞.
As z(t) is positive and monotonic, it follows that limt→∞ z(t) = 0. Then by
Lemma 2.2 we see that limt→∞ x(t) = 0. This completes the proof.

3. Oscillation criteria. In this section we give finite and infinite inte-
gral conditions for oscillation of solutions of (1).
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Theorem 3.1. Assume that (2)–(5) hold. Then the conditions

lim inf
t→∞

t�

t−σ
[Q1(s)P (t− σ) +Q1(s)] ds >

1
e

(13)

and

lim sup
t→∞

t�

t−σ
[Q1(s)P (t− σ) +Q1(s)] ds > 1(14)

each imply that every solution of (1) oscillates, where

Q1(t) =
1
β
Q(t), and τ ≥ σ.

Proof. Without loss of generality we assume that (1) has an eventually
positive solution x(t) (the case that x(t) is negative is similar and will be
omitted). Suppose x(t) > 0 and x(t− σ) > 0 for t ≥ t0. Then from Lemma
2.3 we have limt→∞ x(t) = 0.By (5) we have

(15) lim
u→0

u

f(u)
= β > 0.

Let ε ∈ (0, β). Then there exists a Tε such that for t ≥ Tε, x(t− σ) > 0 and
f(x(t− σ)) ≥ x(t− σ)/(β − ε).

Set z(t) as in (8). Then from (1) and Lemma 2.3, z(t) is a positive
function, x(t) > z(t) and

(16) z′(t) +Q(t)
x(t− σ)
β − ε ≤ 0, t ≥ Tε.

Hence,

(17) z′(t) +Q1(t)x(t− σ) ≤ 0, t ≥ Tε,
where Q1(t) = Q(t)/β. Then from (8),

z′(t) ≤ −Q1(t)z(t− σ)−Q1(t)P (t− σ)x(t− τ − σ), t ≥ Tε,(18)

≤ −Q1(t)z(t− σ) +
Q1(t)

Q1(t− τ)
P (t− σ)z

′
(t− τ).

Hence z(t) is positive and satisfies the delay differential inequality

(19) z′(t)− Q1(t)
Q1(t− τ)

P (t− σ)z′(t− τ) +Q1(t)z(t− σ) ≤ 0.

Set

(20) λ(t) = −z
′(t)
z(t)

.

Then (19) becomes
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λ(t) ≥ λ(t− τ)
Q1(t)

Q1(t− τ)
P (t− σ)(21)

× exp
( t�

t−τ
λ(s) ds

)
+Q1(t) exp

( t�

t−σ1

λ(s) ds
)
.

It is obvious that λ(t) > 0 for t ≥ t0. From (21) we have λ(t) ≥ Q1(t), thus

(22) λ(t) ≥ Q1(t)P (t− σ) exp
( t�

t−τ
λ(s) ds

)
+Q1(t) exp

( t�

t−σ1

λ(s) ds
)
.

Then from (22) and (20) one can see that z(t) is a positive solution of the
delay differential inequality

z′(t) +Q1(t)P (t− σ)z(t− τ) +Q1(t)z(t− σ) ≤ 0.

As z′(t) ≤ 0 and τ ≥ σ, we see that

z′(t) + [Q1(t)P (t− σ) +Q1(t)]z(t− σ) ≤ 0.

Then by Corollary 3.2.2 of [10] the delay differential equation

(23) z′(t) + [Q1(t)P (t− σ) +Q1(t)]z(t− σ) = 0

has an eventually positive solution as well. However, it is well known that
(14) and (15) each imply that (23) has no eventually positive solution (see,
for example, [10, p. 46, Theorem 2.3.3] and [10, p. 78, Theorem 3.4.3]). This
is a contradiction and so the proof is complete.

Remark 1. It is clear that every solution of (1) oscillates when (23) has
no eventually positive solution. The problem how to fill the gap between the
conditions (13) and (14) for the equation (23) has recently been investigated
by several authors. Taking the results of [4, 14, 18, 23, 24, 30] respectively
into account and the fact that every solution of (1) oscillates when (23) has
no eventually positive solution we obtain the following applications, where
we set

Q(t) = Q1(t)P (t− σ) +Q1(t).

Corollary 3.1. Assume that (2)–(5) hold ,

lim inf
t→∞

t�

t−σ
Q(s) ds = k ≤ 1

e

and

lim sup
t→∞

t�

t−σ
Q(s) ds >

ln(λ) + 1
λ

,

where λ is the smaller solution of the transcendental equation

(24) λ = eλk.

Then every solution of (1) oscillates.
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Corollary 3.2. Assume that (2)–(5) hold ,

k = lim inf
t→∞

t�

t−σ
Q(s) ds, L = lim sup

t→∞

t�

t−σ
Q(s) ds,

L < 1 and 0 < k ≤ 1/e. Then every solution of (1) oscillates if

L >
ln(λ) + 1

λ
− 1− k −

√
1− k − k2

2
,

where λ is the smaller root of (24).

Corollary 3.3. Assume that (2)–(5) hold and

∞∑

i=1

[ ti�

ti−1

Q(s)− 1
e

]
ds =∞.

Then every solution of (1) oscillates.

Corollary 3.4. Assume that (2)–(5) hold ,

t�

t−σ
Q(s) ds ≥ 1

e
,

and
∞�

t0+σ

Q(t)
[

exp
( t�

t−σ
Q(s) ds− 1

e

)
− 1
]
ds =∞.

Then every solution of (1) oscillates.

Corollary 3.5. Assume that (2)–(5) hold ,

t�

t−σ
Q(s) ds ≥ 1

e
,

and
∞�

t0+nσ

Q(t)
[
en−1Qn(t)− 1

e

]
dt =∞.

Then every solution of (1) oscillates. Here

Q1(t) =
t�

t−σ
Q(s)ds, t ≥ t0 + σ,

Qk+1(t) =
t�

t−σ
Q(s)Qk(s) ds, t ≥ t0 + (k + 1)σ.
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Corollary 3.6. Assume that (2)–(5) hold ,

lim sup
t→∞

t+σ�

t

Q(s) ds > 0 for t ≥ t0 for some t0 > 0,

and
∞�

t0

Q(t) ln
[
e

t+σ�

t

Q(s) ds
]
dt =∞.

Then every solution of (1) oscillates.

Theorem 3.2. Assume that (2)–(5) hold. Then the conditions

lim inf
t→∞

t�

t−σ
Q1(t)P (t− σ) >

1
e

(25)

and

lim sup
t→∞

t�

t−σ
Q1(t)P (t− σ) ds > 1(26)

each imply that every solution of (1) oscillates.

Proof. Without loss of generality, assume that (1) has an eventually
positive solution x(t). Let z(t) be defined by (8). Then from (23) one can
see that z(t) is a positive solution of the inequality

(27) z′(t) +Q1(t)P (t− σ)z(t− σ) ≤ 0.

Therefore by Corollary 3.2.2 of [10] the delay differential equation

(28) z′(t) +Q1(t)P (t− σ)z(t− σ) = 0

has an eventually positive solution as well. But it is well known that (25)
and (26) each imply that (28) has no eventually positive solution. This is a
contradiction and so the proof is complete.

Theorem 3.3. Assume that (2)–(5) hold. Then the conditions

(29) lim inf
t→∞

t�

t−σ
Q1(s) ds >

1
e

and

(30) lim sup
t→∞

t�

t−σ
Q1(s) ds > 1

each imply that every solution of (1) oscillates.
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Proof. Assume that (1) has an eventually positive solution x(t). Let z(t)
be defined by (8). Then from (23) one can see that

(31) z′(t) +Q1(t)z(t− σ) ≤ 0.

Therefore by Corollary 3.2.2 of [10] the delay differential equation

(32) z′(t) +Q1(t)z(t− σ) = 0

has an eventually positive solution as well. But it is well known that (29)
and (30) each imply that (32) has no eventually positive solution. This is a
contradiction and so the proof is complete.

Theorem 3.4. Assume that (2)–(5) hold. Then the conditions

(33) lim inf
t→∞

t�

t−σ
[Q1(s)P (s− σ)P (s− τ − σ) +Q1(s)] ds >

1
e

and

(34) lim sup
t→∞

t�

t−σ
[Q1(s)P (s− σ)P (s− τ − σ) +Q1(s)] ds > 1

each imply that every solution of (1) oscillates.

Proof. Assume that (1) has an eventually positive solution x(t). From
(21) it is obvious that λ(t) > 0 for t ≥ t0, and λ(t) ≥ Q1(t). Then λ(t−τ) ≥
Q1(t− τ), and so

(35) λ(t) ≥ Q1(t)P (t− σ) exp
( t�

t−τ
λ(s) ds

)
+Q1(t) exp

( t�

t−σ
λ(s) ds

)
,

which guarantees that λ(t) ≥ Q1(t)P (t− σ). Thus

λ(t− τ) ≥ Q1(t− τ)P (t− τ − σ).

From (32) we have

λ(t) ≥ Q1(t)P (t− σ)P (t− τ − σ)(36)

× exp
( t�

t−τ
λ(s) ds

)
+Q1(t) exp

( t�

t−σ
λ(s) ds

)

and therefore z(t) satisfies the inequality

z′(t) + [Q1(t)P (t− σ)P (t− τ − σ) +Q1(t)]z(t− σ) ≤ 0.

Then by Corollary 3.2.2 of [10] the delay differential equation

(37) z′(t) + [Q1(t)P (t− σ)P (t− τ − σ) +Q1(t)]z(t− σ) = 0

has an eventually positive solution as well. But it is well known that (33) and
(34) each imply that (37) has no eventually positive solution. Thus every
solution of (1) oscillates.
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By applying the above corollaries to the equations (37) we can obtain
sufficient conditions for oscillation of all solutions of (1). Their statements
are omitted here.

Remark 2. For the general equation

d

dt

[
x(t)− P

n∑

i=1

Pi(t)x(t− τi)
]

+
n∑

i=1

Qi(t)x(t− σi) = 0, t ≥ t0,

the analogues of the above results are also true. We omit the details.

4. Oscillation in a nonautonomous neutral delay logistic equa-
tion. The scalar autonomous ordinary differential equation

Ṅ(t) = rN(t)
[
1− N(t)

K

]

is known as the logistic equation in mathematical ecology and it is a proto-
type in the modelling of the dynamics of single-species population systems
whose biomass or density is described by a differentiable function N(t). The
constant r is called the growth rate and K is called the carrying capacity of
the habitat. Hutchinson [13] suggested the following modification:

(38) Ṅ(t) = rN(t)
[
1− N(t− τ)

K

]
.

Equation (38) is commonly known as the “delay equation” and has been
extensively investigated by numerous authors (see for example Wright [31],
Kakutani and Markus [16] and Jones [15]). Hegazi and Saker [12] considered
the non-autonomous delay logistic and food limited equations and presented
infinite integral conditions for oscillations.

Györi [9] considered the neutral delay logistic equation with constant
coefficients of the form

(39) Ṅ(t) = N(t)
[
r

(
1− N(t− τ)

K

)
+ cṄ(t− τ)

]
,

and established oscillation criteria for all positive solutions.
The effects of varying environment are often important in dynamical

nature of populations. Then we consider the nonautonomous neutral delay
equation

(40) Ṅ(t) = N(t)
[
r(t)

(
1− N(t− σ)

K

)
+ c(t)Ṅ(t− τ)

]
,

where

(41) r, c ∈ C[[t0,∞),R+], K, τ, σ ∈ (0,∞),



Oscillation of delay differential equations 49

r(t) is the growth rate function, K is the carrying capacity of the environ-
ment, and c(t) is the growth rate function associated with the growth rate
at time t− τ.

With (38) one associates an initial condition of the form

(42) N(t) = φ(t) for −γ ≤ t ≤ 0, φ ∈ C[[−τ, 0],R+], φ(0) > 0,

where γ = max{τ, σ). Then by the step-by-step method, the initial value
problem (40) and (42) has a unique solution N(t) for t ≥ 0. We will only
consider those solutions N(t) which are positive. Note that such solutions
exist because if φ(0) > 0, then N(t) > 0 for t ≥ 0.

Theorem 4.1. Assume that (41) holds, 0 < c(t) < 1, and

(43) lim inf
t→∞

t�

t−σ
r(s) ds >

1
e
.

Then every solution of (40) oscillates.

Proof. The change of variables N(t) = Kex(t) reduces (40) to the delay
equation

(44)
d

dt
[x(t)− c(t)x(t− τ)] + r(t)[ex(t−σ) − 1] = 0.

Clearly, N(t) oscillates about K if and only if x(t) oscillates about zero.
From (44) we have

(45)
d

dt
[x(t)− c(t)x(t− τ)] + r(t)f(x(t− σ)) = 0

with

(46) f(u) = eu − 1.

It is clear that

f ∈ C[R,R], uf(u) > 0 for u 6= 0,(47)

lim
u→0

u

f(u)
= 1.(48)

Then by Theorem 3.2 and the condition (43) every solution of (44) oscillates.
Thus every positive solution of (40) oscillates about K.

Remark 3. One can apply the above theorems and corollaries to obtain
many sufficient conditions for oscillations. Also one can extend these results
to the generalized neutral logistic equation

Ṅ(t) =
n∑

i=1

N(t)
[
ri(t)

(
1− N(t− σi)

K

)
+ ci(t)N(t− τi)

]
.
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Révisé le 25.1.2001 (1207)


