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Bifurcation in the solution set
of the von Kármán equations of an elastic disk

lying on an elastic foundation

by Joanna Janczewska (Gdańsk)

Abstract. We investigate bifurcation in the solution set of the von Kármán equations
on a disk Ω ⊂ R2 with two positive parameters α and β. The equations describe the
behaviour of an elastic thin round plate lying on an elastic base under the action of a
compressing force. The method of analysis is based on reducing the problem to an operator
equation in real Banach spaces with a nonlinear Fredholm map F of index zero (to be
defined later) that depends on the parameters α and β. Applying the implicit function
theorem we obtain the following necessary condition for bifurcation: if (0, p) is a bifurcation
point then dim KerF ′x(0, p) > 0. Next, we give a full description of the kernel of the
Fréchet derivative of F . We study in detail the situation when the dimension of the kernel
is one. We prove that (0, p) is a bifurcation point by the use of the Lyapunov–Schmidt
finite-dimensional reduction and the Crandall–Rabinowitz theorem. For a one-dimensional
bifurcation point, analysing the Lyapunov–Schmidt branching equation we determine the
number of families of solutions, their directions and asymptotic behaviour (shapes).

1. Introduction. Let Ω = {(u, v) ∈ R2 : u2 + v2 < 1}. We will denote
by C4,µ

0,0 (Ω), for each µ ∈ (0, 1), the subspace of functions f from the real
Hölder space C4,µ(Ω) that satisfy the boundary conditions

f |∂Ω = ∆f |∂Ω = 0,(1)

where ∆ is the Laplace operator. For all C2 functions f, g : Ω → R and
every C4 function h : Ω → R we define

[f, g] =
∂2f

∂u2

∂2g

∂v2 − 2
∂2f

∂u∂v

∂2g

∂u∂v
+
∂2f

∂v2

∂2g

∂u2 ,

∆2h =
∂4h

∂u4 + 2
∂4h

∂u2∂v2 +
∂4h

∂v4 .

(2)

In this paper we study bifurcation of equilibrium forms of a thin round
elastic plate lying on an elastic foundation under the action of a compressing
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force. Equilibrium forms of the plate may be found as solutions w ∈ C4,µ
0,0 (Ω)

and σ ∈ C4,µ
0,0 (Ω) of the von Kármán equations

(KE)
{
∆2w − [w, σ] + 2α∆w + βw − γw3 = 0,

∆2σ + 1
2 [w,w] = 0,

where w(u, v) is a deflection function, σ(u, v) is a stress function, α > 0 is
the value of the compressing force, β > 0 and γ > 0 are parameters of the
elastic foundation. We will suppose that γ is a constant.

Numerous works have been devoted to the study of bifurcation in the
von Kármán problems (see for instance [1], [6], [7], [8], [10], [11], [16], [18]
and [21]). However, these investigations do not concern the situation when
the plate is fixed to the elastic foundation. This case is very important
in mechanics of elastic constructions. Physical models in which an elastic
foundation appears have been studied only numerically for a long time. The
investigation of such models by the use of modern bifurcation theory starts
with [5] and [13]. It was noticed there that if we take into account additional
nonlinear terms corresponding to the elastic base, then subcritical branches
of solutions at a bifurcation point will occur. In this paper similar results
will be obtained for the von Kármán equations (KE). We will show that
both parameters appearing in (KE) influence bifurcation. For instance, if
β is larger than α2 there is no bifurcation, because the base is too hard
and resists the compressing force. Moreover, the increase of β (the hardness
of the plate) may straighten the plate and may cause the appearance of
subcritical branches of solutions.

The paper is organized as follows. In Section 2 we define a nonlinear map
F : X × R2

+ → Y , where

X = C4,µ
0,0 (Ω)× C4,µ

0,0 (Ω) and Y = C0,µ(Ω)× C0,µ(Ω).

We reduce (KE) to the operator equation

F (x, p) = 0,(3)

where x = (w, σ) and p = (α, β). We prove that F is a C∞ map with
respect to all variables and it is a nonlinear operator of Fredholm type of
index 0 with respect to x in a neighbourhood of the point (0, p) for each
p ∈ R2

+. Finally, we show that solutions of (KE) are critical points of the
C∞ functional E : X × R2

+ → R given by

E(x, p) =
1

2π

���

Ω

((∆w)2 − (∆σ)2 − [w,w]σ) du dv(4)

−
���

Ω

(
2α
((

∂w

∂u

)2

+
(
∂w

∂v

)2)
− βw2 +

1
2
γw4

)
du dv,
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i.e. the map F is a variational gradient for the functional E, and in fur-
ther considerations we employ this fact. In Section 3 we prove the follow-
ing necessary condition for bifurcation: if (0, p) is a bifurcation point then
dim KerF ′x(0, p) > 0, where F ′x(0, p) : X → Y is the Fréchet derivative of
F with respect to x at (0, p). Section 4 contains a complete solution of the
linearized problem

F ′x(0, p)h = 0.(5)

In Sections 5 and 6 we apply the Borisovich scheme for the study of bi-
furcation (see [4]). It was introduced during the investigation of bifurca-
tion in the Plateau problem (see [2], [3]) and it is based on the analy-
sis of the Lyapunov–Schmidt branching equation ([12], [20]) by the use of
the Crandall–Rabinowitz bifurcation theorem ([9], [14]), the key function
method due to Sapronov ([17], [18]) and the methods of the theory of sin-
gularities ([15]).

Acknowledgments. The author wishes to express her thanks to Pro-
fessor Czesław Szymczak from the Technical University of Gdańsk for sug-
gesting the problem and to Professor Andrei Borisovich from the University
of Gdańsk for several stimulating conversations. The author is also grateful
to Professor Kazimierz Gęba from the Technical University of Gdańsk for
his helpful comments and his interest in the publication of the paper.

2. Reduction to an operator equation. Let F : X × R2
+ → Y be

given by
F (x, p) = (F1(x, p), F2(x, p)),(6)

where F1, F2 : X × R2
+ → C0,µ(Ω) are defined as follows:

F1(x, p) = ∆2w − [w, σ] + 2α∆w + βw − γw3,(7)

F2(x, p) = −∆2σ − 1
2

[w,w](8)

for x = (w, σ) and p = (α, β).

Lemma 2.1. The pair (x, p) belongs to the solution set of (KE ) if and
only if F (x, p) = 0.

The proof is immediate.

Definition 2.1. Let X, Y be Banach spaces, let U be a region in X and
let n be a natural number. The map F : X → Y is said to be a nonlinear
operator of Fredholm type of index n in U if

(i) F is C1,
(ii) for each x ∈ U the Fréchet derivative F ′(x) : X → Y is a Fredholm

map of index n.



56 J. Janczewska

If F is C1 and F ′(x0) is a Fredholm map of index n for some x0 ∈ X, then
F is a nonlinear operator of Fredholm type of index n in a neighbourhood
of x0. This is an obvious consequence of two facts: (1) the set Φn(X,Y ) of
Fredholm operators of index n is open in L(X,Y ); (2) the Fréchet derivative
F ′ : X → L(X,Y ) is continuous.

Theorem 2.2. The map F : X × R2
+ → Y given by (6)–(8) is C∞

with respect to all variables and for each p ∈ R2
+ it is a nonlinear operator

of Fredholm type of index 0 with respect to x in a neighbourhood of (0, p),
i.e. F ′x(0, p) : X → Y is a Fredholm map of index 0.

Proof. The map F is C∞, because all terms in F1, F2 are. Fix p =
(α, β) ∈ R2

+. We now show that F ′x(0, p) : X → Y is a Fredholm map of
index 0. We have

(9) F ′x(x, p)h

= (∆2z − [z, σ]− [w, η] + 2α∆z + βz − 3γw2z,−∆2η − [w, z]).

Substituting x0 = (0, 0) into (9) we get

F ′x(0, p)h = (∆2z + 2α∆z + βz,−∆2η).(10)

To prove that F ′x(0, p) is a Fredholm operator of index 0, we only need to
write it as a sum of an isomorphism and a completely continuous map. Note
that

F ′x(0, p)h = A(h) +B(h),(11)

where A, B : X → Y are defined by

A(z, η) = (∆2z,−∆2η), B(z, η) = (2α∆z + βz, 0) = (B1(z), 0).

It is well known that ∆ is an isomorphism of Cm,µ
0 (Ω) onto Cm−2,µ(Ω) for all

m ≥ 2. This implies that ∆2 : C4,µ
0,0 (Ω) → C0,µ(Ω) is also an isomorphism,

and so A is an isomorphism of X onto Y .
We now show that B is completely continuous. To this end it suffices

to show that B1 : C4,µ
0,0 (Ω) → C0,µ(Ω) is completely continuous. From the

diagram

C4,µ
0,0 (Ω)

J=I−−→ C2,µ
0 (Ω)

W=2α∆+βI−−−−−−−−→ C0,µ(Ω)

we obtain B1 = W ◦ J . Now W is a continuous map and J is the natural
completely continuous embedding, so B1 is completely continuous.

The aim is now to show that the solution set of (KE) and the set of
critical points of the functional E given by (4) are the same.

Definition 2.2. Let X, Y be Banach spaces continuously embedded in
a Hilbert space H with scalar product (·, ·)H : H ×H → R. Let E : U → R
be C1 and F : U → Y be continuous, where U is an open set in X. The
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map F is called a variational gradient of the functional E with respect to
the scalar product in H if

E′(x)h = (F (x), h)H

for each x ∈ U and h ∈ X.

Fix x ∈ U . Let us remark that E′(x)h = 0 for each h ∈ X if and only if
F (x) = 0. For this reason zeros of F are called critical points of E.

Lemma 2.3. Let c be a real number. Then� �

Ω

(∆f + cf)g du dv =
� �

Ω

f(∆g + cg) du dv(12)

for all f, g ∈ C2,µ
0 (Ω).

The equality (12) is checked at once, because ∆ : C2,µ
0 (Ω)→ C0,µ(Ω) is

self-adjoint with respect to the inner product in L2(Ω).
Let H = L2(Ω) × L2(Ω). It is well known that H with the standard

scalar product defined by

((z1, η1), (z2, η2))H =
1
π

���

Ω

(z1z2 + η1η2) du dv(13)

is a Hilbert space. Moreover, X = C4,µ
0,0 (Ω) × C4,µ

0,0 (Ω) and Y = C0,µ(Ω) ×
C0,µ(Ω) are continuously embedded in H.

Theorem 2.4. For each p ∈ R2
+ the map F (·, p) : X → Y given by

(6)–(8) is a variational gradient of the functional E(·, p) : X → R defined
by (4) with respect to the scalar product (13), i.e.

E′x(x, p)h = (F (x, p), h)H

for all x, h ∈ X.

Proof. Let p = (α, β) ∈ R2
+. Since E(·, p) : X → R is C∞, we get

E′x(x, p)h =
d

dt
E(x+ th, p)

∣∣∣∣
t=0

for all x, h ∈ X. Fix x = (w, σ), h = (z, η) in X. An easy computation shows
that

d

dt
E(x+ th, p)

∣∣∣∣
t=0

=
1
π

� �

Ω

(∆w∆z −∆σ∆η − σ [w, z]) du dv

− 1
π

� �

Ω

1
2

[w,w] η + 2α
(
∂w

∂u

∂z

∂u
+
∂w

∂v

∂z

∂v

)
du dv

+
1
π

� �

Ω

(βwz − γw3z) du dv.
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Using Lemma 2.3 we get
���

Ω

∆w∆z du dv =
� �

Ω

(∆2w)z du dv,

���

Ω

∆σ∆η du dv =
� �

Ω

(∆2σ)η du dv.

We conclude from the definition of F that to finish the proof it remains to
show the equalities

���

Ω

σ [w, z] du dv =
���

Ω

[w, σ]z du dv

and
���

Ω

(
∂w

∂u

∂z

∂u
+
∂w

∂v

∂z

∂v

)
du dv = −

���

Ω

(∆w)z du dv.

In order to get these equalities, we decompose the integrals on the left-hand
side into appropriate terms and integrate by parts. The details are left to
the reader.

3. A necessary condition for bifurcation. Let Γ ⊂ X×R2
+ be given

by Γ = {(0, p) : p ∈ R2
+}. The set Γ is called the trivial family (branch) of

solutions of equation (3). In this section we prove a necessary condition for
bifurcation at the points of Γ .

Definition 3.1. A point (0, p0) ∈ Γ is said to be a bifurcation point
of equation (3) if in every neighbourhood of (0, p0) there exists a point
(x, p) ∈ X × R2

+ such that x 6= 0 and F (x, p) = 0.

Theorem 3.1. If (0, p0) ∈ Γ is a bifurcation point of equation (3), then
dim KerF ′x(0, p0) > 0.

Proof. Suppose, contrary to our claim, that dim KerF ′x(0, p0) = 0. Since
F ′x(0, p0) : X → Y is a Fredholm map of index 0, we have

dim KerF ′x(0, p0) = codim ImF ′x(0, p0),

hence Y = ImF ′x(0, p0), and so F ′x(0, p0) is an isomorphism. Applying the
implicit function theorem we see that in a small neighbourhood of (0, p0)
the solution set of (3) is contained in Γ .

4. The linearized problem. The aim of this section is to find all
critical values of the parameters α and β.

Definition 4.1. Let p = (α, β). The numbers α and β are called critical
values of parameters if the necessary condition for bifurcation at the point
(0, p), stated in Theorem 3.1, is satisfied.
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To check the necessary condition for bifurcation, we note that KerF ′x(0, p)
= Ker(∆2 +2α∆+βI)×Ker(∆2) by (10). Since ∆2 : C4,µ

0,0 (Ω)→ C0,µ(Ω) is
an isomorphism, we have KerF ′x(0, p) = Ker(∆2 + 2α∆+ βI)× {0}. From
now on, to simplify notation, we write N(p) instead of KerF ′x(0, p).

Define δ = α2 − β. If δ ≥ 0 then a = −α −
√
δ and b = −α +

√
δ. For

every nonnegative integer k let Jk : R→ R be the Bessel function given by

Jk(s) =
1
π

π�

0

cos(s sin t+ kt) dt.(14)

Let (r, ϕ) denote the polar coordinates of a point (u, v) ∈ Ω.
We give a complete solution of (5) in Table 1.

Table 1

Assumptions Results

δ a and b dimN(p) Base of N(p)

− not defined 0 does not exist

+ ∀k≥0 Jk(a) 6= 0 0 does not exist
or 0 Jk(b) 6= 0

0 J0(a) = 0 1 f1(u, v) = (J0(ar), 0)

+ ∀k≥0 Jk(b) 6= 0 1 f1(u, v) = (J0(ar), 0)
J0(a) = 0

+ ∀k≥0 Jk(a) 6= 0 1 f1(u, v) = (J0(br), 0)
J0(b) = 0

0 ∃k>0 Jk(a) = 0 2 f1(u, v) = (Jk(ar) cos(kϕ), 0)
f2(u, v) = (Jk(ar) sin(kϕ), 0)

+ J0(a) = 0 2 f1(u, v) = (J0(ar), 0)
J0(b) = 0 f2(u, v) = (J0(br), 0)

+ ∀l≥0 Jl(b) 6= 0 2 f1(u, v) = (Jk(ar) cos(kϕ), 0)
∃k>0 Jk(a) = 0 f2(u, v) = (Jk(ar) sin(kϕ), 0)

+ ∀k≥0 Jk(a) 6= 0 2 f1(u, v) = (Jl(br) cos(lϕ), 0)
∃l>0 Jl(b) = 0 f2(u, v) = (Jl(br) sin(lϕ), 0)

+ ∃k>0 Jk(a) = 0 3 f1(u, v) = (Jk(ar) cos(kϕ), 0)
J0(b) = 0 f2(u, v) = (Jk(ar) sin(kϕ), 0)

f3(u, v) = (J0(br), 0)

+ ∃k>0 Jk(b) = 0 3 f1(u, v) = (J0(ar), 0)
J0(a) = 0 f2(u, v) = (Jk(br) cos(kϕ), 0)

f3(u, v) = (Jk(br) sin(kϕ), 0)

+ ∃k,l>0 Jk(a) = 0 4 f1(u, v) = (Jk(ar) cos(kϕ), 0)
Jl(b) = 0 f2(u, v) = (Jk(ar) sin(kϕ), 0)

f3(u, v) = (Jl(br) cos(lϕ), 0)
f4(u, v) = (Jl(br) sin(lϕ), 0)

We divide the proof of the results from Table 1 into a sequence of lemmas.
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Lemma 4.1. If δ < 0, then Ker(∆2 + 2α∆+ βI) = {0}.
Proof. Let z ∈ C4,µ

0,0 (Ω). Then ∆z ∈ C2,µ
0 (Ω). Using Lemma 2.3 we get

���

Ω

(∆2z)z du dv =
� �

Ω

(∆z)∆z dudv =
� �

Ω

(∆z)2 du dv,

and hence

(15)
���

Ω

(∆2z + 2α∆z + βz)z du dv

=
���

Ω

(∆2z)z du dv +
���

Ω

2α(∆z)z du dv +
� �

Ω

βz2 du dv

=
���

Ω

(∆z)2 du dv +
���

Ω

2α(∆z)z du dv +
� �

Ω

βz2 du dv

=
���

Ω

((∆z)2 + 2α(∆z)z + α2z2) du dv +
� �

Ω

(β − α2)z2 du dv

=
���

Ω

(∆z + αz)2 du dv +
� �

Ω

(β − α2)z2 du dv.

Now, let z ∈ Ker(∆2 +2α∆+βI). Then
���
Ω(∆2z+2α∆z+βz) z du dv = 0.

Applying (15) we get
� �

Ω

(∆z + αz)2 du dv +
� �

Ω

(β − α2)z2 du dv = 0.(16)

Since δ < 0, we have β − α2 > 0. Therefore (16) yields z = 0 on Ω, which
completes the proof.

Lemma 4.2. Let ∆+ αI : C2,µ
0 (Ω)→ C0,µ(Ω). If δ = 0, then

Ker(∆2 + 2α∆+ βI) = Ker(∆+ αI).

Proof. Choose z ∈ C4,µ
0,0 (Ω). Then ∆z+αz ∈ C2,µ

0 (Ω). Applying Lemma
2.3 we get

���

Ω

(∆z + αz)(∆z + αz) du dv =
���

Ω

(∆(∆z + αz) + α(∆z + αz))z du dv

=
���

Ω

(∆2z + 2α∆z + α2z)z du dv

=
���

Ω

(∆2z + 2α∆z + βz)z du dv.

Hence if z ∈ Ker(∆2 + 2α∆+ βI), then z ∈ Ker(∆+ αI).
On the other hand Ker(∆+αI) ⊂ C∞0 (Ω). Therefore if z ∈ Ker(∆+αI),

then z ∈ C4,µ
0,0 (Ω), and so

(∆2 + 2α∆+ βI)(z) = (∆+ αI) ◦ (∆+ αI)(z) = 0.
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Lemma 4.3. Suppose that δ > 0. Let H1,H2 : C2,µ
0 (Ω) → C0,µ(Ω) be

given by
H1(z) = ∆z − az, H2(z) = ∆z − bz.

Then
Ker(∆2 + 2α∆+ βI) = Ker(∆− aI)⊕Ker(∆− bI).

Proof. We denote the operator ∆2 + 2α∆ + βI : C4,µ
0,0 (Ω) → C0,µ(Ω)

briefly by G. We have to prove that

KerG = KerH1 ⊕KerH2.

First note that KerHi ⊂ C∞0 (Ω) ⊂ C4,µ
0,0 (Ω) and it is easy to check that

KerH1 ∩KerH2 = {0},
so it suffices to show that KerG = KerH1 + KerH2. For z ∈ C4,µ

0,0 (Ω), we
have

H1 ◦H2(z) = (∆− aI) ◦ (∆− bI)(z)(17)

= (∆− aI)(∆z)− (∆− aI)(bz)

= ∆2z − a∆z − b∆z + abz = ∆2z + 2α∆z + βz = G(z)

and similarly
H2 ◦H1(z) = G(z).(18)

Hence KerHi ⊂ KerG and so KerH1 + KerH2 ⊂ KerG. To prove the
opposite inclusion, let z ∈ KerG. By (17) and (18),

x1 = H1(z) ∈ KerH2 and x2 = H2(z) ∈ KerH1.

Therefore

x1 − x2 = H1(z)−H2(z) = (∆− aI)(z)− (∆− bI)(z) = (b− a)z.

Since b− a 6= 0, the proof is complete.

Summary. It is known that for m ≥ 2, λ ∈ R \ {0} is an eigenvalue
of ∆ : Cm,µ0 (Ω) → Cm−2,µ(Ω) if and only if λ is a zero of one of the
Bessel functions Jk defined by (14). If k = 0, then dim(∆ − λI) = 1 and
Ker(∆ − λI) is generated by the function f(u, v) = J0(λr). If k ≥ 1, then
dim(∆−λI) = 2 and Ker(∆−λI) is generated by two linearly independent
functions: f(u, v) = Jk(λr) cos(kϕ) and g(u, v) = Jk(λr) sin(kϕ).

Combining Lemmas 4.1–4.3 with the properties of eigenspaces of the
Laplace operator we obtain the results given in Table 1.

5. Bifurcation at simple points of Γ . In this section we investigate
bifurcation at a simple point of Γ , i.e. at a point (0, p0) ∈ Γ such that
dimN(p0) = 1. We use the scheme introduced by A. Borisovich (see [2] and
[4]) and based on the Crandall–Rabinowitz theorem on simple bifurcation
points (see [9] and [14]).
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Theorem 5.1. Let X, Y be real Banach spaces continuously embedded
in a real Hilbert space H with scalar product (·, ·)H : H × H → R and let
E : Xε(x0)×Rε(λ0)→ R be a Cr+1 functional , r ≥ 3. Consider the equation

F (x, λ) = 0

with a real parameter λ, where F : Xε(x0) × Rε(λ0) → Y is a Cr map.
Assume that :

1. F (x0, λ) = 0 for every λ ∈ Rε(λ0).
2. dim KerF ′x(x0, λ0) = 1, F ′x(x0, λ0)e = 0, (e, e)H = 1.
3. codim ImF ′x(x0, λ0) = 1.
4. E′x(x, λ)h = (F (x, λ), h)H for all (x, λ) ∈ Xε(x0) × Rε(λ0) and for

each h ∈ X.
5. E′′′xxλ(x0, λ0)ee 6= 0.

Then (x0, λ0) is a bifurcation point of the equation F (x, λ) = 0 and the
solution set of this equation in a small neighbourhood of (x0, λ0) is the union
of the trivial family Γ1 = {(x0, λ) : λ ∈ Rε(λ0)} and a Cr−2 curve Γ2 which
intersects Γ1 at (x0, λ0) only and is given parametrically as follows:

Γ2 = {(x(t), λ(t)) : |t| < ς},
where x(0) = x0, λ(0) = λ0 and x′(0) = e.

The symbols Xε(x0), Rε(λ0) denote small neighbourhoods of x0, λ0,
respectively, i.e. Xε(x0) = {x ∈ X : ‖x− x0‖ < ε}, Rε(λ0) = (λ0−ε, λ0 +ε).

From now on, as in Section 2, we denote by H the Hilbert space L2(Ω)×
L2(Ω) with the scalar product (·, ·)H : H ×H → R given by (13).

Theorem 5.2 (bifurcation with respect to α). Let p0 = (α0, β0) ∈ R2
+

satisfy

dimN(p0) = 1, F ′x(0, p0)e = 0, (e, e)H = 1, e = (e1, 0).(19)

Then (0, α0) ∈ X × R+ is a bifurcation point of the equation

F (x, α, β0) = 0(20)

and the solution set of (20) in a small neighbourhood of (0, α0) is the union
of Γ1 = {(0, α) : α ∈ R+} and a C∞ curve Γ2 which intersects Γ1 at (0, α0)
only and is given parametrically as follows:

Γ2 = {(x(t), α(t)) : |t| < ς},
where x(0) = 0, α(0) = α0 and x′(0) = e.

Proof. Since α0 > 0, there exists ε > 0 such that Rε(α0) ⊂ R+. We check
that the operator F (·, ·, β0) : Xε(0)×Rε(α0)→ Y satisfies the assumptions
of Theorem 5.1.
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Obviously, F (0, α, β0) = 0 for each α ∈ Rε(α0). From Theorem 2.2 we
know that F (·, α0, β0) : X → Y is C∞ and

dimN(p0) = codim ImF ′x(0, α0, β0).

Combining this with (19) we get

codim ImF ′x(0, α0, β0) = 1.

By Theorem 2.4,

E′x(x, α, β0)h = (F (x, α, β0), h)H
for all x, h ∈ X and α ∈ R+. The spaces X, Y are continuously embedded
in H. Therefore differentiating with respect to x we have

E′′xx(x, α, β0)hg = (F ′x(x, α, β0)h, g)H

for each α ∈ R+ and for all x, h, g ∈ X. Using (9) we obtain

E′′xx(x, α, β0)hg =
1
π

���

Ω

(−∆2η − [w, z])η1 du dv

+
1
π

���

Ω

(∆2z − [z, σ]− [w, η] + 2α∆z + β0z − 3γw2z)z1 du dv,

where x = (w, σ), h = (z, η), g = (z1, η1). Hence we get at once

E′′′xxα(x, α, β0)hg =
1
π

���

Ω

2(∆z)z1 du dv.

Substituting x = (0, 0), α = α0 and h = g = e we have

E′′′xxα(0, α0, β0)ee =
1
π

� �

Ω

2(∆e1)e1 du dv.

We have to consider two cases.

Case 1: α2
0 = β0. By Lemma 4.2, ∆e1 + α0e1 = 0. Hence

E′′′xxα(0, α0, β0)ee = −2α0

π

� �

Ω

e2
1 du dv = −2α0(e, e)H = −2α0 < 0.

Case 2: δ0 = α2
0 − β0 > 0. We conclude from Lemma 4.3 that either

∆e1− a0e1 = 0 or ∆e1− b0e1 = 0, where a0 = −α0 −
√
δ0, b0 = −α0 +

√
δ0.

It is evident that a0 < 0 and b0 < 0. Suppose that ∆e1 − a0e1 = 0. Then

E′′′xxα(0, α0, β0)ee =
2a0

π

���

Ω

e2
1 du dv = 2a0(e, e)H = 2a0 < 0,

and similarly for ∆e1 − b0e1 = 0. In this way we have established that
assumptions 1–5 of Theorem 5.1 hold, which completes the proof.

Theorem 5.3 (bifurcation with respect to β). Let p0 = (α0, β0) ∈ R2
+

satisfy condition (19). Then (0, β0) ∈ X × R+ is a bifurcation point of the
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equation
F (x, α0, β) = 0(21)

and the solution set of (21) in a small neighbourhood of (0, β0) is the union
of Γ̂1 = {(0, β) : β ∈ R+} and a C∞ curve Γ̂2 which intersects Γ̂1 at (0, β0)
only and is given parametrically as follows:

Γ̂2 = {(x̂(t), β(t)) : |t| < ς},
where x̂(0) = 0, β(0) = β0 and x̂′(0) = e.

Proof. We again apply Theorem 5.1. Since β0 > 0, there exists ε > 0
such that Rε(β0) ⊂ R+. Analysis similar to that in the proof of Theorem
5.2 shows that the map F (·, α0, ·) : Xε(0)× Rε(β0)→ Y and the functional
E(·, α0, ·) : Xε(0) × Rε(β0) → R satisfy assumptions 1–4 of Theorem 5.1.
Therefore it remains to check assumption 5. By Theorem 2.4 we have

E′′xx(x, α0, β)hg = (F ′x(x, α0, β)h, g)H

for each β ∈ R+ and for all x, h, g ∈ X. Using (9) we get

E′′xx(x, α0, β)hg =
1
π

���

Ω

(−∆2η − [w, z])η1 du dv

+
1
π

� �

Ω

(∆2z − [z, σ]− [w, η] + 2α0∆z + βz − 3γw2z)z1 du dv,

where x = (w, σ), h = (z, η), g = (z1, η1). Thus

E′′′xxβ(x, α0, β)hg =
1
π

� �

Ω

zz1 du dv.(22)

Substituting x = (0, 0), β = β0 and h = g = e we obtain

E′′′xxβ(0, α0, β0)ee =
1
π

���

Ω

e2
1 du dv = (e, e)H = 1 > 0,

which completes the proof.

6. The shape of bifurcation branches. Let (0, p0) ∈ X × R2
+ be

a fixed point satisfying condition (19). We now study the changes in geo-
metrical structure of the solution set of F (x, p) = 0 near (0, p0). We use
the scheme based on the Lyapunov–Schmidt finite-dimensional reduction,
adapted from [4]. The theorem below describes it.

Theorem 6.1. Let X, Y be real Banach spaces continuously embedded
in a real Hilbert space H with inner product (·, ·)H : H × H → R and let
E : Xε(x0)×Rε(λ0)→ R be a Cr+1 functional , r ≥ 3. Consider the equation

F (x, λ) = 0,(23)
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where F : Xε(x0) × Rε(λ0) → Y is a Cr mapping. Assume that conditions
1–5 of Theorem 5.1 hold and define

C1 = E′′′xxλ(x0, λ0)ee,

C2 = E′′′xxx(x0, λ0)eee,

C3 = E(4)
xxxx(x0, λ0)eeee+ 3E′′′xxx(x0, λ0)eey0,

where y0 is a unique solution of the linear equation

F ′x(x0, λ0)y0 + (y0, e)H e = −F ′′xx(x0, λ0)ee.

Under the above assumptions:

(i) If C1 6= 0 then (x0, λ0) is a bifurcation point of the equation (23)
and the solution set of (23) in a small neighbourhood of (x0, λ0) is the union
of the trivial family

Γ1 : x1(λ) = x0, λ ∈ Rε(λ0),

and a Cr−2 family Γ2 which intersects Γ1 at (x0, λ0) only.
(ii) If C1 6= 0 and C2 6= 0 then Γ2 can be parametrized as follows:

Γ2 : x2(λ) = x0 +D2(λ− λ0)e+ o(|λ− λ0|), λ ∈ Rε(λ0),

where D2 = −2C2/C1, and we have transcritical branching at (x0, λ0).
(iii) If C1 6= 0, C2 = 0 and C3 6= 0 then the parametrization of Γ2

depends on the signs of C1 and C3.
If C1C3 > 0 then

Γ2 : x±2 (λ) = x0 ±
√
|D3|(λ0 − λ)1/2e+ o(|λ− λ0|1/2), λ ∈ (λ0 − ε, λ0],

and we have subcritical branching at (x0, λ0).
If C1C3 < 0 then

Γ2 : x±2 (λ) = x0 ±
√
D3 (λ− λ0)1/2e+ o(|λ− λ0|1/2), λ ∈ [λ0, λ0 + ε),

and we have postcritical branching at (x0, λ0). The constant D3 is given by
D3 = −6C3/C1.

The names of branching types follow Stuart [19].
To investigate the type of bifurcation at (0, p0) by using the above

scheme, we have to compute the constants

C1 = E′′′xxα(0, p0)ee,

C ′1 = E′′′xxβ(0, p0)ee,

C2 = E′′′xxx(0, p0)eee,

C3 = E(4)
xxxx(0, p0)eeee+ 3E′′′xxx(0, p0)eey0,

(24)

where y0 = (y01, y02) is a unique solution of the linear equation

F ′x(0, p0)y0 + (y0, e)He = −F ′′xx(0, p0)ee.(25)
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The constants C1 and C ′1 have been calculated in the proofs of Theorems
5.2 and 5.3 respectively. Recall that

C1 =





2a0 if α2
0 > β0 and ∆e1 − a0e1 = 0,

2b0 if α2
0 > β0 and ∆e1 − b0e1 = 0,

−2α0 if α2
0 = β0,

and C ′1 = 1. Moreover, C1 < 0. We sketch the method of finding C2 and C3.
By the formula

F ′x(x, p0)h = (∆2z − [z, σ]− [w, η] + 2α0∆z + β0z − 3γw2z,−∆2η − [w, z]),

where x = (w, σ), h = (z, η), we obtain

F ′′xx(0, p0)ee = lim
t→0

F ′x(te, p0)e− F ′x(0, p0)e
t

= (0,−[e1, e1])(26)

and

F ′′′xxx(0, p0)ee = lim
t→0

F ′′xx(te, p0)ee− F ′′xx(0, p0)ee
t

= (−6γe3
1, 0).(27)

Next, from the equality

E′x(x, p0)h = (F (x, p0), h)H

we get
E′′xx(0, p0)ee = (F ′x(0, p0)e, e)H ,

E′′′xxx(0, p0)eee = (F ′′xx(0, p0)ee, e)H ,

E′′′xxx(0, p0)eey0 = (F ′′xx(0, p0)ee, y0)H ,

E(4)
xxxx(0, p0)eeee = (F ′′′xxx(0, p0)eee, e)H .

Substituting F ′x(0, p0)e, F ′x(0, p0)y0, (26) and (27) into the last equalities
and into (25) we get

C2 = 0 and C3 = − 6
π

� �

Ω

γe4
1 du dv −

1
π

���

Ω

[e1, e1] y02 du dv

and 


∆2y01 + 2α0∆y01 + β0y01 +

(
1
π

���

Ω

y01e1 du dv

)
e1 = 0,

−∆2y02 = [e1, e1].

In consequence,

C3 = − 6
π

���

Ω

γe4
1 du dv +

1
π

���

Ω

(∆2y02)y02 du dv.

Finally, using Lemma 2.3 we obtain

C3 = − 6
π

���

Ω

γe4
1 du dv +

1
π

� �

Ω

(∆y02)2 du dv.
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Theorem 6.1 and the above computations lead us to the following conclu-
sions.

Conclusion 6.2. Let D = −6C3/C1, where C1, C3 are defined by (24).
The point (0, α0) is a bifurcation point of the equation (20) and the solution
set of (20) in a small neighbourhood of (0, α0) is the union of the trivial
family

Γ1 : x1(α) = 0, α ∈ (R+)ε(α0),

and a C∞ family Γ2 which intersects Γ1 at (0, α0) only. Furthermore:

(i) If C3 < 0 then Γ2 can be parametrized as follows:

Γ2 : x±2 (α) = ±
√
|D|(α0 − α)1/2e+ o(|α− α0|1/2), α ∈ (α0 − ε, α0],

(ii) If C3 > 0 then Γ2 can be parametrized as follows:

Γ2 : x±2 (α) = ±
√
D (α− α0)1/2e+ o(|α− α0|1/2), α ∈ [α0, α0 + ε).

Conclusion 6.3. Let D′ = −6C3, where C3 is given by (24). The point
(0, β0) is a bifurcation point of the equation (21) and the solution set of (21)
in a small neighbourhood of (0, β0) is the union of the trivial family

Γ̂1 : x̂1(β) = 0, β ∈ (R+)ε(β0),

and a C∞ family Γ̂2 which intersects Γ̂1 at (0, β0) only. Moreover :

(i) If C3 < 0 then Γ̂2 can be parametrized as follows:

Γ̂2 : x̂±2 (β) = ±
√
D′(β − β0)1/2e+ o(|β − β0|1/2), β ∈ [β0, β0 + ε),

(ii) If C3 > 0 then Γ̂2 can be parametrized as follows:

Γ̂2 : x̂±2 (β) = ±
√
|D′|(β0 − β)1/2e+ o(|β − β0|1/2), β ∈ (β0 − ε, β0].

A task for future research is to check whether bifurcation occurs at points
(0, p) ∈ Γ such that dimN(p) > 1.
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