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Second order differential inequalities in Banach spaces

by Gerd Herzog and Roland Lemmert (Karlsruhe)

Abstract. We derive monotonicity results for solutions of ordinary differential in-
equalities of second order in ordered normed spaces with respect to the boundary values.
As a consequence, we get an existence theorem for the Dirichlet boundary value problem
by means of a variant of Tarski’s Fixed Point Theorem.

1. Introduction. Let (E, ‖ · ‖) be a real normed space, ordered by a
cone K (i.e., a closed convex subset K 6= ∅ such that λK ⊆ K (λ ≥ 0) and
K ∩ (−K) = {0}). A cone K is called solid if its interior IntK is not empty.
The ordering is given by x ≤ y ⇔ y − x ∈ K, and we write

x < y ⇔ y − x ∈ K, x 6= y,

x� y ⇔ y − x ∈ IntK.

Further notations are E? for the topological dual of E and

K? = {ϕ | ϕ ∈ E?, ϕ(x) ≥ 0 (x ∈ K)}.
If K is solid, by the separation theorem of Hahn–Banach, for each x0 ∈ ∂K,
the boundary of K, there exists a nontrivial ϕ ∈ K? such that ϕ(x0) = 0;
then ϕ(x) > 0 for each x ∈ IntK.

Consider a linear operator A : E → E, x ∈ K and a differentiable
function u : [0, T )→ E. If u(t) ≥ 0 (t ∈ (0, T ]) and

u(0) = x,(1)

u′(t) ≤ Au(t), 0 ≤ t < T.(2)

then (cf. the proof of Theorem 1(A) in [8])

x ∈ K, ϕ ∈ K?, ϕ(x) = 0 ⇒ ϕ(Ax) ≥ 0.

On the other hand, if K is solid and this condition holds for each x ∈ K,
then u′(t) ≥ Au(t) (t ∈ [0, T )), u(0) ≥ 0 imply u(t) ≥ 0 for t ∈ [0, T ) ([8],
Theorem 1(B)). In case IntK = ∅, additional assumptions on E,K or A
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are needed. In what follows we will investigate analogous implications for
second order differential inequalities of the form

u′′(t) + f(t, u(t)) ≥ v′′(t) + f(t, v(t)) (t ∈ (0, 1)),(3)

u(0) ≤ v(0),(4)

u(1) ≤ v(1),(5)

the main assumption on f being that it is quasimonotone increasing with
respect to its second variable in the sense of Volkmann [9]:

x, y ∈ D, x ≤ y, ϕ ∈ K?, ϕ(x) = ϕ(y) ⇒ ϕ(f(t, x)) ≤ ϕ(f(t, y)),

together with a weak one-sided Lipschitz condition. A linear operator A is
called quasimonotone increasing if x 7→ Ax has this property.

2. The linear case. For each t ∈ (0, 1) let A(t) : E → E be linear. We
say that µ : (0, 1)→ R has property (P) if there exists a positive continuous
function λ : [0, 1]→ R such that

D2λ(t) := lim inf
h→0

λ(t+ h)− 2λ(t) + λ(t− h)
h2 < −µ(t)λ(t) (t ∈ (0, 1)).

For solutions of
v′′(t) + A(t)v(t) ≤ 0,

where
v′′(t) := lim

h→0

v(t+ h)− 2v(t) + v(t− h)
h2 ,

we have

Theorem 1. Let A(t) : E → E be quasimonotone increasing for each
t ∈ (0, 1) and let there exist p ∈ IntK and a function µ with property (P)
such that A(t)p ≤ µ(t)p (t ∈ (0, 1)). If v : [0, 1] → E is continuous with
v(0) ≥ 0, v(1) ≥ 0 and v′′(t) + A(t)v(t) ≤ 0 if v(t) 6∈ K, then v(t) ≥ 0
(t ∈ [0, 1]).

Proof. Choose a function λ according to property (P). Then there exists
a minimal nonnegative ε such that

w(t) = v(t) + ελ(t)p ∈ K (t ∈ [0, 1]).

If ε > 0, then w(0), w(1) ∈ IntK and there is t0 ∈ (0, 1) such that w(t0) ∈
∂K, so v(t0) 6∈ K. Choose 0 6= ϕ ∈ K? such that ϕ(w(t0)) = 0. Then
ϕ(A(t0)w(t0)) ≥ 0, and since ϕ ◦ w has a local minimum at t0,

0 ≤ D2(ϕ ◦ w)(t0) = ϕ(v′′(t0)) + εD2λ(t0)ϕ(p)

< −ϕ(A(t0)v(t0))− εµ(t0)λ(t0)ϕ(p)

= −ϕ(A(t0)w(t0)) + ελ(t0)ϕ(A(t0)p)− εµ(t0)λ(t0)ϕ(p)

≤ ελ(t0)ϕ(A(t0)p− µ(t0)p) ≤ 0,

a contradiction. Therefore ε = 0, which implies v(t) ∈ K (t ∈ [0, 1]).
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Remarks. 1. The conditions of Theorem 1 imply uniqueness for

x′′(t) +A(t)x(t) = 0 (t ∈ (0, 1)), x(0) = x(1) = 0.

2. In Theorem 1, neither E is supposed to be complete nor A(t) to be
continuous.

3. In case E = R, K the set of all nonnegative reals, the conclusion of
Theorem 1 remains valid if v is merely continuous and if v′′ is replaced by
D2v; this will be used later.

4. A constant µ(t) ≡ µ0 has property (P) iff µ0 < π2.

3. The nonlinear case. To avoid the assumption IntK 6= ∅ we choose
a different approach here. The function

d(x) = dist(x,K)

is Lipschitz continuous with constant 1 and convex, and for x 6∈ K we have

d(x) = sup{−ϕ(x) : ϕ ∈ K?, ‖ϕ‖ = 1},
since for k ∈ K, ϕ ∈ K? such that ‖ϕ‖ = 1 we have

−ϕ(x) ≤ ϕ(k − x) ≤ ‖k − x‖,
from which the inequality “≥” readily follows; on the other hand, by the
separation theorem applied toK and the ballB(x, d(x)), there exists ϕ ∈ K?

with norm 1 such that (cf. [5])

(?) −ϕ(x) = dist(x, kerϕ) = d(x),

so the supremum in question is indeed a maximum.
If w : [0, 1]→ E has a second derivative at t0 ∈ (0, 1) and if w(t0) 6∈ K,

then for each ϕ ∈ K? with ‖ϕ‖ = 1, d(w(t0)) = −ϕ(w(t0)) and each suffi-
ciently small h > 0 we get, for δ(t) := d(w(t)),

δ(t0 + h)− 2δ(t0) + δ(t0 − h)
h2 ≥ −ϕ

(
w(t0 + h)− 2w(t0) + w(t0 − h)

h2

)
,

so

D2δ(t0) ≥ −ϕ(w′′(t0)).(6)

From these considerations we deduce

Theorem 2. Let g : [0, 1]× E → E satisfy

ϕ(g(t, x)) ≥ −µ(t)d(x)(7)

if t ∈ (0, 1), x 6∈ K, ϕ ∈ K?, ϕ(x) = −d(x), ‖ϕ‖ = 1, where µ has prop-
erty (P). If w : [0, 1] → E is continuous with w(0) ≥ 0, w(1) ≥ 0 and
w′′(t) + g(t, w(t)) ≤ 0 if w(t) 6∈ K, then w(t) ≥ 0 (t ∈ [0, 1]).
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Proof. For δ defined as above and ϕ chosen such that (?) holds we get,
in case δ(t) > 0,

D2δ(t) ≥ −ϕ(w′′(t)) ≥ ϕ(g(t, w(t))) ≥ −µ(t)δ(t),

which (together with δ(0) = δ(1) = 0) implies δ(t) ≤ 0, so w(t) ∈ K
(t ∈ [0, 1]).

In order to give sufficient conditions for (7) to hold, consider

t ∈ (0, 1), x ∈ ∂K, ϕ ∈ K?, ϕ(x) = 0 ⇒ ϕ(g(t, x)) ≥ 0(8)

(g is weakly inward with respect to K), and

(9) t ∈ (0, 1), x0 ∈ ∂K, x 6∈ K,
ϕ ∈ K?, ‖ϕ‖ = 1, ϕ(x− x0) = −‖x− x0‖

⇒ ϕ(g(t, x)− g(t, x0)) ≥ −µ(t)‖x− x0‖
(this condition is a weakened one-sided Lipschitz condition).

Lemma 1. Conditions (8) and (9) imply (7) under each of the following
additional conditions:

(i) K is a distance set.
(ii) E is complete.

Proof. To prove (i), choose x 6∈ K and ϕ ∈ K? such that ϕ(x) = −d(x),
‖ϕ‖ = 1. Choose a nearest point x0 ∈ ∂K. Then ϕ(x0) = 0, so ϕ(g(t, x0))
≥ 0, and finally

ϕ(g(t, x)) ≥ ϕ(g(t, x)− g(t, x0)) ≥ −µ(t)‖x− x0‖,
as asserted.

If E is complete, by an adaptation of Lemma 2 in [7] to our situation,
for x 6∈ K, ϕ ∈ K? such that ‖ϕ‖ = 1, ϕ(x) = −d(x) and for each ε > 0
there are ϕ0 ∈ K? and x0 ∈ ∂K such that

‖ϕ0‖ = 1, ‖ϕ0 − ϕ‖ ≤ ε, ϕ0(x0) = 0, ‖x− x0‖ < d(x) + ε.

Then

ϕ(g(t, x)) ≥ ϕ0(g(t, x))− ε‖g(t, x)‖
≥ ϕ0(g(t, x)− g(t, x0))− ε‖g(t, x)‖
≥ −µ(t)‖x− x0‖ − ε‖g(t, x)‖
≥ −µ(t)d(x)− ε|µ(t)| − ε‖g(t, x)‖,

and ε→ 0 proves the assertion.

Remarks. 1. The need for additional conditions in Lemma 1 stems from
the fact that in general a convex subset of an incomplete space need not have
any supporting point (cf. [8]).
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2. If K is normal and IntK 6= ∅, then the Minkowski functional of the
order interval [−p, p] (p a fixed interior point of K) is an equivalent norm,
and with respect to this norm K is a distance set: for x 6∈ K, x+ d(x)p is a
nearest point in K. Then (see [4]) if A(t) is quasimonotone increasing, then
A(t)p ≤ µ(t)p, ‖ϕ‖ = 1, ϕ(x) = −‖x‖ imply ϕ(A(t)x) ≥ −µ(t)‖x‖, so (9)
and a fortiori (7) hold.

In order to apply Theorem 2 to (3), (4) and (5), set

g(t, x) = f(t, u(t) + x)− f(t, u(t)) (t ∈ (0, 1), x ∈ E)

and
w(t) = v(t)− u(t) (t ∈ [0, 1]).

Then w(0) ≥ 0, w(1) ≥ 0, w′′(t) + g(t, w(t)) ≤ 0 (t ∈ (0, 1)), and g satis-
fies (8) if f is quasimonotone increasing. If furthermore f satisfies a one-sided
Lipschitz condition (we do not insist on giving best possible conditions here)
then

(10) t ∈ (0, 1), x, x0 ∈ E, ϕ ∈ E?, ‖ϕ‖ = 1, ϕ(x− x0) = −‖x− x0‖
⇒ ϕ(f(t, x)− f(t, x0)) ≥ −µ(t)‖x− x0‖,

then (9) holds for g. Therefore we have

Theorem 3. Let f : (0, 1) × E → E be quasimonotone increasing and
satisfy (10), where µ has property (P). Then (3), (4) and (5) imply u(t) ≤
v(t) (t ∈ [0, 1]) if K is a distance set or E is complete.

For later purposes we emphasize that (10) holds if f satisfies the Lipschitz
condition (L) of the next section.

4. An existence theorem. By means of the monotonocity results we
are able to prove an existence theorem for the Dirichlet boundary value
problem

y′′(t) + f(t, y(t)) = 0 (t ∈ (0, 1)),(11)

y(0) = y(1) = 0.(12)

In case E = Rn, a rather complete dicussion of (11), (12) may be found
in Hartman [3], where a certain dependence of f on y′(t) is allowed; here
especially the theorems of Scorza Dragoni, Nagumo and Lettenmeyer should
be mentioned. These theorems have been generalized to general Banach
spaces by many authors (cf. [1]), where compactness conditions (or more
general conditions involving measures of noncompactness) were involved,
the main tool being Schauder-type fixed point theorems. Below, we will
make use of a variant of Tarski’s theorem.

Let us start with the case where f satisfies a Lipschitz condition with
respect to its second variable. We say that µ : [0, 1]→ R has property (P0)
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if it is continuous and

λ′′(t) + µ(t)λ(t) ≤ 0

has a positive solution in C2([0, 1]). Clearly, (P0) implies (P). Again, a
constant µ(t) ≡ µ0 has property (P0) iff µ0 < π2, but there are noncon-
stant (even positive) functions µ having property (P0) with arbitrarily large
maximum (cf. [2], Chapter 4). Also, µ(t) ≤ π2, µ 6≡ π2 is sufficient for
µ to have property (P0), and finally a continuous µ has property (P0) if
λ′′(t) + µ(t)λ(t) = 0 is disconjugate on [0, 1] (cf. Hartman [3], Chapter XI,
Corollary 6.1).

Lemma 2. Let E be complete, f : [0, 1] × E → E be continuous and
satisfy

(L) ‖f(t, x)− f(t, x)‖ ≤ µ(t)‖x− x‖ (t ∈ [0, 1], x, x ∈ E),

where µ has property (P0). Then (11), (12) has a unique solution y.
If furthermore λ is chosen according to property (P0), then

‖y(t)‖ ≤ Cλ max
t∈[0,1]

‖f(t, 0)‖ (t ∈ [0, 1]),

where the constant Cλ depends only on λ, and

‖y′(t)‖ ≤ Dλ,µ max
t∈[0,1]

‖f(t, 0)‖ (t ∈ [0, 1]),

where the constant Dλ,µ depends only on λ and µ.

Proof. We apply Banach’s Fixed Point Theorem in C([0, 1], E) using the
weighted maximum norm

‖x‖λ = max
t∈[0,1]

‖x(t)‖
λ(t)

,

where λ is chosen according to property (P0). We rewrite (11), (12) as

y(t) =
1�

0

G(t, s)f(s, y(s)) ds =: T (y)(t) (t ∈ (0, 1)),

where

G(t, s) =
{
s(1− t) (0 ≤ s ≤ t ≤ 1),
t(1− s) (0 ≤ t ≤ s ≤ 1)

is Green’s function. Then in (0, 1),

λ(t) = λ(0)(1− t) + λ(1)t−
1�

0

G(t, s)λ′′(s) ds,
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so for x, x ∈ C([0, 1], E),

‖T (x)(t)− T (x)(t)‖ ≤
1�

0

G(t, s)‖f(s, x(s))− f(s, x(s))‖ ds

≤
1�

0

G(t, s)µ(s)λ(s)‖x− x‖λ ds

= ‖x− x‖λ(λ(t)− (λ(0)(1− t) + λ(1)t)).

Therefore
‖T (x)− T (x)‖λ ≤ qλ‖x− x‖λ

where

qλ = max
t

{
1− λ(0)(1− t) + λ(1)t

λ(t)

}
< 1,

so T is a contraction with respect to the norm ‖ · ‖λ and thus has a unique
fixed point y which solves (11), (12). Finally,

‖y‖λ ≤
‖T (0)‖λ
1− qλ

,

and from this inequality appropriate constants Cλ and Dλ,µ may easily be
calculated.

The space C([0, 1], E) may be ordered by the cone

KC = {x | x(t) ∈ K (t ∈ [0, 1])};
set (with a fixed l ≥ 0)

Λl = {x | x ∈ C([0, 1], E), x(0) = x(1) = 0,

‖x(t)− x(s)‖ ≤ l|t− s| (t, s ∈ [0, 1])}.
In order to apply a variant of Tarski’s Fixed Point Theorem we consider the
following condition (H) (see [6]) concerning the cone K:

(H) each chain in Λl has a supremum in C([0, 1], E).

(For a discussion of this property see Volkmann [10].)
The Fixed Point Theorem mentioned above reads as follows (see [6]):

Fixed Point Theorem. Let M be a partially ordered set , Φ : M →M
increasing and such that each chain in Φ(M) has a supremum in M . If there
is v ∈M with v ≤ Φ(v) then Φ has a fixed point x0 such that v ≤ x0.

We are now in a position to prove the following

Existence Theorem. Let E be complete and let K have property (H).
Suppose that

(i) there exists v ∈ C2([0, 1], E) such that

v′′(t) + g(t, v(t)) + h(t, v(t)) ≥ 0 (t ∈ [0, 1]), v(0) ≤ 0, v(1) ≤ 0,
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(ii) g : [0, 1] × E → E is quasimonotone increasing and satisfies the
conditions of Lemma 2,

(iii) h : [0, 1]×E → E is continuous, bounded and increasing with respect
to its second variable on

mv = {(t, x) | t ∈ [0, 1], v(t) ≤ x}.
Then problem (11), (12) with f = g + h has a solution y ≥ v.

Proof. We will apply the Fixed Point Theorem in

Mv = C([0, 1], E) ∩ {x | v(t) ≤ x(t) (t ∈ [0, 1])},
ordered by KC . Choose λ according to property (P0) and define Φ : Mv →
Mv by y = Φ(x), where y is the solution of

y′′(t) + g(t, y(t)) + h(t, x(t)) = 0, y(0) = y(1) = 0,

by Lemma 2, where f(t, ·) = g(t, ·) + h(t, x(t)). Then if η denotes a bound
for h on mv, we have

‖y′(t)‖ ≤ Dλ,µ( max
t∈[0,1]

‖g(t, 0)‖+ η) =: l,

so
Φ(x) ∈ Λl

for each x ∈Mv by the Mean Value Theorem. Furthermore, Φ is increasing
since x1 ≤ x2 implies

Φ(x2)′′(t) + g(t, Φ(x2)(t)) + h(t, x1(t))

≤ Φ(x2)′′(t) + g(t, Φ(x2)(t)) + h(t, x2(t)) = 0

= Φ(x1)′′(t) + g(t, Φ(x1)(t)) + h(t, x1(t)),

so Φ(x1) ≤ Φ(x2) according to Theorem 3, applied to f(t, ·) = g(t, ·) +
h(t, x1(t)). Finally, by a similar reasoning, Φ(v) ≥ v, so the Fixed Point
Theorem applies.

Remarks. 1. The following example may be considered in various
spaces of real sequences: Let g = 0 and h = (hn)n∈N be defined by

hn(t, x) = π2 min{max{0, xn}, 1}+ 1/n (t ∈ [0, 1], x = (x1, x2, . . .)).

Then h is continuous, bounded and increasing in c0 (the space of all zero
sequences), in c (the space of all convergent sequences), and in l∞(N), all
equipped with the supremum norm and the natural cone. Then g+h satisfies
the conditions of the Existence Theorem (in (iii) one may choose v = 0),
and (H) holds in l∞(N) but neither in c nor in c0; in the latter case, (11),
(12) has no solution, whereas in l∞(N) there are infinitely many solutions.
Of course, this example might be modified in various ways, e.g., g may
be chosen to satisfy (i), π2 may be replaced by an arbitrary nonnegative
constant and (1/n)n∈N by a suitable sequence.
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2. Condition (iii) holds if: There exists p ∈ K such that

h(t, x) ≥ p (t ∈ [0, 1], x ∈ E).

Then v may be chosen as the solution of v′′(t) + g(t, v(t)) + p = 0, v(0) =
v(1) = 0. Such a p exists if IntK 6= ∅.

3. If there is also w ∈ C2([0, 1], E) such that

w′′(t) + g(t, w(t)) + h(t, w(t)) ≤ 0 (t ∈ [0, 1]), w(0) ≥ 0, w(1) ≥ 0

and v ≤ w, then condition (iii) is only needed on

mv,w = {(t, x)|t ∈ [0, 1], v(t) ≤ x ≤ w(t)};
the Fixed Point Theorem may then be applied with

Mv,w = C([0, 1], E) ∩ {x|v(t) ≤ x(t) ≤ w(t) (t ∈ [0, 1])}
and gives a solution y such that v ≤ y ≤ w.

5. An example. Let E = l∞(Z×Z) equipped with the supremum norm
and let K denote the natural cone, which has property (H). Let ∆ : E → E
be defined by

(∆x)i,j = xi+1,j + xi−1,j + xi,j+1 + xi,j−1 − 4xi,j , x = (xi,j) (i, j ∈ Z),

and by means of an increasing, continuous, bounded function h0 : R → R
set

(h(x))i,j = h0(xi,j) (i, j ∈ Z).

∆ is quasimonotone increasing since it is the sum of an increasing func-
tion and a scalar multiple of the identity, and Lipschitz continuous with
constant 8; h : E → E is continuous and monotone increasing. Consider

y′′(t) + µ(t)∆y(t) + h(y(t)) = r(t) (t ∈ [0, 1]), y(0) = y(1) = 0,

where µ ≥ 0, 8µ has property (P0) and r : [0, 1]→ E is continuous. Choose
r0 and r0 such that

r0 ≤ ri,j(t) ≤ r0 (i, j ∈ Z, t ∈ [0, 1]),

and functions v0, w0 ∈ C2([0, 1],R) such that v0 ≤ w0,

v0(0) ≤ 0 ≤ w0(0), v0(1) ≤ 0 ≤ w0(1),

v′′0(t) + h0(v0(t))− r0 ≥ 0 ≥ w′′0 + h0(w0(t))− r0 (t ∈ [0, 1])

(this may be done in many ways), and set vi,j(t) = v0(t), wi,j(t) = w0(t).
Then the Existence Theorem (together with Remark 3 following it) is ap-
plicable and gives a solution of the above boundary value problem.
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