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Invariance of domain in o-minimal structures

by Rafał Pierzchała (Kraków)

Abstract. The aim of this paper is to prove the theorem on invariance of domain in
an arbitrary o-minimal structure. We do not make use of the methods of algebraic topology
and the proof is based merely on some basic facts about cells and cell decompositions.

1. Preliminaries. For the convenience of the reader we recall some
notions and facts on o-minimal structures (cf. [1]).

(1.1) A linearly ordered set R is called dense if for all a, b ∈ R with a < b
there is c ∈ R such that a < c < b. Let (R,<) be a dense linearly ordered
set without endpoints, that is, R has no largest or smallest element. We add
two endpoints −∞,+∞ satisfying −∞ < a < +∞ for all a ∈ R and define
open and closed intervals respectively by

(a, b) = {x ∈ R | a < x < b} where −∞ ≤ a < b ≤ +∞,
[a, b] = {x ∈ R | a ≤ x ≤ b} where −∞ < a < b < +∞.

We take R equipped with the order topology. By an open box in Rn we will
mean the cartesian product of n open intervals. Then open boxes form the
base of a topology in Rn.

(1.2) Let (R,<) be a dense linearly ordered nonempty set without end-
points.

Definition. An o-minimal structure on R is a sequence S = (Sn)n∈N
such that for each n:

1. Sn is a boolean algebra of subsets of Rn;
2. If A ∈ Sn, then A×R and R×A belong to Sn+1;
3. {(x1, . . . , xn) ∈ Rn | x1 = xn} ∈ Sn;
4. If A ∈ Sn+1, then π(A) ∈ Sn, where π : Rn+1 → Rn is the projection

on the first n coordinates;
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5. {(x, y) ∈ R2 | x < y} ∈ S2;
6. The sets in S1 are exactly finite unions of intervals and points.

(1.3) We shall now recall an example of an o-minimal structure on the
ordered set R of real numbers. A semialgebraic subset of Rn is a subset
defined by a finite system of polynomial equations and inequalities with
real coefficients. By the Tarski–Seidenberg theorem the semialgebraic sets
satisfy axiom 4 in the definition above. The remaining axioms are obviously
fulfilled, so the semialgebraic sets form an o-minimal structure.

(1.4) From now on we fix an o-minimal structure S on R. Let A ⊂ Rn

and f : A → Rm. We say A is definable if A ∈ Sn. We say the map f
is definable if its graph Γ (f) ⊂ Rn+m is definable. If f is definable, then
the domain A of f and its image f(A) are also definable. Moreover, if f is
injective, its inverse f−1 is definable.

(1.5) If A ⊂ Rn is definable, so are its closure, interior, boundary and
frontier, where the frontier of A is ∂A = A \ A.

(1.6) A set X ⊂ Rn is called definably connected if X is definable and X
is not the union of two disjoint nonempty definable open subsets of X. Of
course, an interval is definably connected. A definably connected component
of a definable set X ⊂ Rn is, by definition, a maximal definably connected
subset of X.

(1.7) For each definable set X ⊂ Rn we put

C(X) = {f : X → R | f is definable and continuous}.
Let C∞(X) = C(X)∪{−∞,+∞}, where we regard −∞ and +∞ as constant
functions on X. For f, g in C∞(X) we write f < g if f(x) < g(x) for all
x ∈ X, and in this case we put

(f, g) = {(x, r) ∈ X ×R | f(x) < r < g(x)}.
(1.8) Definition. Let (i1, . . . , in) be a sequence of zeros and ones of

length n. An (i1, . . . , in)-cell is a definable subset of Rn obtained by induc-
tion on n as follows:

• a (0)-cell is a point {r} ⊂ R, a (1)-cell is an interval (a, b) ⊂ R;
• suppose (i1, . . . , in)-cells are already defined; then an (i1, . . . , in, 0)-cell

is the graph Γ (f) of a function f ∈ C(X), where X is an (i1, . . . , in)-cell;
further, an (i1, . . . , in, 1)-cell is a set (f, g), where f, g ∈ C∞(X), f < g and
X is an (i1, . . . , in)-cell.

A cell in Rn is an (i1, . . . , in)-cell for some sequence (i1, . . . , in). We call
(1, . . . , 1)-cells open cells.

(1.9) Definition. A cell decomposition of Rn is a partition of Rn into
finitely many cells defined inductively as follows:
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• a cell decomposition of R1 = R is a collection

{(−∞, a1), (a1, a2), . . . , (ak,+∞), {a1}, . . . , {ak}}
where a1 < . . . < ak are points in R;
• a cell decomposition of Rn+1 is a finite partition of Rn into cells A

such that the set of projections π(A) is a cell decomposition of Rn.

(1.10) Cell Decomposition Theorem [1]. Given a finite collection of
definable sets in Rn there is a cell decomposition of Rn partitioning each of
them.

(1.11) We define the dimension of a nonempty definable set X ⊂ Rn by

dimX = max{i1 + . . .+ in | X contains an (i1, . . . , in)-cell}.
To the empty set we assign the dimension −∞.

A nonempty definable set X ⊂ Rn is called purely k-dimensional if for
each nonempty definable open subset U ⊂ X we have dimU = dimX = k.

(1.12) Theorem [1]. Let X be a nonempty definable subset of Rn. Then
dim∂X < dimX.

(1.13) A stratification of Rn is a partition T of Rn into finitely many
cells such that for each cell A ∈ T , ∂A is a union of cells of T .

(1.14) Theorem [1]. Given any definable sets A1, . . . , Ak ⊂ Rn there is
a stratification of Rn partitioning each of A1, . . . , Ak.

(1.15) Theorem [2]. If f : X → Rn is a definable map on a closed
bounded set X ⊂ Rm, then f(X) is closed and bounded in Rn.

(1.16) Theorem [1]. If X ⊂ Rn, Y ⊂ Rm are definable and there is a
definable bijection between X and Y , then dimX = dimY .

(1.17) Corollary. Let f : A1 → A2 be a definable continuous bijection,
where A1 is a purely k-dimensional subset of Rn and A2 ⊂ Rm. Then A2

is a purely k-dimensional subset of Rm.

2. Some properties of cells. In this section we prove some lemmas
on cells. In the proofs we assume that if a cell θ is of the form (f, g), then
f, g ∈ C(π(θ)). We do not consider cells of the form (−∞, f), (f,+∞),
X × R, because the corresponding proofs are simple modifications of the
cases handled below.

(2.1) Lemma. If G is an open cell in Rn, then intG = G.

Proof. The lemma is clear for n = 1. Let n > 1 and assume inductively
the lemma holds for n− 1. Take G = (f, g) with f, g ∈ C(Ω), where Ω is an
open cell in Rn−1. We have G = [G ∩ ((Ω \Ω) × R)] ∪G ∪ Γ (f) ∪ Γ (g). If
x ∈ intG, then x ∈ W ⊂ G, where W is an open set in Rn. Clearly, π(W )
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is open in Rn−1 and π(x) ∈ π(W ) ⊂ Ω, so π(x) ∈ intΩ. By the induction
hypothesis π(x) ∈ Ω. Therefore x ∈ G and intG ⊂ G. The reverse inclusion
is trivial.

(2.2) Lemma. Let θ ⊂ Rn be a cell with dim θ = n − 1 and let G be
an open cell such that θ ⊂ ∂G. Then there is a definable set Z ⊂ θ such
that dimZ < n− 1 and for each a ∈ θ \Z there exist arbitrarily small open
boxes K satisfying the following condition: a ∈ K and K \ θ has exactly
two definably connected components K1,K2, both open in Rn and K1 ⊂ G,
K2 ∩G = ∅.

Proof. By induction on n. The case n = 1 is obvious. Suppose n > 1
and that the lemma holds for n− 1.

Case 1: The cell θ is of the form (ϕ,ψ) with ϕ,ψ ∈ C(π(θ)). One checks
easily that π(θ) ⊂ ∂π(G). By the induction hypothesis applied to the cells
π(θ) and π(G) there is a definable set Z ′ ⊂ π(θ) satisfying the required
conditions. We put Z = θ ∩ [Γ (f) ∪ Γ (g) ∪ (Z ′ × R)] with f, g ∈ C(π(G))
such that G = (f, g). Clearly, Z = θ ∩ [∂Γ (f) ∪ ∂Γ (g) ∪ (Z ′ × R)], so
dimZ < n − 1. Let a ∈ θ \ Z and let L be an open box such that a ∈ L
and L ∩ [Γ (f) ∪ Γ (g)] = ∅. We may assume that L is arbitrarily small and
π(L \ θ) ∩ π(θ) = ∅ (replacing L by a smaller box, if necessary). We have
π(a) ∈ π(θ) \ Z ′, so there is an open box K ′ in Rn−1 such that π(a) ∈ K ′
and K ′ \ π(θ) has exactly two definably connected components K ′1, K

′
2,

both open in Rn−1 and K ′1 ⊂ π(G), K ′2 ∩ π(G) = ∅. Since K ′ can be chosen
arbitrarily small, we may assume that K ′ ⊂ π(L). We put K = K ′ × I,
K1 = K ′1 × I, K2 = K ′2 × I, where I is an interval such that L = π(L)× I.
One easily verifies that the box K has the required property.

Case 2: The cell θ is of the form Γ (ϕ), ϕ ∈ C(π(θ)). We have G =
(f, g) with f, g ∈ C(π(G)) and π(θ), π(G) are open cells in Rn−1. Note that
π(θ) ⊂ intπ(G). Hence by (2.1), π(θ) ⊂ π(G) and either ϕ = f |π(θ) or
ϕ = g|π(θ). The rest of the proof is now straightforward. In this case we can
take Z = ∅.

(2.3) Remark. In general, we cannot expect to have Z = ∅ in the pre-
vious lemma. Consider a semialgebraic map f : R× (0,+∞)→ R such that
Γ (f) = Γ (g1) ∪ Γ (g2) with

g1 : [0,+∞)× (0,+∞) 3 (x, y) 7→ x/y ∈ R,
g2 : (−∞, 0]× (0,+∞) 3 (x, y) 7→ −x/y ∈ R.

We put G = (−∞, f) and θ = R× {0} × R.

(2.4) Lemma. Let G and H be disjoint open cells in Rn and let θ be
a cell of dimension n − 1 contained in ∂G ∩ ∂H. Then there is a definable
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set Z ⊂ θ such that dimZ < n − 1 and (θ \ Z) ∪ G ∪H is open in Rn. In
particular θ \ Z ⊂ intG ∪H.

Proof. Applying Lemma (2.2) twice: to the cells θ,G and then to θ,H,
we obtain definable sets Z1, Z2. We put Z = θ∩(Z1 ∪ Z2). One checks easily
that the set Z satisfies the requirements.

(2.5) Lemma. Let T be an open cell in Rn and let θ be a cell of dimension
n− 1 contained in ∂T . Then there are no disjoint open cells G,H contained
in T such that θ ⊂ ∂G ∩ ∂H.

Proof. Suppose there are disjoint open cells G,H contained in T such
that θ ⊂ ∂G∩∂H. By (2.4), θ∩ intG ∪H 6= ∅ and hence θ∩ intT 6= ∅. This
is a contradiction, because intT = T .

(2.6) Lemma. Let V be an open box in Rn and let Ω ⊂ V be an open
definable set which is not definably connected. Suppose C is a cell decompo-
sition of Rn partitioning V and Ω. Then there is a cell θ ∈ C of dimension
n− 1 such that θ ⊂ V \Ω.

Proof. By induction on n, the case n = 1 being trivial. Suppose the
lemma holds for n − 1, where n > 1. We have V = V ′ × I with V ′ a box
in Rn−1 and I an interval. By the assumption Ω = Ω1 ∪ Ω2 with Ω1, Ω2

nonempty definable open subsets of Rn such that Ω1 ∩Ω2 = ∅.
Case 1: π(Ω1) ∩ π(Ω2) 6= ∅. There is a cell θ′ ∈ C′ of dimension n − 1

such that θ′ ⊂ π(Ω1) ∩ π(Ω2), where C′ denotes the corresponding cell
decomposition of Rn−1. Clearly, for some cell θ ∈ C of dimension n − 1 we
have θ ⊂ V \Ω.

Case 2: π(Ω1) ∩ π(Ω2) = ∅. Applying the induction hypothesis to V ′

and π(Ω) we get a cell θ′ ⊂ V ′ of dimension n− 2 such that θ′ ∩ π(Ω) = ∅.
There is a cell θ ∈ C of dimension n − 1 such that π(θ) = θ′ and θ ⊂ V .
Obviously, θ ∩Ω = ∅.

3. Main result

Theorem. Let Ω1 be an open definable subset of Rn and let f : Ω1→Ω2

be a definable homeomorphism onto a definable set Ω2 ⊂ Rn. Then Ω2 is
open in Rn.

Proof. Given a ∈ Ω1 we have to show that b = f(a) ∈ intΩ2. Let K
be a closed box in Rn (i.e. a cartesian product of n closed intervals) such
that a ∈ intK and K ⊂ Ω1. Note first that by (1.15), f(K) is closed and
bounded in Rn.

We take a stratification C of Rn that partitions f(K). Let A be a col-
lection of all open cells A ∈ C such that b ∈ A. We define F = {A ∈ A |
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A ⊂ f(K)}. Since f(K) is a purely n-dimensional set (cf. (1.17)), it follows
that F 6= ∅. Suppose now that b 6∈ int f(K). Note that then A \ F 6= ∅.

Claim. There exist G ∈ F , H ∈ A \ F and a cell θ ∈ C of dimension
n− 1 such that b ∈ θ and θ ⊂ ∂G ∩ ∂H.

To see this, let V be an open box containing b and disjoint from any cell
A ∈ C such that b 6∈ A. We put V1 =

⋃{A | A ∈ F}, V2 =
⋃{A | A ∈ A\F}.

By (2.6), dim(V \Ω) = n−1, where Ω = V ∩ (intV 1 ∪ intV 2). Let θ ∈ C be
a cell such that dim[(V \Ω)∩θ] = n−1. Suppose the cell θ does not have the
required property. Then θ ⊂ ∂G1 ∩ ∂G2, where G1 6= G2 and G1, G2 ∈ F
or G1, G2 ∈ A \ F . By Lemma (2.4), dim[(V \Ω) ∩ θ] < n− 1 and this is a
contradiction.

Using (2.4) one easily checks that θ ∩ ∂A = ∅ whenever A ∈ F and
A 6= G. Let C′ be a stratification of Rn partitioning f−1(A) for all A ∈ C.
So f−1(θ) is a purely (n − 1)-dimensional set (cf. (1.17)), hence there is a
cell θ′ ∈ C′ of dimension n − 1 such that a ∈ θ′ and θ′ ⊂ f−1(θ). Clearly,
θ′ ⊂ ∂G′ for some open cellG′ ⊂ f−1(G). Now we use the fact that a ∈ intK
to conclude that there is an open cell B ∈ C ′ such that B 6= G′, B ⊂ K
and θ′ ⊂ ∂B (cf. (2.2)). It is routine to check that B ⊂ f−1(G). Taking a
stratification of Rn partitioning f(θ′), f(G′), f(B) we obtain a contradiction
with Lemma (2.5).
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