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Cross theorem

by MAREK JARNICKI (Krakéw) and PETER PFLUG (Oldenburg)

Abstract. Let D,G C C be domains, let A C D, B C G be locally regular sets, and
let X := (DxB)U(AXG@). Assume that A is a Borel set. Let M be a proper analytic subset

of an open neighborhood of X. Then there exists a pure 1-dimensional analytic subset M
of the envelope of holomorphy X of X such that any function separately holomorphic on
X \ M extends to a holomorphic function on X \ M. The result generalizes special cases
which were studied in [Okt 1998], [Okt 1999], and [Sic 2000].

1. Introduction. Main result. For domains D ¢ C*, G € C™ and
non-pluripolar subsets A C D, B C G, define the cross

(%) X =X(D,A;G,B) .= (D x B)U(A x Q)
(notice that X is connected). Let U C D x G be an open connected neigh-
borhood of X and let M be an analytic subset of U, M # U. Put

M, ={weG:(z,w)e M}, ze€D,

MY :={z€eD:(z,w)e M}, weQG.
We say that a function f: X \ M — C is separately holomorphic on X \ M
(f € O(X\ M)) if

Viea mzc : [(2,)) € O(G\ M), Vuwep mozp: f(-,w) € O(D\ M"™).
For an open set {2 C C™ and A C {2 put
hagq:=sup{u:u e PSH(2), u<1lon 2, u<0on A},

where PSH(S2) denotes the set of all functions plurisubharmonic on 2.
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Define
- —_— 1 *
WA,0 = klggo hana,, o
where (£2;)72, is a sequence of relatively compact open sets (25, C (2,11 CC

2 with Uy~ 2% = 2 (h* denotes the upper semicontinuous regularization
of h). Note that the definition is independent of the approximation sequence

(£2)82 -
For a cross (*) put
() X :={(z,w) € DX G :wap(z)+wpaw) <1}.

We say that a subset A C C" is locally pluriregular if iy, o(a) = 0 for
any a € A and for any open neighborhood {2 of a (in particular, A N (2 is
non-pluripolar). As always, if n = 1, then we say that A is locally “regular”
instead of “pluriregular”.

The main result of the paper is the following

THEOREM 1. Let D,G C C be domains, let A C D, B C G be locally
reqular sets, and let X := (D x B) U (A x G). Assume that A is a Borel
set. Let M be a proper analytic subset of an open connected neighborhood
U of X. Then there exists a pure 1-dimensional analytic subset M of X
(X is given by (xx)) such that for any f € Os(X \ M) there exists exactly
one f € O(X\ M) with f = f on X\ (M UDM).

Moreover, if U = X and M is pure 1-dimensional, then the above con-
dition is satzsﬁed by M:=M.

REMARK. Consider the following general problem. Let D; C C™ be a
domain of holomorphy and let A; C D; be a locally pluriregular Borel set,
j=1,...,N. Define the generalized cross

= (A1 X...xAN_1 XDy)U...U(DyxAax...xAy) CC™ x...xC"V.

Let U C Dy X ... x Dy be a connected neighborhood of X and let M C U
be a proper analytic set. A function f: X \ M — C is said to be separately
holomorphic (f € Os(X \ M)) if for any (a1,...,an) € A1 X ... x Ay and
ke {1,...,N} the function f(ai,...,ax—1,+,ak+1,--.,an) is holomorphic
in the domain {zy € Dy : (a1,...,ak-1, 2k, Qk+1,--.,an) & M}. Define

X:={(z1,...,28) €D1 x ... X Dy :wa,.p,(z1) + ... +wan.px (25) < 1}.
CoNJECTURE (!). There exists a pure 1-codimensional analytic subset
M C X such that for any f € Os (X \ M) there exists an f € (’)(X \ M)

with f = f on X \ (MU M) Moreover, M = M if U = X and M is pure
1-codimensional. Compare also [Okt 1999] (for N = 2 and U = X).

(1) Added in proof: Cf. M. Jarnicki, P. Pflug, An extension theorem for separately
holomorphic functions with singularities, IMUJ Preprint 2001/27 (2001).
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Theorem 1 solves the case N =2, n; =ny = 1.

J. Siciak [Sic 2000] solved the following case: ny = ... =ny =1, D =
... =Dy = C, M = P71(0), where P is a non-zero polynomial of N
complex variables; the special subcase N = 2, P(z,w) := z — w had been
previously studied in [Okt 1998].

The case studied in [Sic 2000] is the only known case with n; +...+ny
> 2. In the general case, the answer is not known even if U = X and M is
pure 1-codimensional.

2. Auxiliary results. The following lemma gathers a few standard
results which will be used in what follows.

LeMMA 2 (cf. [KLi 1991], [Jar-Pfl 2000], §3.5). (a) Let 2 C C" be a
bounded open set and let A C 2. Then:

o [f P C C"™ is pluripolar, then hjzl\P,_Q =h} o
® N now2. N\ P g (pointwise on §2) for any sequence of open sets
r /" 2 and any sequence Ay, /' A.

Cwan = h*A,Q.

e The following two conditions are equivalent:
(i) for any connected component S of §2 the set ANS is non-pluripolar;
(ii) Ay o(2) <1 for any z € (2.

e If A is non-pluripolar, 0 < a <1, and 24 := {2 € 2: 1} 5(2) < a},

then for any connected component S of (2, the set AN S is non-pluripolar
(in particular, AN S # ().

(b) Let £2 C C™ be an open set and let A C (2. Then:

e WwaE PSH(Q)

o If A is locally pluriregular, then wa o(a) =0 for any a € A.

o If P C C" is pluripolar, then w\p o = wa,n-

e If A is locally pluriregular and P C C™ is pluripolar, then A\ P
1s locally pluriregular.

(c) Let X =X(D, A;G, B) be a cross as in (x). Then:

o If A and B are locally plurireqular, then X C )?.A
e If D and G are domains of holomorphy, then X is a region of
holomorphy.

LEMMA 3. Let X =X(D, A;G, B) be a cross as in (x). If A and B are

~

locally pluriregular, then X is a domain.

Proof. It suffices to show that for any approximation sequences Dy /' D,
Gy /" G of relatively compact subdomains with AN Dy # (), BN Gy # 0,
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k € N, the sets

Xy = {(z,w) € Dy x Gy, : thDkka(Z) + h*BﬂGk,Gk (w) < 1}, keN,
are connected. Thus, we may assume that D and G are bounded. Since the
cross X is connected and contained in X, we only need to prove that for
any (zp,wp) € X, each connected component of the fiber

X" :={z€D:(z,w) € X} ={z€D:hyp(2) <1—hpqlwo)}

intersects A. If h o(wo) = 0, then Xwo = D.If hp c(wo) > 0, then we
apply Lemma 2(a). m

THEOREM 4 (Classical cross theorem, cf. [Ngu-Zer 1991]). Let X =
X(D, A; G, B) be as in (x). Assume that:

e D, G are domains of holomorphy,
e A, B are locally pluriregular,
e A is a Borel set.

Then for any f € Os(X) there exists exactly one fe (’)()?) with f: fonX.

THEOREM 5 (Dloussky—Grauert-Remmert theorem, cf. [Jar-Pfl 2000],
§3.4). Let 2 C C™ be a domain and let M be an analytic subset of 2. Let

2 be the envelope of holomorphy of (2 (univalent or not). Then there exists a
pure 1-codimensional analytic subset M C © uch that for any g € O(2\ M)
there exists g € (’)((AZ\]\?) with g =g on 2\ (M U ]\/Z)

If, moreover, M = 2N M, where M is a pure 1-codimensional analytic
subset of (2, then the above condition is satisfied by M := M.

LEMMA 6. Let D,G C C be domains, let A C D, B C G be locally
reqular sets, and let X := X(D, A; G, B). Let M be a proper analytic subset
of an open connected neighborhood U of X. Assume that A’ C A, B’ C B
are such that:

e A\ A" and B\ B’ are polar (in particular, A’, B’ are also locally
reqular),
o M, #G for any z € A" and M™ # D for any w € B’.

(a) If f € Os(X\ M) and f =0 on (A" x B')\ M, then f =0 on
X\ M.

(b) If g € O(U\ M) and g = 0 on (A" x B')\ M, then g = 0 on
U\ M.

Proof. (a) Take a point (ag,bp) € X \ M. We may assume that ag € A.
Since A\ A’ is polar, there exists a sequence (a;)72; C A’ such that ai, — ao.
The set Q := Uyey My, is at most countable. Consequently, the set B” :=
B’\ Q is non-polar. We have f(ax,w) =0 for allw € B"”, k=1,2,... Hence
f(ag,w) =0 for any w € B”. Finally, f(ag,w) =0 on G\ M,, > bo.
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(b) Take an ag € A’. Since M,, # G, there exists a by € B’ \ M,,.
Let P = A (r) X Ap,(r) C U\ M (A, (r) denotes the disc with center zg
and radius r). Then g(-,w) = 0 on A’ N A, (r) for any w € B’ N Ay, (7).
The set A’ N A, (r) is non-polar. Hence g(-,w) = 0 on A, (r) for any
w € B'N Ay, (r). By the same argument for the second variable we get g = 0
on P and, consequently, on U. =

3. Proof of the main theorem

STEP 1. Fix sequences Dy /" D, Gy / G of relatively compact subdo-
mains with Dy CC Dgy1, ANDy # 0, G, CC Gry1, BNGr #0, k€ N.

For any a € A such that M, # G we perform the following construction:

Fixak € N, k> 2. Let M,NGy = {b1,...,by}. Fix domains G' = G|, ;,
G’ = Gg’k such that Gy,_1 cC G” cc G’ cC G, and by,...,by € G".
Take positive numbers 9§, €, n > € such that

e A,(0) CC D,

oAy (n)CcCG”,j=1,...,N,

b Abz(n)mAbj(n) = ®7 Z?] = ]'?"'7N7 Z#j?

N

e M N(AL0) xG")C Uj=1 Qa(d) x Abi.(e),

o BNV" #0, where V' := G" \ UL, A, (7).

Define V' := G' \ U;\;l Ay, (€). Note that V" cC V’. Consider the cross

Y =Yor :=X(Aa(0),AN A (8); V', BNV').

Fix an f € Og(X \ M). Then f € O4(Y). By Theorem 4, the function
f extends holomorphically to Y D {a} x V’. Consequently, there exists
0 < 6 < § such that f is holomorphic in A,(d) x V.

STEP 2. Suppose that for some j € {1,..., N} we have
M N (Aa(0) x Ap;(€)) CH{(2,04(2)) : z € Aa(0)},

where ;1 Aq(d) — Ay, (¢) is holomorphic.

We will prove that for sufficiently small §’ > 0 the function f extends
holomorphically to (A4(8") x Ay, (7)) \ {(z,¢j(2)) : 2 € Au(d)}.

Indeed, by Step 1, there exists ' > 7 such that the function f extends
holomorphically to Aq(6) % (Ap, (7') \ Ap, (n)). Using the biholomorphism

Ag(6) x C 3 (z,w) = (z,w — pj(2)) € Ag(d) x C,

we reduce the problem to the case where ¢; = 0. Thus we have the following
problem:

Let A(r) := Ap(r). Given a function f holomorphic on A,(p) x P, where
P := A(R)\ A(r), such that f(z,-) € O(A(R)\ {0}) for any z € AN A, (o),
we prove that f extends holomorphically to A,(g) x (A(R) \ {0}).
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Indeed, consider the cross
Y :=X(Au(0), AN Au(0); A(R) \ {0}, P).

By Theorem 4, the function f extends to Y. It remains to observe that
Y = Aq(0) x (A(R) \ {0}) (because hp, A g)\ 0y = 0)-
In particular, if

M0 (Aa(6) x Qv (€)) = {(2,05(2)) - 2 € Aa(9)},

where ¢; 1 Ay(8) — Ay, (¢) is holomorphic, for all j =1,..., N, then there
exists 0’ > 0 such that f extends holomorphically to (A,(6") x G")\ M D
(A (0") X G—1) \ M.

STEP 3. Suppose that for some j € {1,..., N} we have
MO (Aa(6) X Ay, (2)) = { (@)}

By Step 2 (with ¢; = b;) the function f extends holomorphically to A, (") x
(Ap,; (1) \ {b;}) for some small §" > 0. On the other hand, we know that f is
separately holomorphic on Z := (A4(d) \ {a}) x Ay, (). Consequently, f is
holomorphic on Z. Hence f is holomorphic on (A,(6") x Ay, (¢)) \ {(a, b;)}.
Thus (a, b;) is a removable singularity of f.

In virtue of the above remark, we may assume that M is pure 1-dimen-
sional.

STEP 4. Let A’ denote the set of all @ € A such that for each & > 2
either there exists 0 > 0 such that M N(A,(0) x Gi) = 0 or the construction
from Step 1 may be performed in such a way that for each j € {1,..., N},

M0 (Aa(8) x Ap; (€)) = {(2,05(2)) - 2 € Aa(9)},

where ¢; : Aq(0) — Ay, () is holomorphic (cf. Step 2). Then A\ A’ is at
most countable. Indeed, write

M = U{(z,w) € Pj:gj(z,w) =0},
j=1
where P; CC U is a polydisc and g; is a defining function for M N P; (cf.
[Chi 1989], § 2.9). Put S; := {(2,w) € P; : gj(z,w) = % (z,w) = 0}.
Observe that if (29, wo) € (M N P;) \ S}, then there exists a small polydisc
Q = Q' x Q" CC P; with center at (2o, wo) such that M N Q is the graph
of a holomorphic function ¢ : Q" — Q".

The projection pr,(S;) is at most countable. Indeed, we only need to
prove that pr,(S}) is at most countable, where S’ is the union of all 1-
dimensional irreducible components of S;. Let S be such an irreducible com-
ponent. We will show that S projects onto one point. Take (z1,w1), (22, w2)
€ S. We want to show that z; = 2. It suffices to consider the case where
(21, w1), (22, wsz) are regular points of S. Let ¢ = (11,12) : [0,1] — Reg(5)
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be a Cl-curve with ¢(0) = (z1,w1), ¥(1) = (22, ws). Note that %(z, w) # 0
for (z,w) € Reg(S) (because g; is a defining function). We have
Agjoy) ,\ _ 99; /
129 () = M ey e), e 0,1)
Thus ¢} = 0. In particular, z; = 2.
Consequently, A\ A’ C U;)L pr,(S;) is at most countable.

0=

STEP 5. Let B’ be constructed analogously to A’ with respect to the
second variable. Put X' := X(D, A";G, B’).

By Step 2 (and Lemma 6), for any k£ € N and any & = (a,b) € (A’ N Dy,)

x (B’ N Gy) there exists ¢ = p¢, > 0 such that for each f € Os(X \ M)

there exists f = fg k€ O(f2 1, \ M) with f=fonXn ¢, \ M, where
‘nyk = X(Dkv AG(Q); Gk’ Ab(g))
= (Aa(g) X Gk) U (Dk X Ab(g)) cUn (Dk X Gk)

We may always assume that g¢ 41 < 0¢,1- By Lemma 6, J/E;"kdr]_ = fgk on
Qﬁ,k+1 N Q&k \ M. Define

o0

2 := U U .Q&k.
k=1 €€(A'NDy)x(B'NGy)
It is clear that {2 is a connected neighborhood of X’. We will show that

the functions fer, £ € (A'N Dk) (B’ NGy), k € N, can be glued together.
We only need to check that fgk = fnk on ng N an \ M, £ = (a,b),

= (c,d). Let ¢' == 0¢i, " = 0nk, J' = fesor f" = fn. Observe that
Qﬁ,k N2y = (Aa(Q') x Ad(@")) U (Ac(e") x Au(0))

U ((Aa(2') N Ac(e")) x Gi) U (Dy x (A(2") N Aale”)))
= Wi UWyU W3 UW;,.

To prove that f" = f” on Wi \ M it suffices to observe that f' = f” on
(AN AL(0)) x (B'NAu(0")\ M (and use Lemma 6). The same argument
solves the problem on Wy \ M.

If W3 # (), then the equality holds on a non-empty set W3 N Wy \ M

and we only need to use the identity principle. The same argument works
on Wy\ M.

STEP 6. Recall that the sets A’, B’ are locally regular and A’ is a Borel
set. Moreover, hly, p, = h%y p and h g = h . Hence X' =X.

First we prove that X is the envelope of holomorphy of 2. We only need
to show that any function g € O({2) extends holomorphically to X. Fix a
g € O(£2). By Theorem 4 (applied to the cross X”), there exists a g € O(X)
(recall that X=X ) such that g = g on X’. By Lemma 6, g = g on (2.
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By Theorem 5 there exists a pure 1-dimensional analytic subset Mof X
such that for any g € O(£2\ M) there exists a g € O(X \ M) with § = g on

2\(MUM ) We also know that if U = X and M is pure 1-dimensional,

then we can take M = M.
Now take an f € Og(X \ M) and let f € O(2\ M) be such that

f=fon X’\M (Step 5). Let f € O(X\M) be such that f = f in
Q\(MUM) In particular, f = f on X’\(MUM) By Lemma 6, f = f
onX\(MUM)

Using Lemma 6 once again, we conclude that the function fis uniquely
determined.

Acknowledgements. We wish to thank the Niedersachsisches Minis-
terium fiir Wissenschaft und Kunst (Az.15.3-50 113(55) PL) and the Com-
mittee of Scientific Research (KBN), Warsaw (PB 2 PO3A 017 14) for their
financial support.

We also wish to thank Professor Siciak for calling our attention to the
problem.

References

[Chi 1989] E. M. Chirka, Complex Analytic Sets, Kluwer, 1989.

[Jar-Pfl 2000] M. Jarnicki and P. Pflug, Fxtension of Holomorphic Functions, de Gruy-
ter Expositions Math. 34, de Gruyter, 2000.

[Kli 1991] M. Klimek, Pluripotential Theory, Oxford Univ. Press, 1991.

[Ngu-Zer 1991] Nguyen Thanh Van and A. Zeriahi, Une extension du théoréme de Har-
togs sur les fonctions séparément analytiques, in: Analyse Complexe
Multivariable, Récents Développements, A. Meril (ed.), EditEl, Rende,
1991, 183-194.

[Okt 1998] 0. Oktem, Extension of separately analytic functions and applications to
range characterization of the exponential Radon transform, Ann. Polon.
Math. 70 (1998), 195-213.

[Okt 1999 —, Extending separately analytic functions in C*t™ with singularities,
in: Extension of separately analytic functions and applications to math-
ematical tomography (Thesis), Dept. Math., Stockholm Univ., 1999.

[Sic 2000] J. Siciak, Holomorphic functions with singularities on algebraic sets,
Univ. Iagell. Acta Math. (2001), to appear.

Institute of Mathematics Fachbereich Mathematik
Jagiellonian University Carl von Ossietzky Universitdt Oldenburg
Reymonta 4 Postfach 2503
30-059 Krakéw, Poland D-26111 Oldenburg, Germany
E-mail: jarnickiQim.uj.edu.pl E-mail: pflug@mathematik.uni-oldenburg.de

Recu par la Rédaction le 26.3.2001 (1245)



