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Cross theorem

by Marek Jarnicki (Kraków) and Peter Pflug (Oldenburg)

Abstract. Let D,G ⊂ C be domains, let A ⊂ D, B ⊂ G be locally regular sets, and
let X := (D×B)∪(A×G). Assume that A is a Borel set. Let M be a proper analytic subset
of an open neighborhood of X. Then there exists a pure 1-dimensional analytic subset M̂
of the envelope of holomorphy X̂ of X such that any function separately holomorphic on
X \M extends to a holomorphic function on X̂ \ M̂ . The result generalizes special cases
which were studied in [Ökt 1998], [Ökt 1999], and [Sic 2000].

1. Introduction. Main result. For domains D ⊂ Cn, G ⊂ Cm and
non-pluripolar subsets A ⊂ D, B ⊂ G, define the cross

(∗) X = X(D,A;G,B) := (D ×B) ∪ (A×G)

(notice that X is connected). Let U ⊂ D ×G be an open connected neigh-
borhood of X and let M be an analytic subset of U , M 6= U . Put

Mz := {w ∈ G : (z, w) ∈M}, z ∈ D,
Mw := {z ∈ D : (z, w) ∈M}, w ∈ G.

We say that a function f : X \M → C is separately holomorphic on X \M
(f ∈ Os(X \M)) if

∀z∈A,Mz 6=G : f(z, ·) ∈ O(G \Mz), ∀w∈B,Mw 6=D : f(·, w) ∈ O(D \Mw).

For an open set Ω ⊂ Cn and A ⊂ Ω put

hA,Ω := sup{u : u ∈ PSH(Ω), u ≤ 1 on Ω, u ≤ 0 on A},
where PSH(Ω) denotes the set of all functions plurisubharmonic on Ω.
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Define
ωA,Ω := lim

k→∞
h∗A∩Ωk,Ωk ,

where (Ωk)∞k=1 is a sequence of relatively compact open sets Ωk ⊂ Ωk+1 ⊂⊂
Ω with

⋃∞
k=1 Ωk = Ω (h∗ denotes the upper semicontinuous regularization

of h). Note that the definition is independent of the approximation sequence
(Ωk)∞k=1.

For a cross (∗) put

(∗∗) X̂ := {(z, w) ∈ D ×G : ωA,D(z) + ωB,G(w) < 1}.
We say that a subset A ⊂ Cn is locally pluriregular if h∗A∩Ω,Ω(a) = 0 for

any a ∈ A and for any open neighborhood Ω of a (in particular, A ∩ Ω is
non-pluripolar). As always, if n = 1, then we say that A is locally “regular”
instead of “pluriregular”.

The main result of the paper is the following

Theorem 1. Let D,G ⊂ C be domains, let A ⊂ D, B ⊂ G be locally
regular sets, and let X := (D × B) ∪ (A × G). Assume that A is a Borel
set. Let M be a proper analytic subset of an open connected neighborhood
U of X. Then there exists a pure 1-dimensional analytic subset M̂ of X̂
(X̂ is given by (∗∗)) such that for any f ∈ Os(X \M) there exists exactly
one f̂ ∈ O(X̂ \ M̂) with f̂ = f on X \ (M ∪ M̂).

Moreover , if U = X̂ and M is pure 1-dimensional , then the above con-
dition is satisfied by M̂ := M .

Remark. Consider the following general problem. Let Dj ⊂ Cnj be a
domain of holomorphy and let Aj ⊂ Dj be a locally pluriregular Borel set,
j = 1, . . . , N . Define the generalized cross

X := (A1× . . .×AN−1×DN )∪ . . .∪(D1×A2× . . .×AN ) ⊂ Cn1× . . .×CnN .
Let U ⊂ D1 × . . .×DN be a connected neighborhood of X and let M ⊂ U
be a proper analytic set. A function f : X \M → C is said to be separately
holomorphic (f ∈ Os(X \M)) if for any (a1, . . . , aN ) ∈ A1 × . . .× AN and
k ∈ {1, . . . , N} the function f(a1, . . . , ak−1, ·, ak+1, . . . , aN ) is holomorphic
in the domain {zk ∈ Dk : (a1, . . . , ak−1, zk, ak+1, . . . , aN ) 6∈M}. Define

X̂ := {(z1, . . . , zN ) ∈ D1 × . . .×DN : ωA1,D1(z1) + . . .+ ωAN ,DN (zN ) < 1}.
Conjecture (1). There exists a pure 1-codimensional analytic subset

M̂ ⊂ X̂ such that for any f ∈ Os(X \M) there exists an f̂ ∈ O(X̂ \ M̂)
with f̂ = f on X \ (M ∪ M̂). Moreover, M̂ = M if U = X̂ and M is pure
1-codimensional. Compare also [Ökt 1999] (for N = 2 and U = X̂).

(1) Added in proof: Cf. M. Jarnicki, P. Pflug, An extension theorem for separately
holomorphic functions with singularities, IMUJ Preprint 2001/27 (2001).
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Theorem 1 solves the case N = 2, n1 = n2 = 1.
J. Siciak [Sic 2000] solved the following case: n1 = . . . = nN = 1, D1 =

. . . = DN = C, M = P−1(0), where P is a non-zero polynomial of N
complex variables; the special subcase N = 2, P (z, w) := z − w had been
previously studied in [Ökt 1998].

The case studied in [Sic 2000] is the only known case with n1 + . . .+nN
> 2. In the general case, the answer is not known even if U = X̂ and M is
pure 1-codimensional.

2. Auxiliary results. The following lemma gathers a few standard
results which will be used in what follows.

Lemma 2 (cf. [Kli 1991], [Jar-Pfl 2000], §3.5). (a) Let Ω ⊂ Cn be a
bounded open set and let A ⊂ Ω. Then:

• If P ⊂ Cn is pluripolar , then h∗A\P,Ω = h∗A,Ω.
• h∗Ak∩Ωk,Ωk ↘ h∗A,Ω (pointwise on Ω) for any sequence of open sets

Ωk ↗ Ω and any sequence Ak ↗ A.
• ωA,Ω = h∗A,Ω.
• The following two conditions are equivalent :

(i) for any connected component S of Ω the set A∩S is non-pluripolar ;
(ii) h∗A,Ω(z) < 1 for any z ∈ Ω.

• If A is non-pluripolar , 0 < α < 1, and Ωα := {z ∈ Ω : h∗A,Ω(z) < α},
then for any connected component S of Ωα the set A ∩ S is non-pluripolar
(in particular , A ∩ S 6= ∅).

(b) Let Ω ⊂ Cn be an open set and let A ⊂ Ω. Then:

• ωA,Ω ∈ PSH(Ω).
• If A is locally pluriregular , then ωA,Ω(a) = 0 for any a ∈ A.
• If P ⊂ Cn is pluripolar , then ωA\P,Ω = ωA,Ω.
• If A is locally pluriregular and P ⊂ Cn is pluripolar , then A \ P

is locally pluriregular.

(c) Let X = X(D,A;G,B) be a cross as in (∗). Then:

• If A and B are locally pluriregular , then X ⊂ X̂.
• If D and G are domains of holomorphy , then X̂ is a region of

holomorphy.

Lemma 3. Let X = X(D,A;G,B) be a cross as in (∗). If A and B are
locally pluriregular , then X̂ is a domain.

Proof. It suffices to show that for any approximation sequences Dk ↗ D,
Gk ↗ G of relatively compact subdomains with A ∩Dk 6= ∅, B ∩ Gk 6= ∅,
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k ∈ N, the sets

X̂k := {(z, w) ∈ Dk ×Gk : h∗A∩Dk,Dk(z) + h∗B∩Gk,Gk(w) < 1}, k ∈ N,
are connected. Thus, we may assume that D and G are bounded. Since the
cross X is connected and contained in X̂, we only need to prove that for
any (z0, w0) ∈ X̂, each connected component of the fiber

X̂w0 := {z ∈ D : (z, w0) ∈ X̂} = {z ∈ D : h∗A,D(z) < 1− h∗B,G(w0)}
intersects A. If h∗B,G(w0) = 0, then X̂w0 = D. If h∗B,G(w0) > 0, then we
apply Lemma 2(a).

Theorem 4 (Classical cross theorem, cf. [Ngu-Zer 1991]). Let X =
X(D,A;G,B) be as in (∗). Assume that :

• D, G are domains of holomorphy ,
• A, B are locally pluriregular ,
• A is a Borel set.

Then for any f ∈ Os(X) there exists exactly one f̂ ∈ O(X̂) with f̂ = f on X.

Theorem 5 (Dloussky–Grauert–Remmert theorem, cf. [Jar-Pfl 2000],
§3.4). Let Ω ⊂ Cn be a domain and let M be an analytic subset of Ω. Let
Ω̂ be the envelope of holomorphy of Ω (univalent or not). Then there exists a
pure 1-codimensional analytic subset M̂ ⊂ Ω̂ uch that for any g ∈ O(Ω \M)
there exists ĝ ∈ O(Ω̂ \ M̂) with ĝ = g on Ω \ (M ∪ M̂).

If , moreover , M = Ω ∩ M̃ , where M̃ is a pure 1-codimensional analytic
subset of Ω̂, then the above condition is satisfied by M̂ := M̃ .

Lemma 6. Let D,G ⊂ C be domains, let A ⊂ D, B ⊂ G be locally
regular sets, and let X := X(D,A;G,B). Let M be a proper analytic subset
of an open connected neighborhood U of X. Assume that A′ ⊂ A, B′ ⊂ B
are such that :

• A \ A′ and B \ B′ are polar (in particular , A′, B′ are also locally
regular),
• Mz 6= G for any z ∈ A′ and Mw 6= D for any w ∈ B′.

(a) If f ∈ Os(X \M) and f = 0 on (A′ × B′) \M , then f = 0 on
X \M .

(b) If g ∈ O(U \M) and g = 0 on (A′ × B′) \M , then g = 0 on
U \M .

Proof. (a) Take a point (a0, b0) ∈ X \M . We may assume that a0 ∈ A.
Since A\A′ is polar, there exists a sequence (ak)∞k=1 ⊂ A′ such that ak → a0.
The set Q :=

⋃∞
k=0 Mak is at most countable. Consequently, the set B′′ :=

B′ \Q is non-polar. We have f(ak, w) = 0 for all w ∈ B′′, k = 1, 2, . . . Hence
f(a0, w) = 0 for any w ∈ B′′. Finally, f(a0, w) = 0 on G \Ma0 3 b0.
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(b) Take an a0 ∈ A′. Since Ma0 6= G, there exists a b0 ∈ B′ \ Ma0 .
Let P = ∆a0(r)×∆b0(r) ⊂ U \M (∆z0(r) denotes the disc with center z0

and radius r). Then g(·, w) = 0 on A′ ∩ ∆a0(r) for any w ∈ B′ ∩ ∆b0(r).
The set A′ ∩ ∆a0(r) is non-polar. Hence g(·, w) = 0 on ∆a0(r) for any
w ∈ B′∩∆b0(r). By the same argument for the second variable we get g = 0
on P and, consequently, on U .

3. Proof of the main theorem

Step 1. Fix sequences Dk ↗ D, Gk ↗ G of relatively compact subdo-
mains with Dk ⊂⊂ Dk+1, A ∩Dk 6= ∅, Gk ⊂⊂ Gk+1, B ∩Gk 6= ∅, k ∈ N.

For any a ∈ A such that Ma 6= G we perform the following construction:
Fix a k ∈ N, k ≥ 2. Let Ma∩Gk = {b1, . . . , bN}. Fix domains G′ = G′a,k,

G′′ = G′′a,k such that Gk−1 ⊂⊂ G′′ ⊂⊂ G′ ⊂⊂ Gk and b1, . . . , bN ∈ G′′.
Take positive numbers δ, ε, η > ε such that

• ∆a(δ) ⊂⊂ D,
• ∆bj (η) ⊂⊂ G′′, j = 1, . . . , N ,
• ∆bi(η) ∩∆bj (η) = ∅, i, j = 1, . . . , N , i 6= j,
• M ∩ (∆a(δ)×G′) ⊂ ⋃Nj=1 ∆a(δ)×∆bj (ε),

• B ∩ V ′′ 6= ∅, where V ′′ := G′′ \⋃Nj=1 ∆bj (η).

Define V ′ := G′ \⋃Nj=1 ∆bj (ε). Note that V ′′ ⊂⊂ V ′. Consider the cross

Y = Ya,k := X(∆a(δ), A ∩∆a(δ);V ′, B ∩ V ′).
Fix an f ∈ Os(X \ M). Then f ∈ Os(Y ). By Theorem 4, the function
f extends holomorphically to Ŷ ⊃ {a} × V ′. Consequently, there exists
0 < δ̂ < δ such that f is holomorphic in ∆a(δ̂)× V ′′.

Step 2. Suppose that for some j ∈ {1, . . . , N} we have

M ∩ (∆a(δ)×∆bj (ε)) ⊂ {(z, ϕj(z)) : z ∈ ∆a(δ)},
where ϕj : ∆a(δ)→ ∆bj (ε) is holomorphic.

We will prove that for sufficiently small δ′ > 0 the function f extends
holomorphically to (∆a(δ′)×∆bj (η)) \ {(z, ϕj(z)) : z ∈ ∆a(δ′)}.

Indeed, by Step 1, there exists η′ > η such that the function f extends
holomorphically to ∆a(δ̂)× (∆bj (η

′) \∆bj (η)). Using the biholomorphism

∆a(δ)× C 3 (z, w) 7→ (z, w − ϕj(z)) ∈ ∆a(δ)× C,
we reduce the problem to the case where ϕj ≡ 0. Thus we have the following
problem:

Let ∆(r) := ∆0(r). Given a function f holomorphic on ∆a(%)×P , where
P := ∆(R) \∆(r), such that f(z, ·) ∈ O(∆(R) \ {0}) for any z ∈ A∩∆a(%),
we prove that f extends holomorphically to ∆a(%)× (∆(R) \ {0}).
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Indeed, consider the cross

Y := X(∆a(%), A ∩∆a(%);∆(R) \ {0}, P ).

By Theorem 4, the function f extends to Ŷ . It remains to observe that
Ŷ = ∆a(%)× (∆(R) \ {0}) (because h∗P,∆(R)\{0} ≡ 0).

In particular, if

M ∩ (∆a(δ)×∆bj (ε)) = {(z, ϕj(z)) : z ∈ ∆a(δ)},
where ϕj : ∆a(δ)→ ∆bj (ε) is holomorphic, for all j = 1, . . . , N , then there
exists δ′ > 0 such that f extends holomorphically to (∆a(δ′) × G′′) \M ⊃
(∆a(δ′)×Gk−1) \M .

Step 3. Suppose that for some j ∈ {1, . . . , N} we have

M ∩ (∆a(δ)×∆bj (ε)) = {(a, bj)}.
By Step 2 (with ϕj ≡ bj) the function f extends holomorphically to ∆a(δ′)×
(∆bj (η) \ {bj}) for some small δ′ > 0. On the other hand, we know that f is
separately holomorphic on Z := (∆a(δ) \ {a})×∆bj (ε). Consequently, f is
holomorphic on Z. Hence f is holomorphic on (∆a(δ′)×∆bj (ε)) \ {(a, bj)}.
Thus (a, bj) is a removable singularity of f .

In virtue of the above remark, we may assume that M is pure 1-dimen-
sional.

Step 4. Let A′ denote the set of all a ∈ A such that for each k ≥ 2
either there exists δ > 0 such that M ∩(∆a(δ)×Gk) = ∅ or the construction
from Step 1 may be performed in such a way that for each j ∈ {1, . . . , N},

M ∩ (∆a(δ)×∆bj (ε)) = {(z, ϕj(z)) : z ∈ ∆a(δ)},
where ϕj : ∆a(δ) → ∆bj (ε) is holomorphic (cf. Step 2). Then A \ A′ is at
most countable. Indeed, write

M =
∞⋃

j=1

{(z, w) ∈ Pj : gj(z, w) = 0},

where Pj ⊂⊂ U is a polydisc and gj is a defining function for M ∩ Pj (cf.
[Chi 1989], § 2.9). Put Sj := {(z, w) ∈ Pj : gj(z, w) = ∂gj

∂w (z, w) = 0}.
Observe that if (z0, w0) ∈ (M ∩ Pj) \ Sj , then there exists a small polydisc
Q = Q′ × Q′′ ⊂⊂ Pj with center at (z0, w0) such that M ∩ Q is the graph
of a holomorphic function ϕ : Q′ → Q′′.

The projection prz(Sj) is at most countable. Indeed, we only need to
prove that prz(S

′
j) is at most countable, where S′j is the union of all 1-

dimensional irreducible components of Sj . Let S be such an irreducible com-
ponent. We will show that S projects onto one point. Take (z1, w1), (z2, w2)
∈ S. We want to show that z1 = z2. It suffices to consider the case where
(z1, w1), (z2, w2) are regular points of S. Let ψ = (ψ1, ψ2) : [0, 1]→ Reg(S)
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be a C1-curve with ψ(0) = (z1, w1), ψ(1) = (z2, w2). Note that ∂gj
∂z (z, w) 6= 0

for (z, w) ∈ Reg(S) (because gj is a defining function). We have

0 =
∂(gj ◦ ψ)

∂t
(t) =

∂gj
∂z

(ψ(t))ψ′1(t), t ∈ [0, 1].

Thus ψ′1 ≡ 0. In particular, z1 = z2.
Consequently, A \A′ ⊂ ⋃∞j=1 prz(Sj) is at most countable.

Step 5. Let B′ be constructed analogously to A′ with respect to the
second variable. Put X ′ := X(D,A′;G,B′).

By Step 2 (and Lemma 6), for any k ∈ N and any ξ = (a, b) ∈ (A′ ∩Dk)
× (B′ ∩ Gk) there exists % = %ξ,k > 0 such that for each f ∈ Os(X \M)
there exists f̃ = f̃ξ,k ∈ O(Ωξ,k \M) with f̃ = f on X ∩Ωξ,k \M , where

Ωξ,k := X(Dk,∆a(%);Gk,∆b(%))

= (∆a(%)×Gk) ∪ (Dk ×∆b(%)) ⊂ U ∩ (Dk ×Gk).

We may always assume that %ξ,k+1 ≤ %ξ,k. By Lemma 6, f̃ξ,k+1 = f̃ξ,k on
Ωξ,k+1 ∩Ωξ,k \M . Define

Ω :=
∞⋃

k=1

⋃

ξ∈(A′∩Dk)×(B′∩Gk)

Ωξ,k.

It is clear that Ω is a connected neighborhood of X ′. We will show that
the functions f̃ξ,k, ξ ∈ (A′ ∩Dk)× (B′ ∩Gk), k ∈ N, can be glued together.
We only need to check that f̃ξ,k = f̃η,k on Ωξ,k ∩ Ωη,k \ M , ξ = (a, b),
η = (c, d). Let %′ := %ξ,k, %′′ := %η,k, f ′ := f̃ξ,k, f ′′ := f̃η,k. Observe that

Ωξ,k ∩Ωη,k = (∆a(%′)×∆d(%′′)) ∪ (∆c(%′′)×∆b(%′))

∪ ((∆a(%′) ∩∆c(%′′))×Gk) ∪ (Dk × (∆b(%′) ∩∆d(%′′)))

=: W1 ∪W2 ∪W3 ∪W4.

To prove that f ′ = f ′′ on W1 \M it suffices to observe that f ′ = f ′′ on
(A′ ∩∆a(%′))× (B′ ∩∆d(%′′)) \M (and use Lemma 6). The same argument
solves the problem on W2 \M .

If W3 6= ∅, then the equality holds on a non-empty set W3 ∩W1 \M
and we only need to use the identity principle. The same argument works
on W4 \M .

Step 6. Recall that the sets A′, B′ are locally regular and A′ is a Borel
set. Moreover, h∗A′,D = h∗A,D and h∗B′,G = h∗B,G. Hence X̂ ′ = X̂.

First we prove that X̂ is the envelope of holomorphy of Ω. We only need
to show that any function g ∈ O(Ω) extends holomorphically to X̂. Fix a
g ∈ O(Ω). By Theorem 4 (applied to the cross X ′), there exists a ĝ ∈ O(X̂)
(recall that X̂ = X̂ ′) such that ĝ = g on X ′. By Lemma 6, ĝ = g on Ω.
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By Theorem 5 there exists a pure 1-dimensional analytic subset M̂ of X̂
such that for any g ∈ O(Ω \M) there exists a ĝ ∈ O(X̂ \ M̂) with ĝ = g on
Ω \ (M ∪ M̂). We also know that if U = X̂ and M is pure 1-dimensional,
then we can take M̂ = M .

Now take an f ∈ Os(X \ M) and let f̃ ∈ O(Ω \ M) be such that
f̃ = f on X ′ \ M (Step 5). Let f̂ ∈ O(X̂ \ M̂) be such that f̂ = f̃ in
Ω \ (M ∪ M̂). In particular, f̂ = f on X ′ \ (M ∪ M̂). By Lemma 6, f̂ = f

on X \ (M ∪ M̂).
Using Lemma 6 once again, we conclude that the function f̂ is uniquely

determined.
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