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Stochastic differential equation driven
by a pure-birth process

by Marta Tyran-Kamińska (Katowice)

Abstract. A generalization of the Poisson driven stochastic differential equation is
considered. A sufficient condition for asymptotic stability of a discrete time-nonhomogene-
ous Markov process is proved.

1. Introduction. In this paper we consider a stochastic differential
equation of the type

dξ(t) = a(ξ(t))dt+ b(ξ(t))dN(t)(1.1)

with the initial condition ξ(0) = ξ0, where a, b : X → X are deterministic
functions defined on a separable Banach space (X, ‖ · ‖) and N(t) is a pure
jump process with values in {0, 1, 2, . . .} (a so-called pure-birth process) and
birth rates (λn)n≥1. Denote by Tn the time when the process jumps from
n−1 to n (birth time) and set T0 ≡ 0. The sequence of random variables ξn =
ξ(Tn), where ξ is the solution of equation (1.1), is a time-nonhomogeneous
Markov process because its one-step transition function may depend on n.
It can be described by a stochastically perturbed dynamical system

ξn = S(τn, ξn−1)

where S is a suitable transformation and τn = Tn − Tn−1 is an exponential
random variable with parameter λn. The details are given in Section 3.

We are interested in the asymptotic behaviour of the sequence of distri-
butions

µn = prob(ξn ∈ ·) for n = 0, 1, . . .

It was shown in [6] that if N(t) is a Poisson process, so that (τn) is a
sequence of independent exponential random variables with parameter λ,
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and the transformation S satisfies

‖S(t, x)− S(t, y)‖ ≤ Leβt‖x− y‖ for x, y ∈ X and t ≥ 0

with constant L and β such that λ(L − 1) + β < 0, then the sequence
(µn) is weakly convergent to a unique µ∗ which is independent of the initial
measure µ0.

Our main result strengthens the last condition to λ lnL + β < 0 and
extends this statement to pure-birth processes.

Stochastically perturbed dynamical systems were studied by many au-
thors under the assumption that (τn) are sequences of independent and
identically distributed random variables. However, this assumption leads to
time-homogeneous Markov processes. For an account of this subject we re-
fer the reader to [8]. What we will need from this theory is a result from
[8] (Theorem 1) which states, roughly speaking, that if such a system con-
tracts on average then it has a stationary measure with finite first mo-
ment.

The outline of the paper is as follows. After preliminaries given in Sec-
tion 2, in the next section we describe the solution of (1.1) by means of a
transformation S. In Section 4 we derive a recurrence relation between the
measures µn in terms of Markov operators. In the last section we state and
prove our main result.

We denote by Z+ the set of nonnegative integers and set R+ = [0,∞).

2. Preliminaries. Let (Ω,Σ,prob) be a probability space. We assume
that (τn)n≥1 is a sequence of independent exponential random variables with
parameters (λn)n≥1 such that

∞∑

n=1

1
λn

=∞.(2.1)

We set T0 ≡ 0, Tn = Tn−1 + τn and define a pure-birth process by setting
N(t) = max{n ∈ Z+ : Tn ≤ t}. The random variables Tn are called the
jump points and the λn the birth rates of {N(t)}t≥0. Note that condition
(2.1) guarantees that Tn → ∞ as n → ∞ (see [2]). Hence for every s > 0
and ω ∈ Ω there is n ∈ Z+ such that Tn(ω) ≤ s < Tn+1(ω).

Throughout the paper we assume that (X, ‖ · ‖) is a separable Banach
space. We denote by BX the σ-algebra of Borel subsets of X and byM the
family of all finite Borel measures on X. ByM1 we denote the family of all
µ ∈ M such that µ(X) = 1. We call elements of the set M1 distributions.
Further

Ms = {µ1 − µ2 : µ1, µ2 ∈M}
is the space of all finite signed measures.
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3. Stochastic differential equation. Let a, b : X → X be continuous
functions. Consider the stochastic differential equation

ξ(t) = ξ0 +
t�

0

a(ξ(s−)) ds+
t�

0

b(ξ(s−)) dN(s),(3.1)

where ξ0 : Ω → X is a random variable independent of the sequence (τn)
and the second integral is the Lebesgue–Stieltjes integral equal to

t�

0

b(ξ(s−)) dN(s) =
∞∑

n=1

b(ξ(Tn−))1(0,t](Tn).

By a solution of (3.1) we mean an X-valued right continuous process ξ(t),
t ≥ 0, with left-hand limits, defined on the probability space (Ω,F ,prob)
and such that for every t ≥ 0 equation (3.1) is satisfied a.e.

From now on we assume that a is a Lipschitz map. We denote by π :
R+ ×X → X the semigroup generated by the Cauchy problem

v′(t) = a(v(t)) for t > 0(3.2)

with the initial condition
v(0) = y,(3.3)

i.e. for every y ∈ X the unique solution of (3.2), (3.3) is given by v(t) =
π(t, y) for t ≥ 0.

As a result, the solution of (3.1) is given by

ξ(t) = π(t− Tn−1, ξ(Tn−1)) for t ∈ [Tn−1, Tn) and n ∈ N,
where the random variables ξn = ξ(Tn) satisfy the recurrence formula

ξn = q(π(Tn − Tn−1, ξn−1)) for n ∈ N,(3.4)

and the map q : X → X is given by

q(x) = x+ b(x) for x ∈ X.(3.5)

We define the transformation S : R+ ×X → X by

S(t, x) = q(π(t, x)) for x ∈ X and t ≥ 0.

Hence formula (3.4) can be rewritten as

ξn = S(τn, ξn−1) for n ∈ N.(3.6)

Note that the random variables Tn and τn are such that Tn−Tn−1 = τn.
Since ξ0 is independent of the sequence (τn), the random variables τn and
ξn−1 are independent for every n ∈ N. Hence (ξn) is a Markov process.

4. Time-nonhomogeneous Markov process. In this section we de-
rive a recurrence relation between µn and µn−1 where

µn(A) = prob(ξn ∈ A) for A ∈ BX , n ∈ Z+.
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Fix n ∈ N. Let f : X → R be an arbitrary bounded Borel measurable
function. The mathematical expectation of f(ξn) is given by

E(f(ξn)) =
�

X

f(x)µn(dx).

On the other hand, from (3.6) and the independence of the random variables
τn and ξn−1 it follows that

E(f(ξn)) = E(f(S(τn, ξn−1))) =
�

X

[∞�

0

f(S(t, x))λne−λnt dt
]
µn−1(dx).

Hence for A ∈ BX and f = 1A, we obtain

µn(A) =
�

X

[∞�

0

1A(S(t, x))λne−λnt dt
]
µn−1(dx),(4.1)

which is the desired recurrence relation between µn and µn−1. Define an
operator Pn by

Pnµ(A) =
�

X

[∞�

0

1A(S(t, x))λne−λnt dt
]
µ(dx).

Then (4.1) may be rewritten as

µn = Pnµn−1 for n ∈ N.(4.2)

Clearly, Pn is a Markov operator in the spaceMs: it is linear and maps each
distribution to a distribution ([7]).

Define a linear operator Un : C(X)→ C(X) by

Unf(x) =
∞�

0

λnf(S(t, x))e−λnt dt for f ∈ C(X),

where C(X) denotes the space of all bounded continuous functions on
(X, ‖ · ‖) with the supremum norm ‖ · ‖C . Note that Un is a contraction
on C(X), i.e. ‖Unf‖C ≤ ‖f‖C for every f ∈ C(X).

For f ∈ C(X) and µ ∈Ms we adopt the scalar product notation

〈f, µ〉 =
�

X

f(x)µ(dx).

It can be easily shown that Pn is the unique Markov operator satisfying

〈Unf, µ〉 = 〈f, Pnµ〉 for f ∈ C(X) and µ ∈ Ms,

so we call Un the dual operator to Pn.
Denoting by P (n,m) the composition of the Markov operators

P (n,m) = Pn ◦ . . . ◦ Pm+1 for n > m, n,m ∈ Z+,
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and letting P (n,m) be the identity for n = m, we obtain the chain rule

P (n,m) = P (n, k)P (k,m) for n ≥ k ≥ m.(4.3)

From (4.2) it now follows that

µn = P (n,m)µm for n ≥ m,n, m ∈ Z+.

Note that P (n,m) is a Markov operator with dual U(m,n) = Um+1◦. . .◦Un.
Recall that a sequence (µn) of distributions is weakly convergent to a

distribution µ if limn→∞〈f, µn〉 = 〈f, µ〉 for all f ∈ C(X).
Since the sequence (µn)n≥1 is completely determined by (Pn)n≥1 we say

that the Markov process (3.6), or equivalently (Pn), is asymptotically stable
if there exists a unique measure µ∗ ∈ M1 such that for every µ ∈ M1 and
m ∈ Z+ the sequence (P (n,m)µ)n≥m is weakly convergent to µ∗.

Remark 1. From the chain rule (4.3) it follows that if the sequence
(P (n,m)µ)n≥m is weakly convergent to µ∗ for all µ ∈ M1 and for all but
finitely many m ∈ Z+, say m ≥ k, then the Markov process (Pn) is asymp-
totically stable. In fact, for m < k and µ ∈ M1 we have P (n,m)µ =
P (n, k)µ0 for n ≥ k, where µ0 = P (k,m)µ and µ0 ∈M1. Since the sequence
(P (n, k)µ0)n≥k is weakly convergent to µ∗, the sequence (P (n,m)µ)n≥m is
also convergent to µ∗.

5. Asymptotic stability. In our study of asymptotic stability of (3.6)
we make the following assumptions:

(a1) The map q defined by (3.5) is such that

‖q(x)− q(y)‖ ≤ L‖x− y‖ for x, y ∈ X,
where L ≥ 0 is a constant.

(a2) The solution π of the Cauchy problem (3.2) is such that

‖π(t, x)− π(t, y)‖ ≤ eβt‖x− y‖ for t ≥ 0, x, y ∈ X,
where β ∈ R.

(a3) For some initial value x0 ∈ X the solution π(t, x0) of (3.2) is uniformly
bounded, i.e.

sup
t≥0
‖π(t, x0)‖ <∞.

(a4) The sequence (λn)n≥1 of birth rates converges to λ ∈ [0,∞] such that

lnL+ β/λ < 0.(5.1)

Condition (5.1) can be rewritten in the form λ lnL+β < 0. Thus, for λ = 0
we have β < 0, whereas for λ =∞ we have β/∞ = 0 and lnL < 0.

We are now ready to state the main result of the paper.
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Theorem 1. Assume (a1) to (a4). Then the Markov process (Pn) is
asymptotically stable.

Remark 2. Under assumptions (a1) to (a3) condition (5.1) is optimal.
Consider the following example. Let a(x) = 0 and b(x) = −2x for x ∈ X.
Then L = 1 and β = 0, so (5.1) becomes an equality. For every initial random
variable ξ0 we obtain ξn = −ξn−1 for every n ∈ N. Thus this process is not
asymptotically stable.

In order to prepare the proof of the theorem, we will look more closely
at the concept of weak convergence of measures and turn M1 as well as its
subsets into metric spaces.

We start from the following characterization of weak convergence.

Proposition 1. Let γ ∈ (0, 1] and µn ∈ M1 for each n ≥ 1. Given
µ ∈ M1, the following are equivalent :

(i) limn→∞〈f, µn〉 = 〈f, µ〉 for every f ∈ C(X).
(ii) limn→∞〈f, µn〉 = 〈f, µ〉 for every f ∈ Fγ where Fγ is the set of all

f ∈ C(X) such that ‖f‖C ≤ 1 and |f(x)− f(y)| ≤ ‖x− y‖γ for x, y ∈ X.

Proof. Let C be a closed subset of X. For k ∈ N and x ∈ X define

fk(x) = max{0, 1− kγ%(x,C)}
where %(x,C) = inf{‖x− z‖γ : z ∈ C}. Since

|%(x,C)− %(y, C)| ≤ ‖x− y‖γ for x, y ∈ X,
we see that k−γfk ∈ Fγ for each k ∈ N. Moreover, each fk has the value 1 on
C and has the value 0 at points whose distance from C is greater than 1/k.
Hence for each x ∈ X, fk(x) ↓ 1C(x) as k → ∞. By the Lebesgue bounded
convergence theorem and (ii),

µ(C) = lim
k→∞
〈fk, µ〉 = lim

k→∞
lim
n→∞

〈fk, µn〉 ≥ lim sup
n→∞

µn(C).

Since C was an arbitrary closed subset of X, we conclude that (i) holds by
the standard characterization of weak convergence (see [9], Theorem 1.1.1).

Let γ ∈ (0, 1]. The equivalence of (i) and (ii) implies that for any µ1, µ2 ∈
M1, if 〈f, µ1〉 = 〈f, µ2〉 for f ∈ Fγ , then 〈f, µ1〉 = 〈f, µ2〉 for all f ∈ C(X)
and consequently µ1 = µ2. This allows us to define a metric on M1 by

dFγ (µ1, µ2) = sup{|〈f, µ1 − µ2〉| : f ∈ Fγ} for µ1, µ2 ∈ M1.

Note that we always have dFγ (µ1, µ2) ≤ 2. This metric has the property
that convergence in the metric space (M1, d

F
γ ) is equivalent to weak con-

vergence of distributions, the converse implication of this equivalence being
a consequence of Corollary 1.1.2 from [9]. For γ = 1 it is the so-called
Fortet–Mourier metric (see [3, 6]).
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We introduce another distance on M1 by

dγ(µ1, µ2) = sup{|〈f, µ1 − µ2〉| : f ∈ Kγ} for µ1, µ2 ∈ M1,

where Kγ is the set of all f ∈ C(X) such that |f(x)− f(y)| ≤ ‖x− y‖γ for
x, y ∈ X. This quantity is always defined but for some measures it may be
infinite. It is easy to check that the function dγ is finite for elements of

Mγ
1 =

{
µ ∈ M1 :

�

X

‖x− x0‖γ µ(dx) <∞
}
,

where x0 is as in (a3), and defines a metric on this set. For γ = 1 it is the
so-called Vasershtein metric ([11]) and is frequently used in the theory of
fractals (see [1, 5]). Note that the definition of the set Mγ

1 is independent
of the particular choice of the point x0.

Observe that for all µ1, µ2 ∈ M1 we have

dFγ (µ1, µ2) ≤ dγ(µ1, µ2).(5.2)

Thus, convergence in the metric space (M1, dγ) implies weak convergence
of distributions. In general, however, the converse is not true. For a deeper
discussion of this problem for the case γ = 1 we refer the reader to [4]. In
particular, our Proposition 1 is an analogue of Theorem 3.8 of [4].

The following proposition provides a criterion for the asymptotic stability
of (Pn) in terms of the metric space (Mγ

1 , dγ).

Proposition 2. Suppose that there exist γ ∈ (0, 1], µ∗ ∈ Mγ
1 and k ∈ N

such that Pn(Mγ
1) ⊆Mγ

1 and Un(Kγ) ⊆ Kγ for n ≥ k, and

lim
n→∞

dγ(P (n,m)µ, µ∗) = 0 for µ ∈ Mγ
1 , m ≥ k.(5.3)

Then the Markov process (Pn) is asymptotically stable.

Proof. We first show thatMγ
1 is dense in (M1, d

F
γ ). Let µ ∈M1. Every

distribution with bounded support belongs to Mγ
1 and µ(B(x0, n)) → 1 as

n→∞. Therefore we can define measures from Mγ
1 by

µn(A) =
µ(A ∩B(x0, n))
µ(B(x0, n))

for A ∈ BX

for sufficiently large n ∈ N. Since µn(A) = 0 for A ⊆ X \ B(x0, n) and
|f | ≤ 1 for f ∈ Fγ, we have

dFγ (µn, µ) ≤ sup{|〈f1B(x0,n), µn − µ〉|+ |〈f1X\B(x0,n), µ〉| : f ∈ Fγ}

≤ sup
{(

1
µ(B(x0, n))

− 1
)
|〈f1B(x0,n), µ〉|+ 〈|f |1X\B(x0,n), µ〉 : f ∈ Fγ

}

≤ 1− µ(B(x0, n)) + µ(X \B(x0, n)).

Consequently, dFγ (µn, µ)→ 0 as n→∞ and the desired conclusion holds.
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Fix ε > 0 and µ ∈ M1. There exists a measure µε ∈ Mγ
1 such that

dFγ (µ, µε) < ε. Let n ≥ m ≥ k. By hypothesis, U(m,n)(Kγ) ⊆ Kγ. Since
the dual operator U(m,n) is a contraction, we also have U(m,n)(Fγ) ⊆ Fγ.
Hence

dFγ (P (n,m)µ, P (n,m)µε) = sup{|〈U(m,n)f, µ− µε〉| : f ∈ Fγ}
≤ sup{|〈f, µ− µε〉| : f ∈ Fγ} = dFγ (µ, µε) < ε.

From this and (5.2) it follows that

dFγ (P (n,m)µ, µ∗) ≤ ε+ dγ(P (n,m)µε, µ∗).

We conclude from (5.3) that

lim sup
n→∞

dFγ (P (n,m)µ, µ∗) ≤ ε.

Since ε > 0 was arbitrary, the proof is complete.

The next proposition provides a criterion for checking condition (5.3). In
what follows, a measure µ∗ ∈ Mγ

1 is called dγ-attractive if it satisfies (5.3)
for some k.

Proposition 3. Suppose that there exist γ ∈ (0, 1] and α ∈ (0, 1) such
that Pn(Mγ

1) ⊆Mγ
1 and

dγ(Pnµ1, Pnµ2) ≤ αdγ(µ1, µ2) for µ1, µ2 ∈ Mγ
1(5.4)

for all but finitely many n ∈ N. Then a measure µ∗ ∈Mγ
1 is dγ-attractive if

and only if
lim
n→∞

dγ(Pnµ∗, µ∗) = 0.(5.5)

Proof. Let k be such that Pn(Mγ
1) ⊆Mγ

1 for n ≥ k and (5.4) is satisfied
for n ≥ k.

Suppose first that (5.5) holds. From (5.4) it follows that

lim
n→∞

dγ(P (n,m)µ1, P (n,m)µ2) = 0 for µ1, µ2 ∈ Mγ
1

for any m ≥ k. Since P (n, k) = P (n,m) ◦ P (m,k), it remains to verify that
dγ(P (n, k)µ∗, µ∗)→ 0 as n→∞. By (5.4) and the triangle inequality

dγ(P (n+ 1, k)µ∗, µ∗) ≤ αdγ(P (n, k)µ∗, µ∗) + dγ(Pn+1µ∗, µ∗)

for sufficiently large n. Hence and from (5.5) it follows that the sequence
(dγ(P (n, k)µ∗, µ∗)) is bounded and that

lim sup
n→∞

dγ(P (n+ 1, k)µ∗, µ∗) ≤ α lim sup
n→∞

dγ(P (n, k)µ∗, µ∗).

Since α < 1, lim supn→∞ dγ(P (n, k)µ∗, µ∗) = 0, as required.
For the converse note that

dγ(Pn+1µ∗, µ∗) ≤ αdγ(µ∗, P (n, k)µ∗) + dγ(P (n+ 1, k)µ∗, µ∗) for n ≥ k.
Hence condition (5.5) holds.
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Before we start the proof of Theorem 1, we need the following lemma
which will be extensively used in what follows.

Assumptions (a1) and (a2) imply that the transformation S = q ◦ π
satisfies

‖S(t, x)− S(t, y)‖ ≤ Leβt‖x− y‖ for x, y ∈ X and t ≥ 0.(5.6)

Lemma 1. Let γ ∈ (0, 1] and n ∈ N. Suppose that λn > γβ. Then for
every f ∈ Kγ,

|Unf(x)− Unf(y)| ≤ Lγλn
λn − γβ

‖x− y‖γ for x, y ∈ X.(5.7)

Moreover , Pn(Mγ
1) ⊆Mγ

1 and

dγ(Pnµ1, Pnµ2) ≤ Lγλn
λn − γβ

dγ(µ1, µ2) for µ1, µ2 ∈ Mγ
1 .(5.8)

Proof. Condition (5.7) and the Pn-invariance of Mγ
1 follow immedi-

ately from (5.6) and the definition of Un. For the proof of (5.8) set cn =
Lγλn/(λn−γβ). From (5.7) it follows that Un(f/cn) ∈ Kγ for every f ∈ Kγ.
Hence

dγ(Pnµ1, Pnµ2) = cn sup
{∣∣∣∣
〈

1
cn
Unf, µ1 − µ2

〉∣∣∣∣ : f ∈ Kγ
}

≤ cn sup{|〈f, µ1 − µ2〉| : f ∈ Kγ} = cndγ(µ1, µ2).

Remark 3. Under the assumptions of Lemma 1, the set Kγ is Un-
invariant whenever Lγλn/(λn − γβ) ≤ 1.

We now turn to the proof of the theorem. In the following three propo-
sitions we consider the cases λ = 0, λ ∈ (0,∞), and λ =∞ respectively. In
each case we show that all assumptions of Proposition 2 are satisfied, which
proves the theorem.

Proposition 4. Let λ = 0. Then there is a point z ∈ X such that
z = π(t, z) for all t ≥ 0 and the point measure δq(z) is d1-attractive.

Proof. For λ = 0 assumption (5.1) reduces to β < 0, in which case the
semigroup π(t, ·) has a fixed point z. Hence for all n ∈ N and f ∈ C(X)
we have Unf(z) = f(q(z)). For γ = 1 and β < 0 we always have λn > γβ.
Further by Lemma 1 it follows that

|Unf(q(z))− f(q(z))| = |Unf(q(z))− Unf(z)| ≤ Lλn
λn − β

‖q(z)− z‖

for f ∈ K1 and all n ∈ N. Since λn → 0 as n → ∞, this implies that
Lλn/(λn − β) and d1(Pnδq(z), δq(z)) converge to 0 as n→∞. Consequently,
by Proposition 3 the measure δq(z) is d1-attractive.
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Proposition 5. Let λ ∈ (0,∞). Then there exist γ ∈ (0, 1) and a dγ-
attractive measure µ∗ such that

�

X

∞�

0

λf(S(t, x))e−λt dt µ∗(dx) =
�

X

f(x)µ∗(dx) for f ∈ C(X).(5.9)

Proof. First observe that

lim
r→0

(
Lrλ

λ− rβ

)1/r

= Leβ/λ

and by assumption (5.1) this value is strictly less than 1. Therefore, there
exists γ ∈ (0, 1) such that

λ > γβ and
Lγλ

λ− γβ < 1.

Since λn tends to λ as n→∞, there are k ∈ N and α < 1 such that

λn > γβ and
Lγλn
λn − γβ

≤ α for n ≥ k.

Let P be a Markov operator of the form

Pµ(A) =
�

X

[∞�

0

λ1A(S(t, x))e−λt dt
]
µ(dx) for A ∈ BX , µ ∈Ms.

As in Lemma 1 we obtain P (Mγ
1) ⊆Mγ

1 .
Fix µ ∈ Mγ

1 and n ≥ k. Since Pnµ(X) = Pµ(X) = 1, for any constant c
and any f ∈ Kγ we have

〈f, Pnµ− Pµ〉 = 〈f − c, Pnµ− Pµ〉.
As a result,

dγ(Pnµ, Pµ) = sup{|〈f, Pnµ− Pµ〉| : f(x0) = 0, f ∈ Kγ}.
Let f ∈ Kγ be such that f(x0) = 0. Put hn(t) = |λne−λnt−λe−λt| for t ≥ 0.
Then

|Unf(x)− Uf(x)| ≤
∞�

0

|f(S(t, x))− f(x0)|hn(t) dt,

where U is the dual to P . From (5.6) it follows that

|Unf(x)− Uf(x)| ≤ ‖x− x0‖γ
∞�

0

Lγeγβthn(t) dt

+
∞�

0

‖S(t, x0)− x0‖γhn(t) dt.

Since µ ∈ Mγ
1 , q is a Lipschitz map, and π(t, x0) is uniformly bounded,
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there are constants c1 and c2 such that

dγ(Pnµ, Pµ) ≤
∞�

0

(c1e
γβt + c2)hn(t) dt.

By the Lebesgue bounded convergence theorem the right-hand side tends
to 0 as n→∞. Therefore

lim
n→∞

dγ(Pnµ, Pµ) = 0.

In view of Proposition 3, it remains to verify that the operator P has a fixed
point in Mγ

1 . To this end, we make use of a result from [8].
Let (ηn)n≥1 be an i.i.d. sequence of exponentially distributed random

variables with parameter λ defined on a common probability space. Consider
the following stochastically perturbed dynamical system:

ζn = S(ηn, ζn−1) for n ∈ N
with ζ0 ≡ x0. Let %(x, y) = ‖x − y‖γ for x, y ∈ X. Note that (X, %) is a
complete separable metric space with the same family of Borel sets as in
(X, ‖ · ‖) and the same family of continuous and bounded functions. By
(5.6),

%(S(t, x), S(t, y)) ≤ L(t)%(x, y) for x, y ∈ X, t ≥ 0

where L(t) = Leγβt. Since EL(η1) < 1 and E%(x0, S(x0, η1)) < ∞, we infer
from Theorem 1 and Remark 1 of [8] that there exists a measure µ∗ ∈ M1
such that �

X

f(x)µ∗(dx) =
�

X

�

R+

f(S(t, x))λe−λt dt µ∗(dx)

for every bounded continuous function f on (X, %) and
�

X

%(x0, x)µ∗(dx) <∞.

Consequently, µ∗ ∈ Mγ
1 and µ∗ satisfies (5.9). The duality between U and

P yields
〈f, µ∗〉 = 〈Uf, µ∗〉 = 〈f, Pµ∗〉

for f ∈ C(X), which completes the proof.

Proposition 6. Let λ = ∞. Then there is a point z ∈ X such that
z = q(z) and the point measure δz is d1-attractive.

Proof. In this case we have L < 1 and consequently the transformation
q has a fixed point z. Moreover, since λn → ∞ as n → ∞, there are k ∈ N
and α < 1 such that

λn > β and
Lλn
λn − β

≤ α for n ≥ k.

In view of Proposition 3 it remains to verify that d1(Pnδz, δz)→ 0 as n→∞.
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For every f ∈ K1 we have

|Unf(z)− f(z)| ≤
∞�

0

|f(S(t, z))− f(z)|λne−λnt dt

≤
∞�

0

‖S(t, z)− z‖λne−λnt dt.

The last inequality implies

d1(Pnδz, δz) ≤
∞�

0

‖S(t/λn, z)− z‖e−t dt.

From (5.6) and the fact that π(t, x0) is uniformly bounded and q is a Lip-
schitz map it follows that

‖S(t/λn, z)− z‖ ≤ Leβt/λn‖z − x0‖+ c,

where c is a constant. Since β/λn tends to 0 as n→∞ and for every positive
t the sequence (S(t/λn, z))n≥1 converges to q(z), the conclusion follows from
the Lebesgue bounded convergence theorem.

Remark 4. The paper [10] is devoted to the problem of asymptotic
stability of discrete time-nonhomogeneous processes, but methods developed
there are not applicable to the case presented here.
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Reçu par la Rédaction le 28.2.2000
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