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Polar quotients and singularities at infinity
of polynomials in two complex variables

by Arkadiusz Płoski (Kielce)

Abstract. Using the notion of the maximal polar quotient we characterize the critical
values at infinity of polynomials in two complex variables. As an application we give a
necessary and sufficient condition for a family of affine plane curves to be equisingular at
infinity.

Introduction. For any reduced projective curve C ⊂ P2(C) given by a
homogenuous equation F = 0 and for every point p = (a0 : a1 : a2) not lying
on C we consider the polar curve ∇pC (possibly with multiple components)
given by the equation

∇pC = a0
∂F

∂X0
+ a1

∂F

∂X1
+ a2

∂F

∂X2
= 0.

Let L ⊂ P2(C) be a line. Suppose that L 6⊂ C and fix a point p ∈ L \ C.
Then L is not a component of ∇p C and we may consider the polar quotients
of C with respect to L at a point o ∈ C ∩ L:

ordγ C
ordγ L

, γ runs over branches of ∇p C with center at o.

The polar quotients do not depend on the choice of p ∈ L \C. They are
identical with the local polar quotients of the germ (C, o) with respect to
(L, o) ([LMW], [Pł2]).

Let

qo(C,L) = sup{q : q is a polar quotient of C with respect to L at o}.
Clearly the set of polar quotients is empty if and only if o is reqular on
C and L is not tangent to C at o. In this situation qo(C,L) = −∞ for
by convention sup ∅ = −∞. Let µo(C) be the Milnor number of C at o. If
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qo(C,L) 6= −∞ then we have

µo(C)
(C · L)o − 1

+ 1 ≤ qo(C,L) ≤ µo(C) + 1

where (C · L)o is the intersection number of C and L at o. Note that
qo(C,L) = µo(C) + 1 provided (C · L)o = 2. We omit the easy proof of
the above estimate (for the right inequality see [Te2], Remark on p. 202).

The maximal polar quotient qo(C,L) is a topological invariant of the
germ (C∪L, o). It can be calculated explicitly in terms of the characteristics
of the branches and their intersection multiplicities ([P l2], Theorem 1.3).

Let C be a reduced projective curve and L a line such that L 6⊂ C. Then
we put

q(C,L) = sup{qo(C,L) : o ∈ C ∩ L}.
Hence q(C,L) = −∞ if and only if C and L meet with multiplicity 1. If
q(C,L) 6= −∞ then q(C,L) is a rational number and

1 ≤ q(C,L) ≤ (d− 1)2 + 1

where d = degC.
Now, let us consider a reduced polynomial f = f(X,Y ) ∈ C[X,Y ] (i.e.

without multiple factors) of degree d > 0 and let C be the projective closure
of the affine curve f(X,Y ) = 0. Let P2(C) = C2 ∪ L∞ where L∞ is the line
at infinity. We call q(C,L∞) the maximal polar quotient at infinity of the
affine curve f(X,Y ) = 0. If C is the projective closure of an affine curve
with multiple components then we put q(C,L∞) = +∞. Throughout this
paper we use the usual conventions on the symbols −∞ and +∞.

Our purpose is to calculate the maximal polar quotient of the curves
f(X,Y ) − t = 0, t ∈ C, in terms of the discriminant. We use this notion
to characterize the critical values at infinity. The proof of our main result
is based on the notion of the Łojasiewicz exponent at infinity (see [CK1],
[CK2], [CN-H], [H], [Pł1]).

1. Result. Let f = f(X,Y ) ∈ C[X,Y ] be a reduced polynomial of
degree d > 0 and let F = F (X,Y,Z) ∈ C[X,Y,Z] be the homogeneous form
corresponding to f . Let C∞ = C ∩L∞ be the set of points at infinity of the
projective curve C given by the equation F (X,Y,Z) = 0.

We consider the projective curves Ct (possibly with multiple factors)
given by the equations

F (X,Y,Z)− tZd = 0.

Clearly Ct ∩ L∞ = C∞. Let µtp = µp(Ct) be the Milnor number of Ct at
p ∈ C∞. If a multiple component of Ct passes through p then µtp = +∞.
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Let µmin
p = inf{µtp : t ∈ C} and

Λ(f) = {t ∈ C : there is a p ∈ C∞ such that µtp > µmin
p }.

The set Λ(f) is finite (see [B]). The elements of Λ(f) are called critical values
at infinity of the polynomial f : C2 → C. If Ct has a multiple component
then t ∈ Λ(f). Different definitions of critical values at infinity are discussed
in [D]. The elements of C \ Λ(f) are called regular values at infinity .

For every t ∈ C we put

λt(f) =
∑

p∈C∞
(µtp − µmin

p )

if Ct is reduced and λt(f) = +∞ if not. Note that if C and L∞ meet
with multiplicity 1 then Λ(f) = ∅ and q(C t,L∞) = −∞ for all t ∈ C. The
following assumptions will be made throughout this paper:

• f is a reduced polynomial of degree d > 0,
• the projective closure C of the affine curve f(X,Y ) = 0 and the line

at infinity L∞ meet with multiplicity > 1 at a point of C ∩ L∞.

Now suppose additionally that degY f = deg f = d > 1 and let T be a
new variable. Consider the Y -discriminant ∆(X,T ) = discY (f(X,Y ) − T )
of the polynomial f(X,Y )−T ∈ C[X,T ][Y ]. Obviously ∆(X, t) 6= 0 in C[X]
if and only if the polynomial f(X,Y )− t is reduced. Write

∆(X,T ) = ∆0(T )XN + . . .+∆N (T ) with ∆0(T ) 6= 0.

The following proposition is well known.

Proposition 1.1.

Λ(f) = {t ∈ C : ∆0(t) = 0}, λt(f) = N − degX ∆(X, t).

A simple, intersection-theoretic proof of Proposition 1.1 is given in [K]
(see also [GP2]).

Our main result is the following.

Theorem 1.2. With the notation introduced above,

q(Ct,L∞) =





d−
(

N
max
i=1

deg∆i

i

)−1

if Λ(f) = ∅,

d if Λ(f) 6= ∅ and t 6∈ Λ(f),

d+
(
λt(f)−1

min
i=0

ordt∆i

λt(f)− i

)−1

if Λ(f) 6= ∅, t ∈ Λ(f) and

Ct is reduced.

Recall that according to our convention q(C t,L∞) = +∞ if Ct is not
reduced. The proof of Theorem 1.2 is given in Section 3. Now, we present
some applications.
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Corollary 1.3. (i) If Λ(f) = ∅ then q(Ct,L∞) = q(C,L∞) < d for all
t ∈ C.

(ii) If Λ(f) 6= ∅ then q(Ct,L∞) = d if t ∈ C \ Λ(f) and q(Ct,L∞) > d
if t ∈ Λ(f).

The above corollary shows that q(Ct,L∞), like λt(f), is an upper semi-
continuous function of t. This contrasts with the fact that the maximal
polar quotient is neither upper nor lower semicontinuous in the family of
hypersurfaces (see [Te2], p. 201).

Remark 1.4. If Λ(f) 6= ∅ then d ≤ q(Ct,L∞) ≤ d+ λt(f) for all t ∈ C.

The characterization of regular values at infinity presented below is due
to Neumann and Lê Văn Thàn who used topological methods.

Corollary 1.5 (see [Lê] and [NL]). A number t0 ∈ C is a regular value
at infinity of f if and only if q(Ct0 ,L∞) ≤ d.

The family of polynomials f(X,Y )−t, t ∈ C, is said to be equisingular at
infinity if Λ(f) = ∅. All polynomials of an equisingular family are reduced.
Theorem 1.2 implies the following criterion of equisingularity.

Corollary 1.6. Let f = f(X,Y ) ∈ C[X,Y ] be a reduced polynomial of
degree d > 1. Then the following two conditions are equivalent :

(i) the family f(X,Y )− t is equisingular ,
(ii) q(C,L∞) < d.

To give an application of Corollary 1.6 let us recall

The Abhyankar–Moh inequality. Let C be a reduced projective
plane curve of degree d > 1. Suppose that o ∈ C is a unibranch point of C
(i.e. only one branch of C passes through o) such that the unique tangent L
to C at o does not intersect C at points different from o. Then qo(C,L) < d.

The original Abhyankar–Moh inequality is stated in terms of Puiseux
expansions [AM]. The formulation above is given in [GP1] (Theorem 2.2).
The Abhyankar–Moh inequality and Corollary 1.6 imply

Corollary 1.7 (the Ephraim equisingularity theorem, [Eph], Theo-
rem 3.4). Let f = f(X,Y ) be a reduced polynomial such that the projective
closure C of the affine curve f(X,Y ) = 0 has only one branch at infinity.
Then the family f(X,Y )− t is equisingular.

Here is another application of Corollary 1.6:

Corollary 1.8. Let f = f(X,Y ) be a reduced polynomial of degree
d > 1 with d− 1 points at infinity. Let o ∈ C∞ be the unique point such that
(C ·L∞)o = 2. Then the family f(X,Y )− t is equisingular if and only if the
Milnor number µo = µo(C) is strictly less than d− 1.
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To prove Corollary 1.8 it suffices to recall that the condition (C ·L∞)o = 2
implies qo(C,L∞) = µo + 1 and apply Corollary 1.6.

2. Proof. The proof of our main result is based on some properties
of the Łojasiewicz exponents. Let f, h be two polynomials of two complex
variables. We assume that h 6≡ const. The Łojasiewicz exponent at infinity
L∞(f |h) of the polynomial function f |h−1(0) is, by definition, the least
upper bound of the set

{Θ ∈ R : ∃C,R > 0 ∀z ∈ h−1(0) (|z| ≥ R⇒ |f(z)| ≥ C|z|Θ)}.
Then L∞(f |h) > −∞ if and only if the set

{(x, y) ∈ C2 : f(x, y) = h(x, y) = 0}
is finite. To calculate L∞(f |h) we use meromorphic parametrizations p(T ) =
(x(T ), y(T )) where x(T ), y(T ) ∈ C((T )) are Laurent series convergent in a
punctured disc at the origin such that min{ordx(T ), ord y(T )} < 0. In what
follows we put ord p(T ) = min{ordx(T ), ord y(T )}.

Lemma 2.1.

L∞(f |h) = inf
{

ord(f ◦ p)
ord p

: p is a meromorphic parametrization

such that h ◦ p ≡ 0
}
.

Proof. Let Γ be the image of the set ∆ \ {0}, where ∆ is a small disc
around 0 ∈ C, under the mapping ∆ \ {0} 3 t 7→ p(t) ∈ C. One easily sees
that ΘΓ = ord(f ◦ p)/ord p is the greatest number Θ such that

|f(z)| ≥ const · |z|Θ for z ∈ Γ and |z| → +∞.
Let V = {(x, y) ∈ C2 : h(x, y) = 0}. Then there exists a neighbourhood of
infinity ω ⊂ C2 (i.e. C2\ω is compact) and a finite sequence of meromorphic
parametrizations pi (i = 1, . . . , r) such that

V ∩ ω =
r⋃

i=1

pi(∆ \ {0}) (disjoint union, see [CK1]).

Therefore

L∞(f |h) =
n

min
i=1
{ΘΓi}, where Γi = pi(∆ \ {0}),

and the lemma follows.

A branch γ ⊂ P2(C) = C2 ∪ L∞ is a branch at infinity if the centre of γ
is on L∞ and γ 6⊂ L∞. We say that a meromorphic parametrization p(T ) =
(x(T ), y(T )) is a (meromorphic) parametrization of a branch γ at infinity
if γ is given in projective coordinates by (T kx(T ) : T ky(T ) : T k) where
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k = − ord p. Any branch at infinity has a meromorphic parametrization.
We check easily that ord p = − ordγ L∞ and

ord(f ◦ p) = ordγ

(
F

Zd

)
= ordγ F − d ordγ Z

where d = deg f and F is the homogeneous form determined by f .
Hence we get

Proposition 2.2. With the notation introduced above

L∞(f |h) = d− sup{ordγ F/ ordγ Z : γ is a branch at infinity

of the projective closure of h = 0}.
For every nonzero polynomial

R(X,T ) = R0(T )XN + . . .+RN (T ), R0(T ) 6= 0,

we define the Puiseux exponent π(R) of R by putting

π(R) =





N
max
j=1

(
degRj
j

)
if R0(T ) ≡ const,

∞ if R0(0) 6= 0 and R0(T ) 6≡ const,

−
r

min
j=1

(
ord0Rj
r + 1− j

)
if R0(0) = . . . = Rr(0) = 0

and Rr+1(0) 6= 0,

0 if R(X, 0) ≡ 0.

We set 1/∞ = 0.

Lemma 2.3. Suppose that R(X, 0) 6≡ 0.

(i) There exist positive constants A,B such that

{(x, t) : |x| > B and R(x, t) = 0} ⊂ {(x, t) : |x| > B and A|x|1/π(R) ≤ |t|},
(ii) If

{(x, t) : |x| > B and R(x, t) = 0} ⊂ {(x, t) : |x| > B and A|x|ν ≤ |t|}
for some A,B > 0 and ν ∈ R then ν ≤ 1/π(R).

Proof. If R0(T ) ≡ const then Lemma 2.3 reduces to Lemma 2.1 of [Pł1].
If R0(T ) 6≡ const then the lemma follows from Lemmas 8.2 and 8.3 of [CK2].

The following proposition is a version of a result due to Chądzyński and
Krasiński [CK2, Theorems 3.1–3.3].

Proposition 2.4. Let degY h = deg h > 0. Consider

R(X,T ) = resY (h(X,Y ), f(X,Y )− T ),
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the Y -resultant of the polynomials h(X,Y ), f(X,Y ) − T ∈ C[X,T ][Y ]. As-
sume R(X, 0) 6= 0 in C[X]. Then

L∞(f |h) =
1

π(R)
.

Proof. Since degY h = deg h > 0 we get

{(x, y) : |x| > B and h(x, y) = 0} ⊂ {(x, y) : |x| > B and |y| ≤ D|x|}
for some constants B,D > 0. Therefore on the set {(x, y) : h(x, y) = 0,
|x| > B} the inequality |f(z)| ≥ |z|Θ is equivalent to |f(z)| ≥ C1|x|Θ with
C1 > 0 dependent on C and D.

Now fix Θ ∈ R. By the definition of the resultant the following two
conditions are equivalent:

(1) {(x, y) ∈ C2 : h(x, y) = 0, |x| > B} ⊂ {(x, y) ∈ C2 : |f(x, y)| ≤
C1|x|Θ},

(2) {(x, t) ∈ C2 : R(x, t) = 0, |x| > B} ⊂ {(x, t) ∈ C2 : |t| ≤ C1|x|Θ}.
Proposition 2.4 now follows from Lemma 2.3.

Remark 2.5. The Puiseux exponent π(R) can be interpreted in terms of
the Newton diagram of the polynomial R(X,T ) (see [GP2], Proposition 2.8
and remark to Proposition 2.8).

Remark 2.6. Let Rt(X,T ) = R(X,T+t) for t ∈ C. Then π(Rt) = π(R)
if R0(T ) ≡ const, π(Rt) =∞ if R0(t) 6= 0 and R(T ) 6≡ const, and

π(Rt) = −
r(t)
min
j=0

(
ordtRj

r(t) + 1− j

)

if R0(t) = . . . = Rr(t)(t) = 0 and Rr(t)+1(t) 6= 0. Note that r(t) + 1 =
degX R(X,T )− degR(X, t).

Now we can prove our main result.

Proof of Theorem 1.2. Assume that degY f = deg f = d > 1 and put

C =
(

projective closure of the curve
{
∂f

∂Y
= 0
})

=
{
∂F

∂Y
= 0
}

where F is the homogeneous form corresponding to f . By Proposition 2.2
and definition of q(C,L∞) we get

L∞
(
f

∣∣∣∣
∂f

∂Y

)
= d− sup{ordγ F/ordγ Z : γ is a branch at infinity

of the polar ∂F/∂Y = 0}
= d− q(C,L∞).
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Applying the formula L∞(f |∂f/∂Y ) = d − q(C,L∞) to the polynomials
f − t, t ∈ C, we get

q(Ct,L∞) = d− L∞
(
f − t

∣∣∣∣
∂f

∂Y

)
.(1)

Let ∆(X,T ) = ∆0(T )XN + . . .+∆N (T ), ∆0(T ) 6≡ 0, be the Y -discriminant
of f(X,Y ) − T , i.e. the Y -resultant of f(X,Y ) − T and (∂f/∂Y )(X,Y ).
Let ∆t(X) = ∆(X, t). Consequently, deg∆t(X) = degX ∆(X,T )−λt(f) by
Proposition 1.1. Using Proposition 2.4 we get

L∞
(
f − t

∣∣∣∣
∂f

∂Y

)
=

1
π(∆t)

(2)

provided that f − t is reduced. Now, Theorem 1.2 follows from (1), (2) and
from Remark 2.6.

3. Uniform estimation of polar quotients. It is natural to ask how
large qo(C,L) can be when degC = d is given. For every d > 1 we put

q(d) = sup{qo(C,L) : ∃C,L degC = d, o ∈ C ∩ L and L 6⊂ C}.
In the definition of q(d) one may restrict oneself to the pairs C,L where C
and L are transverse (see [P l2], Corollary 1.4).

One easily sees that qo(C,L) = b/a where a, b > 0 are integers and
a ≤ degC−1. Therefore the set of all polar quotients qo(C,L) with degC = d
is finite and we get

Property 3.1. The number q(d) is rational.

Recall that a curve C has an Ak-singularity at o ∈ C if ordoC = 2 and
µo(C) = k. Let

k(d) = max{k : there is a curve C of degree d with Ak-singularity}.
Property 3.2. k(d) + 1 ≤ q(d) ≤ (d− 1)2 + 1.

Proof. If C is of degree d with Ak(d)-singularity at o ∈ C then µo(C) =
k(d), ordo C = 2 and the polar quotient of C at o with respect to a transverse
line L equals µo(C) + 1 = k(d) + 1. Thus k(d) + 1 ≤ q(d).

The second estimate follows from the inequalities

qo(C,L) ≤ µo(C) + 1 ≤ (d− 1)2 + 1.

If f is a polynomial with an isolated singularity at 0 ∈ C2 then its Łojasiewicz
exponent L0(f) is defined to be

L0(f) = inf{Θ > 0 : |grad f(z)| ≥ const · |z|Θ for small |z|}.
According to Teissier [Te1], L0(f) + 1 = the maximal polar quotient of the
curve f = 0 at 0 ∈ C2 with respect to a generic line. Thus we get
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Property 3.3. If f is a polynomial of degree d > 1 with an isolated
singularity at 0 ∈ C2 then L0(f) ≤ q(d)− 1.

The above estimate is optimal: for every integer d > 1 there is a polyno-
mial of degree d such that L0(f) = q(d)− 1. If f : C2 → C is a polynomial
with isolated critical points then the Łojasiewicz exponent at infinity L∞(f)
is defined to be

L∞(f) = sup{Θ ∈ R : |grad f(z)| ≥ const · |z|Θ for large |z|}.
The following result is a reformulation of Proposition 6 from [CN-H]:

Proposition 3.4. Let f : C2 → C be a polynomial of degree d > 1 with
isolated critical points. Assume that the projective closure C of the affine
curve {f = 0} and the line at infinity L∞ do not meet at d points. Then

(i) L∞(f) = d− 1− q(C,L∞) if Λ(f) = ∅,
(ii) L∞(f) = d− 1−maxt∈Λ(f) q(Ct,L∞) if Λ(f) 6= ∅.
Using the proposition we get

Property 3.5. If f is a polynomial of degree d > 1 with isolated critical
points then L∞(f) ≥ d− 1− q(d).

Problem. Compare k(d) and q(d) for large d. In particular, estimate
lim supd→∞ q(d)/d2 like lim supd→∞ k(d)/d2 in [GZ-N].
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[Eph] R. Ephraim, Special polars and curves with one place at infinity , in: Proc.
Sympos. Pure Math. 40, Part I, Amer. Math. Soc., 1983, 353–359.

[GP1] J. Gwoździewicz and A. Płoski, On the approximate roots of polynomials, Ann.
Polon. Math. 60 (1995), 199–210.

[GP2] —, —, Formulae for the singularities at infinity of plane algebraic curves, sub-
mitted.



58 A. Płoski

[GZ-N] S. M. Gusein-Zade and N. N. Nekhoroshev, On singularities of type Ak on simple
curves of fixed degree, Funct. Anal. Appl. 34 (2000), 214–215.

[H] H. V. Ha, Nombres de Łojasiewicz et singularités à l’infini des polynômes de
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