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A local characterization of affine holomorphic immersions
with an anti-complex and ∇-parallel shape operator

by Maria Robaszewska (Kraków)

Abstract. We study the complex hypersurfaces f : M (n) → Cn+1 which together
with their transversal bundles have the property that around any point of M there exists
a local section of the transversal bundle inducing a ∇-parallel anti-complex shape opera-
tor S. We give a class of examples of such hypersurfaces with an arbitrary rank of S from
1 to [n/2] and show that every such hypersurface with positive type number and S 6= 0 is
locally of this kind, modulo an affine isomorphism of Cn+1.

1. Introduction. Among the connections induced on complex hyper-
surfaces f : M (n) → Cn+1 by C∞ complex transversal bundles there are two
particular kinds of great interest: holomorphic connections and affine Kähler
connections. The latter are meant to be a generalization of Kähler connec-
tions. In terms of the curvature tensor, a holomorphic affine connection is
characterized by the condition

R(JX, Y ) = JR(X,Y ) for all vector fields X,Y,

while for an affine Kähler connection we have, by definition,

R(JX, JY ) = R(X,Y ) for all X,Y

(see [NS]). Since, provided the affine fundamental form h does not vanish
on M , a holomorphic connection is induced by a holomorphic transversal
bundle, it is possible to adapt the ideas from the real affine hypersurface ge-
ometry to this case. For instance, having a non-degenerate hypersurface one
can construct a holomorphic analogue of affine normal vector field [DVV].
Then one can consider the condition S = λI, λ = const, which describes the
affine spheres [DVV].

On the contrary, the non-flat affine Kähler connections induced on hy-
persurfaces (in particular, the non-flat Kähler ones) cannot be treated in this
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way. Instead of the holomorphic transversal bundles, with the complex shape
operator, one has to consider the transversal bundles N having the property
that the shape operator corresponding to sections of N is anti-complex. This
property of N implies the desired condition for the curvature tensor R of
∇ and is necessary for ∇ to be affine Kähler if tf > 1 at some point of M
(see [O]).

Clearly, no section ξ of such a bundle can induce S proportional to the
identity, except for the case S = 0. Being ∇-parallel is a weaker condi-
tion on S than S = λI, λ = const. This condition is shown to have some
non-trivial realizations even if we require S to be anti-complex. It is worth
noting that we need to consider degenerate hypersurfaces, because the non-
degeneracy implies S = 0 (Lemma 2).

2. Preliminaries. Let M be an n-dimensional connected complex man-
ifold. We shall consider a holomorphic immersion f : M → Cn+1 together
with a C∞ complex transversal bundle N . If ξ : U → Cn+1 is a local section
of N , then the induced connection ∇ on M , the second fundamental form
h, the shape operator S and the transversal forms µ and ν are defined by
the following Gauss and Weingarten formulas [NS]:

DXf∗Y = f∗∇XY + h(X,Y )ξ − h(JX, Y )Jξ,

DXξ = −f∗SX + µ(X)ξ + ν(X)Jξ.

Here D denotes the standard connection on Cn+1, and J the complex struc-
ture on M and on Cn+1 as well.

Let m ∈M . The complex rank of the C-bilinear form hcm(·, ·) = hm(·, ·)−
ihm(J ·, ·) depends on f only. It is called the type number of f at m and
denoted by tfm (see [O]). We shall assume that it is positive everywhere
on M .

Our first requirement on the transversal bundle is that the induced shape
operator S is anti-complex , i.e. SJ = −JS (see [O]). The fundamental
equations satisfied by ∇, h, µ, ν and such an S are the following:

R(X,Y )Z = h(Y,Z)SX − h(X,Z)SY + h(JY,Z)SJX − h(JX,Z)SJY

(Gauss),

(∇Xh)(Y,Z) + µ(X)h(Y,Z) + ν(X)h(JY,Z)

= (∇Y h)(X,Z) + µ(Y )h(X,Z) + ν(Y )h(JX,Z) (Codazzi I ),

(∇XS)Y − µ(X)SY + ν(X)SJY = (∇Y S)X − µ(Y )SX + ν(Y )SJX

(Codazzi II ),

h(X,SY )− h(Y, SX) = 2dµ(X,Y ) (Ricci I),

h(SX, JY )− h(SY, JX) = 2dν(X,Y ) (Ricci II).
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Furthermore, we shall assume that for every point m ∈M there exists a
local section ξ : U → Cn+1 of N with U 3 m such that ∇Sξ = 0, where Sξ

denotes the shape operator induced by ξ. If the points m1,m2 ∈ U can be
joined by a curve lying in U , and B1 is a basis of Tm1M , then by parallel
displacement we can obtain a basis B2 of Tm2M with respect to which Sξm2

has the same matrix as Sξm1
with respect to B1. Hence rankSξm1

= rankSξm2
,

where rankSξm := dimC imSξm. The assumed connectedness of M and the
independence of rankSξm of ξ at a fixed m imply that q := rankS is well
defined for the whole M .

When studying immersions with∇-parallel shape operator we shall make
use of the following remarks:

Remark 1. If ∇S = 0, then for every X,Y,Z,

R(X,Y )SZ = S(R(X,Y )Z).

Proof. This is an obvious consequence of the commutativity of S and
∇W for any W .

Remark 2. If ∇S = 0 and SJ = −JS, then kerS ⊂ kerµ ∩ ker ν or
S = 0.

Proof. Let SX = 0. By the second Codazzi equation we have −µ(X)SY
+ ν(X)SJY = 0 for any Y . If S 6= 0, then there exists Y such that SY 6= 0.
Since SY and SJY = −JSY are linearly independent over R, it follows that
µ(X) = 0 and ν(X) = 0.

Remark 3. If ∇S = 0, SJ = −JS and S 6= 0, then the section ξ
inducing S is anti-holomorphic, i.e. ν(X) = µ(JX) for any X.

Proof. We may assume that SX 6= 0. The assertion follows easily from
the second Codazzi equation, written for Y = JX.

For an anti-holomorphic ξ we can rewrite the first Codazzi equation as

(∇Xh)(Y,Z) + µ(X)h(Y,Z) + µ(JX)h(JY,Z)

= (∇Y h)(X,Z) + µ(Y )h(X,Z) + µ(JY )h(JX,Z).

3. Theorem. We can now formulate our main result.

Theorem. Let M be an n-dimensional connected complex manifold ,
n > 1, f : M → Cn+1 a holomorphic immersion and ∇ a linear connection
induced on M by a transversal bundle N . Let f and M satisfy the following
assumptions:

(1) tf > 0 everywhere on M ,
(2) for every m ∈ M there exists a neighbourhood U of m and a local

section ξ : U → Cn+1 of N inducing an anti-complex and ∇-parallel shape
operator S,
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(3) q := rankS > 0.

Under the conditions stated above,

(i) q ≤ n/2;
(ii) for every m ∈ M there exists a neighbourhood V of m, a complex

chart φ̃ : V → Cn ∼= Cq × Cn−2q × Cq, a complex affine isomorphism
Ã : Cn+1 → Cn+1, and a holomorphic function F̃ such that

Ã ◦ f ◦ φ̃−1(x̃1, . . . , x̃q, ỹ1, . . . , ỹn−2q, z̃1, . . . , z̃q)

= (x̃1, . . . , x̃q, ỹ1, . . . , ỹn−2q, z̃1, . . . , z̃q, F̃(ỹ1, . . . , ỹn−2q, z̃1, . . . , z̃q));

(iii) if q > 1, then the local section ~̃
A ◦ ξ : V → Cn+1 of ~̃AN (where

~̃
A denotes the linear part of Ã) inducing the ∇-parallel shape operator is
described in this chart by the following formula:

~̃
A ◦ ξ ◦ φ̃−1(x̃1, . . . , x̃q, ỹ1, . . . , ỹn−2q, z̃1, . . . , z̃q) = (z̃1, . . . , z̃q, 0, . . . , 0︸ ︷︷ ︸

n−q times

, 1);

(iv) if q = 1, then

~̃
A ◦ ξ ◦ φ̃−1(x̃, ỹ1, . . . , ỹn−2, z̃) = (G̃(z̃), 0, . . . , 0︸ ︷︷ ︸

n−1 times

, eM̃(z̃))

where G̃ and M̃ are holomorphic functions such that

G̃′(z̃)− M̃′(z̃)G̃(z̃) ≡ 1.

In the real representation, setting x̃k = x2k−1 + ix2k, ỹl = y2l−1 + iy2l,
z̃j = z2j−1 + iz2j for j, k = 1, . . . , q; l = 1, . . . , n − 2q; F̃ = F1 + iF2,
G̃ = G1 + iG2, M̃ =M1 + iM2, we have

A ◦ f ◦ φ−1(x1, . . . , x2q, y1, . . . , y2n−4q, z1, . . . , z2q)

= (x1, . . . , x2q, y1, . . . , y2n−4q, z1, . . . , z2q,F1(y, z),F2(y, z)),
~A ◦ ξ ◦ φ−1(x1, . . . , x2q, y1, . . . , y2n−4q, z1, . . . , z2q)

= (z1,−z2, . . . , z2q−1,−z2q, 0, . . . , 0︸ ︷︷ ︸
2n−2q times

, 1, 0)

if q > 1, and

~A ◦ ξ ◦ φ−1(x1, x2, y1, . . . , y2n−4, z1, z2)

(G1(z),−G2(z), 0, . . . , 0︸ ︷︷ ︸
2n−2 times

, eM
1(z) cosM2(z),−eM1(z) sinM2(z))

if q = 1.
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Remark 4. An easy computation shows that the converse is also true:

(a) For any holomorphic function F̃ of n − q variables, where q ≤ n/2,
the shape operator S induced on the hypersurface

f : Cn ⊃ U 3 (x̃1, . . . , x̃q, ỹ1, . . . , ỹn−2q, z̃1, . . . , z̃q)

7→ (x̃1, . . . , x̃q, ỹ1, . . . , ỹn−2q, z̃1, . . . , z̃q, F̃(ỹ, z̃)) ∈ Cn+1

endowed with the transversal field

ξ(x̃1, . . . , x̃q, ỹ1, . . . , ỹn−2q, z̃1, . . . , z̃q) = (z̃1, . . . , z̃q, 0, . . . , 0︸ ︷︷ ︸
n−q times

, 1)

is parallel with respect to the induced connection and rankS = q.
(b) For any holomorphic function F̃ of n− 1 variables and for any holo-

morphic functions G̃ and M̃ of one variable satisfying the equation

G̃′(z̃)− M̃′(z̃)G̃(z̃) ≡ 1,

the shape operator S induced on the hypersurface

f : Cn ⊃ U 3 (x̃, ỹ1, . . . , ỹn−2, z̃) 7→ (x̃, ỹ1, . . . , ỹn−2, z̃, F̃(ỹ, z̃)) ∈ Cn+1

endowed with the transversal field

ξ(x̃, ỹ1, . . . , ỹn−2, z̃) = (G̃(z̃), 0, . . . , 0︸ ︷︷ ︸
n−1 times

, eM̃(z̃)

is parallel with respect to the induced connection and has rankS = 1.

Proof of the Theorem. We begin by proving two lemmas in which we
establish some inclusions between imS, kerS and kerh.

Lemma 1. If tf > 0, SJ = −JS, and ∇S = 0, then the following
conditions are equivalent :

(1) dµ = 0 and dν = 0,
(2) imS ⊂ kerh,
(3) imS ⊂ kerS.

Proof. (1)⇔(2). Suppose that dµ = 0 and dν = 0. Let m′ ∈ M and
X,Y ∈ Tm′M . Applying the Ricci equations we have

0 = 2dµ(X,Y ) + 2dν(JX, Y )

= h(X,SY )− h(Y, SX)− h(J2X,SY ) + h(JY, SJX)

= h(X,SY )− h(Y, SX) + h(X,SY ) + h(JY,−JSX)

= h(X,SY )− h(Y, SX) + h(X,SY ) + h(Y, SX) = 2h(X,SY ),

hence for any X,Y ∈ Tm′M we have h(X,SY ) = 0. The Ricci equations
make it obvious that (2) implies (1).
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(2)⇒(3). Suppose that imS ⊂ kerh, which yields R(X,Y )SZ = 0 by
the Gauss equation. Since tfm′ > 0, there exist X0, Y0 ∈ Tm′M such that
h(X0, Y0) 6= 0. We first show that S2X0 = 0. Indeed, making use of Remark 1
we have

0 = S(R(X0, JX0)Y0) = 2(h(JX0, Y0)S2X0 − h(X0, Y0)S2JX0)

with h(X0, Y0) 6= 0, which means that S2X0 and S2JX0 are linearly depen-
dent over R. This is possible only when S2X0 = S2JX0 = 0.

Now we take an arbitrary Z ∈ Tm′M . Then

0 = S(R(X0, Z)Y0) = −h(X0, Y0)S2Z − h(JX0, Y0)S2JZ,

and by a similar argument S2Z = 0.
(3)⇒(2). If S2 = 0, then the right-hand side of the equality R(X,Y )SZ

= S(R(X,Y )Z) vanishes for every X,Y,Z. For S = 0, (2) holds, therefore
we can assume that S 6= 0. Take X0 such that SX0 6= 0. Since

0 = R(X0, JX0)SZ = 2(h(JX0, SZ)SX0 − h(X0, SZ)SJX0)

and SX0, SJX0 are linearly independent over R, we have

h(X0, SZ) = h(JX0, SZ) = 0 for any Z.

Now we can write for any Y , Z,

0 = R(X0, Y )SZ = h(Y, SZ)SX0 + h(JY, SZ)SJX0.

Hence h(Y, SZ) = 0 for any Y , Z.

Lemma 2. Under the assumptions of Lemma 1, the equivalent conditions
(1), (2) and (3) are satisfied.

Proof. If ∇S = 0, then rankS is constant on the domain of S. We have
to consider three cases.

Case 1: rankS = 0. Then, of course, (3) holds.

Case 2: rankS = 1. Suppose, contrary to our claim, that S2 6= 0.
Let m′ ∈ M . We fix X0 ∈ Tm′M such that S2X0 6= 0. We shall obtain a
contradiction with the assumption tf > 0.

Step 1. kerS ⊂ kerh.

Let Z ∈ kerS. Then
0 = R(X0, JX0)SZ = S(R(X0, JX0)Z)

= 2(h(JX0, Z)S2X0 − h(X0, Z)S2JX0),

hence h(X0, Z) = h(JX0, Z) = 0. For any Y we now have

0 = R(X0, Y )SZ = S(R(X0, Y )Z) = h(Y,Z)S2X0 + h(JY,Z)S2JX0,

which implies h(Y,Z) = 0 for any Z ∈ kerS and for any Y .

Step 2. (a) Tm′M = kerS ⊕ CX0 and (b) Tm′M = kerS ⊕ CSX0.
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Since dimC kerS = n − 1, it is sufficient and easy to check that kerS ∩
CX0 = {0} and kerS ∩ CSX0 = {0}.

Step 3. h(X0, SX0) = h(JX0, SJX0) = 0.

If h(X0,X0) = 0 and h(X0, JX0) = 0 then X0 ∈ kerh by Steps 1 and
2(a), and so the claimed equality holds.

Assume now that h(X0,X0) 6= 0 or h(X0, JX0) 6= 0. We have

0 = R(X0, JX0)SX0 − S(R(X0, JX0)X0

= 2S(h(JX0, SX0)X0 − h(X0, SX0)JX0

− h(JX0,X0)SX0 + h(X0,X0)SJX0),

therefore Z0 ∈ kerS, where

Z0 := h(JX0, SX0)X0 − h(X0, SX0)JX0

− h(JX0,X0)SX0 + h(X0,X0)SJX0.

According to Step 1, we have h(Z0,X0) = 0 and h(Z0, JX0) = 0, hence

h(JX0, SX0)h(X0,X0)− h(X0, SX0)h(JX0,X0)

− h(JX0,X0)h(SX0,X0) + h(X0,X0)h(SJX0,X0) = 0

and

h(JX0, SX0)h(X0, JX0)− h(X0, SX0)h(JX0, JX0)

− h(JX0,X0)h(SX0, JX0) + h(X0,X0)h(SJX0, JX0) = 0.

Thus we obtain

h(SX0,X0)h(JX0,X0) = 0 and h(SX0,X0)h(X0,X0) = 0,

which implies h(SX0,X0) = 0, and consequently, by the anti-complexity of
S and the properties of h(·, ·), h(SJX0, JX0) = 0.

Step 4. h(Z, SW ) + h(W,SZ) = 0 for any Z,W ∈ Tm′M .

By Step 2(a) we have Z = Z1 + αX0 + βJX0, W = W1 + γX0 + δJX0

with Z1,W1 ∈ kerS and α, β, γ, δ ∈ R. An easy computation gives

h(Z, SW ) + h(W,SZ)

= h(αX0 + βJX0, S(γX0 + δJX0)) + h(γX0 + δJX0, S(αX0 + βJX0))

= 2αγh(X0, SX0) + 2βδh(JX0, SJX0) + (αδ + βγ)h(X0, (SJ + JS)X0),

which vanishes by the anti-complexity of S and by Step 3.

Step 5. (∇Wh)(X0, SX0) = (∇Wh)(JX0, SJX0) = 0 for any W .

We extend X0 to a local vector field X0 such that S2X0 6= 0 at any point
of the domain of X0. We have
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(∇Wh)(X0, SX0)

= W (h(X0, SX0))− h(∇WX0, SX0)− h(X0,∇W (SX0))

= W (h(X0, SX0))− (h(∇WX0, SX0) + h(X0, S(∇WX0))) = 0.

The same is true for JX0 in place of X0.

Step 6. ∇h = −2µ⊗ h.

If Y ∈ kerSm′ , then we can extend Y to a local section Y of kerS. For
any X,Z,∇XY ∈ kerS and

(∇Xh)(Y,Z) = X(h(Y,Z))− h(∇XY,Z)− h(Y,∇XZ) = 0

= −2µ(X)h(Y,Z).

Let X ∈ kerS. Then for any Y,Z we have

(∇Xh)(Y,Z) =
Codazzi I

− µ(X)h(Y,Z)− µ(JX)h(JY,Z)

+ (∇Y h)(X,Z) + µ(Y )h(X,Z) + µ(JY )h(JX,Z)

= 0 = −2µ(X)h(Y,Z),

since kerS ⊂ kerµ ∩ ker ν and kerS ⊂ kerh.
It follows that (∇Xh)(Y, ·) = −2µ(X)h(Y, ·) if X ∈ kerS or Y ∈ kerS.
From the first Codazzi equation we obtain

(∇X0h)(JX0, SX0) + µ(X0)h(JX0, SX0) + µ(JX0)h(J2X0, SX0)

= (∇JX0h)(X0, SX0) + µ(JX0)h(X0, SX0) + µ(J2X0)h(JX0, SX0).

Hence
(∇X0h)(JX0, SX0) = −2µ(X0)h(JX0, SX0),

by Steps 3 and 5.
Similarly,

(∇X0h)(JX0, SJX0) + µ(X0)h(JX0, SJX0) + µ(JX0)h(J2X0, SJX0)

= (∇JX0h)(X0, SJX0) + µ(JX0)h(X0, SJX0) + µ(J2X0)h(JX0, SJX0),

which gives

(∇JX0h)(X0, SJX0) = −2µ(JX0)h(X0, SJX0).

We now have

(∇X0h)(X0, SX0) = 0 = −2µ(X0)h(X0, SX0),

(∇X0h)(X0, SJX0) = −(∇X0h)(JX0, SX0) = 2µ(X0)h(JX0, SX0)

= −2µ(X0)h(X0, SJX0)

and
(∇X0h)(X0, Z) = −2µ(X0)h(X0, Z)
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for Z ∈ kerS. Therefore

(∇X0h)(X0, · ) = −2µ(X0)h(X0, · )

by Step 2(b).
In the same manner we can see that

(∇X0h)(JX0, ·) = −2µ(X0)h(JX0, ·),
(∇JX0h)(X0, ·) = −2µ(JX0)h(X0, ·),

(∇JX0h)(JX0, ·) = −2µ(JX0)h(JX0, ·),
which completes the proof of Step 6.

As a consequence of Step 6 we obtain

Step 7. R(X,Y ) · h = −4dµ(X,Y )h for any X,Y .

Applying the Ricci equation yields

Step 8. R(X,Y ) · h = −2(h(X,SY ) − h(Y, SX))h. In particular, we
have R(X0, JX0) · h = −4h(X0, SJX0)h.

On the other hand, a direct computation gives

(R(X0, JX0) · h)(X0,X0)

= −2h(R(X0, JX0)X0,X0)

= −2h(2(h(JX0,X0)SX0 − h(X0,X0)SJX0),X0)

= −4h(JX0,X0)h(SX0,X0) + 4h(X0,X0)h(SJX0,X0)

= 4h(X0,X0)h(X0, SJX0),

and

(R(X0, JX0) · h)(X0, JX0)

= − h(R(X0, JX0)X0, JX0)− h(X0, R(X0, JX0)JX0)

= − h(2(h(JX0,X0)SX0 − h(X0,X0)SJX0), JX0)

− h(X0, 2(h(JX0, JX0)SX0 − h(X0, JX0)SJX0))

= − 2h(JX0,X0)h(SX0, JX0) + 2h(X0,X0)h(SJX0, JX0)

− 2h(JX0, JX0)h(X0, SX0) + 2h(X0, JX0)h(X0, SJX0)

= 4h(JX0,X0)h(X0, SJX0).

A comparison with Step 8 gives

h(X0, SJX0) = 0 or h(X0,X0) = h(X0, JX0) = 0,

which together with Steps 1–3 leads to a contradiction with the assumption
hm′ 6= 0.
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Case 3: rankS > 1. If SX = 0, then, by Remark 2, µ(X) = ν(X) = 0.
Let SX 6= 0. Then there exists Y such that SX and SY are linearly inde-
pendent over C. From Codazzi II we have

(µ(X) + iν(X))SY − (µ(Y ) + iν(Y ))SX = 0,

which implies µ(X) = ν(X) = 0. Therefore (1) of Lemma 1 holds.

We now return to the proof of the theorem.
Fix m ∈M . Let ξ : U → Cn+1 be defined on a connected neighbourhood

U of m and have the property described in assumption (2) of the Theorem.

Lemma 3. There exists a q-dimensional complex subspace W of Cn+1

such that f∗ imSm′ =W for every m′ ∈ U .

Proof. It is sufficient to show that f∗ imSm = f∗ imSm′ . Let γ : [0, 1]→
U be a C1 curve joining m and m′; γ(0) = m, γ(1) = m′. We choose
X1m, . . . ,Xqm ∈ TmM such that SX1m, . . . , SXqm form a basis over C of
f∗ imSm. Let X̃1, . . . , X̃q be the vector fields defined along the curve γ,
parallel with respect to ∇, X̃i(0) = Xim for i ∈ {1, . . . , q}. It is easy to
check that the map

[0, 1] 3 t 7→ f∗Sγ(t)X̃i(t) ∈ Cn+1

is constant. Indeed,

d

dt
(t 7→ f∗Sγ(t)X̃i(t)) = Dγ̇(t)f∗SX̃i

= f∗∇γ̇(t)SX̃i + h(γ̇(t), SX̃i(t))ξγ(t)

− h(Jγ̇(t), SX̃i(t))Jξγ(t).

The last two terms vanish because imS ⊂ kerh, and ∇γ̇(t)SX̃i = S∇γ̇(t)X̃i

= S0 = 0. It follows that

spanC{f∗SmX̃i(0) : i = 1, . . . , q} = spanC{f∗Sm′X̃i(1) : i = 1, . . . , q},
that is, f∗ imSm = f∗ imSm′ =:W.

Let Ã1 : Cn+1 → Cn+1 be a linear isomorphism such that

Ã1W = spanC{ẽ1, . . . , ẽq}.
Here and subsequently ẽ1, . . . , ẽn+1 denotes the standard basis of Cn+1,
whereas e1, . . . , e2n+2 is the standard basis of R2n+2.

Lemma 4. There exists an i0 ∈ {q + 1, . . . , n + 1} such that ẽi0 6∈
(Ã1 ◦ f)∗TmM and the i0th coordinate of Ã1ξm does not vanish.

Proof. Suppose that the assertion is false. Then ẽj ∈ (Ã1 ◦ f)∗TmM for
every j ∈ {q + 1, . . . , n + 1} such that the jth coordinate of Ã1ξ does not
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vanish at m. Then obviously Ã1ξm ∈ (Ã1 ◦ f)∗TmM , which contradicts the
transversality of ξ.

Let Ã0
2 be the linear isomorphism of Cn+1 defined by

Ã0
2ẽk :=




ẽk if k 6∈ {i0, n+ 1},
ẽn+1 if k = i0,
ẽi0 if k = n+ 1.

Let Ã2 := Ã0
2 ◦ Ã1. Now ẽn+1 is transversal to (Ã2 ◦ f)∗TmM and Ã2ξ has

the non-vanishing (n+1)th coordinate at m. Moreover, the isomorphism Ã0
2

does not change the subspace (Ã1 ◦ f)∗ imS = spanC{ẽ1, . . . , ẽq}.
We denote by π the projection π : Cn+1 3 (ζ1, . . . , ζn+1) 7→ (ζ1, . . . , ζn)

∈ Cn. It is easy to check that

dm(π ◦ Ã2 ◦ f) : TmM → Cn

is a monomorphism. Indeed, if dm(π◦Ã2◦f).V = 0, then (Ã2◦f)∗V ∈ Cẽn+1.
But (Ã2◦f)∗TmM∩Cẽn+1 = {0} and (Ã2◦f)∗ is a monomorphism; therefore
V = 0.

We can now take φ̃1 := π ◦ Ã2 ◦ f as a complex chart on some neigh-
bourhood U1 ⊂ U of m. In this chart

Ã2 ◦ f ◦ φ̃−1
1 (ζ1, . . . , ζn) = (ζ1, . . . , ζn, ϕ̃(ζ)),

with a holomorphic function ϕ̃.
In the real representation, identifying Ck with R2k,

ιk : R2k 3 (w1, . . . , w2k) 7→ (w1 + iw2, . . . , w2k−1 + iw2k) ∈ Ck,
we can write

A2 ◦ f ◦ φ−1
1 (w1, . . . , w2n) = (w1, . . . , w2n, ϕ1(w), ϕ2(w)).

Here A2 := ιn+1
−1 ◦ Ã2 and φ1 := ιn

−1 ◦ φ̃1.

Lemma 5. (a) ∂ϕk/∂ws = 0 for k = 1, 2 and s = 1, . . . , 2q.
(b) imS = spanR{∂/∂ws : s = 1, . . . , 2q}.
Proof. At any point m′ ∈ U1 we have

(A2 ◦ f)∗

(
∂

∂ws

)
= es +

∂ϕ1

∂ws
e2n+1 +

∂ϕ2

∂ws
e2n+2.

If s ∈ {1, . . . , 2q}, then es = (A2 ◦ f)∗SWs with some Ws ∈ Tm′M , because
es ∈ spanR{e1, . . . , e2q} = (A2 ◦ f)∗ imSm′ . Therefore we have

(A2 ◦ f)∗

(
∂

∂ws
− SWs

)
=
∂ϕ1

∂ws
e2n+1 +

∂ϕ2

∂ws
e2n+2.

From the transversality of e2n+1 and e2n+2 to (A2 ◦f)∗TM and from the
injectivity of (A2 ◦ f)∗ it follows that (a) holds, and ∂/∂ws − SWs = 0 for
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s = 1, . . . , 2q. Hence spanR{∂/∂ws : s = 1, . . . , 2q} ⊂ imS, which implies
(b), because the dimensions are equal.

Lemma 6. The transversal field A2ξ does not depend on w1, . . . , w2q.

Proof. We use the Weingarten formula

D∂/∂wsA2ξ = −(A2 ◦ f)∗S
∂

∂ws
+ µ

(
∂

∂ws

)
A2ξ + ν

(
∂

∂ws

)
JA2ξ.

According to Lemmas 5(b), 2 and Remark 2, for s = 1, . . . , 2q,

∂

∂ws
∈ imS ⊂ kerS ⊂ kerµ ∩ ker ν,

hence D∂/∂wsA2ξ = 0.

We now introduce the functions Ξ1, . . . , Ξ2n+2 by

(A2ξ ◦ φ1
−1)(w) =

n+1∑

k=1

[Ξ2k−1(w)e2k−1 − Ξ2k(w)e2k].

Lemma 7.

rankR

[
∂Ξk

∂wj
(w)
]

k=1,...,2n+2; j=2q+1,...,2n
= 2q

for w ∈ φ1(U1).

Proof. We have

rankR

[
∂Ξk

∂wj
(w)
]

k=1,...,2n+2; j=2q+1,...,2n

= rankR

[
(−1)k−1 ∂Ξ

k

∂wj
(w)
]

k=1,...,2n+2; j=2q+1,...,2n

= dimR span{D∂/∂wjA2ξ : j = 2q + 1, . . . , 2n}
= dimR span{D∂/∂wjA2ξ : j = 1, . . . , 2n}
= dimR imSφ−1

1 (w).

The last equality is due to the isomorphism of imS and im{X 7→ DXA2ξ}.
A consequence of Lemma 7 is

Corollary. n ≥ 2q.

Lemma 8. Ξ̃k := Ξ2k−1 + iΞ2k is a holomorphic function for k =
1, . . . , n+ 1.



Affine holomorphic immersions 71

Proof. It is sufficient to show that Ξ2k−1 and Ξ2k satisfy the Cauchy–
Riemann equations. From Remark 3 it follows that

DJX(A2ξ) = −JDX(A2ξ)

for any X ∈ Tm′M . Let X = ∂/∂w2s−1. Then JX = ∂/∂w2s and

DJX(A2ξ) =
n+1∑

l=1

[
∂Ξ2l−1

∂w2s e2l−1 −
∂Ξ2l

∂w2s e2l

]
,

−JDX(A2ξ) = −J
n+1∑

l=1

[
∂Ξ2l−1

∂w2s−1 e2l−1 −
∂Ξ2l

∂w2s−1 e2l

]

=
n+1∑

l=1

[
−∂Ξ

2l−1

∂w2s−1 e2l −
∂Ξ2l

∂w2s−1 e2l−1

]
.

Therefore
∂Ξ2l−1

∂w2s = − ∂Ξ2l

∂w2s−1 and
∂Ξ2l−1

∂w2s−1 =
∂Ξ2l

∂w2s .

Now Ξ̃k, k = 1, . . . , n + 1, are holomorphic functions of the complex
variables ζs = w2s−1 + iw2s, s = q + 1, . . . , n. By Lemma 7, we have

rankC

[
∂Ξ̃k

∂ζl

]

k=1,...,n+1; l=q+1,...,n
= q.

Lemma 9. Let r ≤ N ≤ M . Let U be an open set in KN , where K = R
or C. Let F : U → KM be a C1 mapping such that rankF ′(x) = r for every
x ∈ U . Let x0 ∈ U and let i1 < . . . < ir and j1 < . . . < jr be chosen so that

det
[
∂F ik

∂xjl
(x0)

]

k=1,...,r; l=1,...,r
6= 0.

Then there exist a neighbourhood U ′ ⊂ U of x0 and a diffeomorphism Φ :
U ′ → Φ(U ′) ⊂ KN such that

(F ◦ Φ−1)ik(y1, . . . , yN ) ≡ yjk for k = 1, . . . , r

and
∂(F ◦ Φ−1)k

∂yl
≡ 0 if l 6∈ {j1, . . . , jr}, k ∈ {1, . . . ,M}.

Proof. We define

Φ̂(x1, . . . , xN )k =
{
xk if k 6∈ {j1, . . . , jr},
F is(x1, . . . , xN ) if k = js.

Since

det
[
∂Φ̂k

∂xl
(x0)

]

k=1,...,N ; l=1,...,N
= det

[
∂F is

∂xjs
(x0)

]

s=1,...,r
6= 0,
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there exists a neighbourhood U ′ ⊂ U of x0 such that Φ := Φ̂|U ′ is a diffeo-
morphism.

It remains to prove that F◦Φ−1 depends only on the variables yj1, . . . , yjr.
Let y ∈ Φ(U ′). Then (F ◦ Φ−1)′(y) = F ′(Φ−1(y)) ◦ (Φ−1)′(y) and

rank(F ◦ Φ−1)′(y) = rankF ′(Φ−1(y)) = r, because (Φ−1)′(y) is an isomor-
phism.

Suppose that for some k0 ∈ {1, . . . ,M} and l0 ∈ {1, . . . , N}\{j1, . . . , jr},
∂(F ◦ Φ−1)k0

∂yl0
(y) 6= 0.

Then k0 6∈ {i1, . . . , ir} and

det
[
∂(F ◦ Φ−1)k

∂yl
(y)
]

k∈{i1,...,ir ,k0}; l∈{j1,...,jr,l0}
6= 0,

which contradicts the rank assumption.

We now restrict our attention to the case q > 1.

Lemma 10. If q > 1, then

(a) rankC[∂Ξ̃k/∂ζl]k=1,...,q; l=q+1,...,n = q,

(b) Ξ̃k(·) = bk = const for k = q + 1, . . . , n+ 1,
(c) bn+1 6= 0.

Proof. Since, for q > 1, µ = 0 and ν = 0 (see proof of Lemma 2, Case 3),
we have

D∂/∂wlA2ξ ∈ (A2 ◦ f)∗ imS = spanR{e1, . . . , e2q},
therefore ∂Ξk/∂wl = 0 for k = 2q + 1, . . . , 2n + 2 and l = 2q + 1, . . . , 2n,
which implies

∂Ξ̃k

∂ζl
= 0 for k = q + 1, . . . , n+ 1, l = q + 1, . . . , n,

and

rankC

[
∂Ξ̃k

∂ζl

]

k=1,...,n+1; l=q+1,...,n
= rankC

[
∂Ξ̃k

∂ζl

]

k=1,...,q; l=q+1,...,n
.

Point (c) is a consequence of Lemma 4 and the definition of Ã2.

We may now apply Lemma 9, taking r = q, N = n, M = n + 1, U =
φ̃1(U1), K = C, F = (Ξ̃1, . . . , Ξ̃n+1), (i1, . . . , iq) = (1, . . . , q) and j1 < . . .
< jq from {q + 1, . . . , n} chosen so that

det
[
∂Ξ̃k

∂ζjs
(φ̃1(m))

]

k=1,...,q; s=1,...,q
6= 0.
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In this way we obtain a new chart φ̃2 := Φ ◦ φ̃1 on the neighbourhood
U2 := φ̃−1

1 (U ′) of m. Since

(Ξ̃k ◦ Φ−1)(η1, . . . , ηn) =
{
ηjk for k = 1, . . . , q,
bk for k = q + 1, . . . , n+ 1,

the transversal field is now described by the formula

(Ã2ξ ◦ φ̃−1
2 )(η1, . . . , ηn) =

q∑

k=1

ηjk ẽk +
n+1∑

k=q+1

bk ẽk.

Let Ã0
3 be the linear isomorphism of Cn+1 which transforms the basis

(ẽ1, . . . , ẽn+1) onto the basis

(ẽ1, . . . , ẽq, ẽq+1, . . . , ̂̃ej1 , . . . , ̂̃ejq , . . . , ẽn, ẽj1 , . . . , ẽjq , ẽn+1),

and let

φ̃0
3(η1, . . . , ηn) := (η1, . . . , ηq, ηq+1, . . . , η̂j1 , . . . , η̂jq , . . . , ηn, ηj1 , . . . , ηjq).

Taking Ã3 := Ã0
3 ◦ Ã2, φ̃3 := φ̃0

3 ◦ φ̃2, we may write

Ã3 ◦ f ◦ φ̃−1
3 (s̃1, . . . , s̃q, t̃ 1, . . . , t̃n−2q, ũ1, . . . , ũq)

= (s̃1, . . . , s̃q, t̃ 1, . . . , t̃n−2q, χ̃1(t̃, ũ), . . . , χ̃q(t̃, ũ), %̃(t̃, ũ))

and

Ã3ξ ◦ φ̃−1
3 (s̃1, . . . , s̃q, t̃ 1, . . . , t̃n−2q, ũ1, . . . , ũq) =

q∑

k=1

ũk ẽk +
n+1∑

k=q+1

ak ẽk.

Applying now the isomorphism Ã0
4, where

Ã0
4ẽk :=

{
ẽk for k = 1, . . . , n,
(1/an+1)(−∑n

k=q+1 a
k ẽk + ẽn+1) for k = n+ 1,

and Ã4 := Ã0
4 ◦ Ã3, we obtain

Ã4 ◦ f ◦ φ̃−1
3 (s̃1, . . . , s̃q, t̃ 1, . . . , t̃n−2q, ũ1, . . . , ũq)

= (s̃1, . . . , s̃q, σ̃1(t̃, ũ), . . . , σ̃n−q(t̃, ũ), Q̃(t̃, ũ))
and

Ã4ξ ◦ φ̃−1
3 (s̃1, . . . , s̃q, t̃ 1, . . . , t̃n−2q, ũ1, . . . , ũq) =

q∑

k=1

ũk ẽk + ẽn+1.

Here

σ̃k(t̃, ũ) =





t̃ k − aq+k

an+1
%̃(t̃, ũ) for k = 1, . . . , n− 2q,

χ̃k−(n−2q)(t̃, ũ)− aq+k

an+1
%̃(t̃, ũ) for k = n− 2q + 1, . . . , n− q;

and Q̃ = (1/an+1)%̃.
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We now turn to the case q = 1.

By Lemmas 7–9, on a connected neighbourhood ˜̃U2 of m we may define

a complex chart ˜̃φ2 in which the coordinates of the transversal field are
functions of one variable ηi0 only, with i0 > 1.

Next we apply the isomorphisms

˜̃φ0
3(η1, . . . , ηn) := (η1, η2, . . . , η̂i0 , . . . , ηn, ηi0)

and
˜̃A0

3(θ1, . . . , θn+1) := (θ1, θ2, . . . , θ̂i0 , . . . , θn, θi0 , θn+1),

to obtain
˜̃A3 ◦ f ◦ ˜̃φ−1

3 (s̃, t̃ 1, . . . , t̃n−2, ũ) = (s̃, t̃ 1, . . . , t̃n−2, ˜̃χ(t̃, ũ), ˜̃%(t̃, ũ))

and

˜̃A3ξ ◦ ˜̃φ−1
3 (s̃, t̃1, . . . , t̃n−2, ũ) =

n+1∑

k=1

Θk(ũ) ẽk

with Θn+1( ˜̃φ3(m)) 6= 0; ˜̃φ3 := ˜̃φ0
3 ◦ ˜̃φ2 and ˜̃A3 := ˜̃A0

3 ◦ Ã2.
In the real representation ˜̃χ = χ1 + iχ2, ˜̃% = %1 + i%2, Θk = ϑ2k−1 + iϑ2k,

we have

A3 ◦ f ◦ φ−1
3 (s1, s2, t1, . . . , t2n−4, u1, u2)

= (s1, s2, t1, . . . , t2n−4, χ1(t, u), χ2(t, u), %1(t, u), %2(t, u))

and

A3ξ ◦ φ−1
3 (s1, s2, t1, . . . , t2n−4, u1, u2) =

n+1∑

k=1

[ϑ2k−1(u)e2k−1 − ϑ2k(u)e2k].

Let π̂ denote the projection

Cn 3 (s̃, t̃1, . . . , t̃n−2, ũ) 7→ ũ ∈ C.

Lemma 11. There exist c2, . . . , cn+1 ∈ C, cn+1 6= 0, a neighbourhood ˜̃U3

of m and a holomorphic function H̃ such that

Θk(ũ) = cke
H̃(ũ)

for k = 1, . . . , n+ 1 and ũ ∈ π̂( ˜̃φ3( ˜̃U3)).

Proof. We fix j ∈ {2, . . . , n + 1}. Since Θj is a holomorphic function,

and since ˜̃U2 is assumed to be connected, there are two possibilities: either

Θj ≡ 0 on π̂ ◦ ˜̃φ3( ˜̃U2) or there exists a neighbourhood W̃j of ũ0 := π̂( ˜̃φ3(m))
such that Θj(ũ) 6= 0 for any ũ ∈ W̃j \ {ũ0}.

In the former case we take cj = 0.
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Suppose that Θj 6≡ 0. We can find r > 0 such that B(ũ0, r) ⊂ W̃j . Then

W̃ ′j := B(ũ0, r) \ {ũ : Re ũ = Re ũ0, Im ũ ≤ Im ũ0}
is a simply connected domain and Θj(ũ) 6= 0 for any ũ ∈ W̃ ′j . If this is the

case, there exists a holomorphic function λj on W̃ ′j such that eλ
j

= Θj |
W̃ ′j

and (λj)′ = Θj
′
/Θj on W̃ ′j .

On the other hand, using the real representation we may write

(Θj)′ =
∂ϑ2j−1

∂u1 + i
∂ϑ2j

∂u1 .

From the Weingarten formula

D∂/∂u1A3ξ = −(A3 ◦ f)∗S
∂

∂u1 + µ

(
∂

∂u1

)
A3ξ + ν

(
∂

∂u1

)
JA3ξ

it follows that for any j ∈ {2, . . . , n+ 1},
∂ϑ2j−1

∂u1 = µ

(
∂

∂u1

)
ϑ2j−1 + ν

(
∂

∂u1

)
ϑ2j

and
∂ϑ2j

∂u1 = µ

(
∂

∂u1

)
ϑ2j − ν

(
∂

∂u1

)
ϑ2j−1.

Hence

(Θj)′ =
(
µ

(
∂

∂u1

)
− iν

(
∂

∂u1

))
(ϑ2j−1 + iϑ2j).

We may also assume that ˜̃U2 is simply connected, and from Lemma 2 we
know that the 1-forms µ, ν are closed; therefore there exist functionsK and L
on ˜̃U2 such that µ = dK, ν = −dL. The functions K◦φ−1

3 and L◦φ−1
3 do not

depend on the variables s and t, because ∂/∂si, ∂/∂tj ∈ kerS ⊂ kerµ∩ker ν,

∂K ◦ φ−1
3

∂si
= dK

(
∂

∂si

)
= µ

(
∂

∂si

)
= 0,

and similarly for L in place of K or t in place of s. It follows that there
exist functions H1 and H2 defined on some open subset of R2 such that
K ◦ φ−1

3 = H1 ◦ π̂ and L ◦ φ−1
3 = H2 ◦ π̂. We now have

µ

(
∂

∂us

)
= dK((φ−1

3 )∗e2n−2+s) = dH1(π̂∗e2n−2+s) = dH1(es) =
∂H1

∂us

and

ν

(
∂

∂us

)
= −dL((φ−1

3 )∗e2n−2+s) = −dH2(π̂∗e2n−2+s)

= −dH2(es) = −∂H
2

∂us
.
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According to Remark 3, H1 and H2 satisfy the Cauchy–Riemann equa-
tions, therefore H̃ := H1 + iH2 is a holomorphic function.

Since

(H̃)′ =
∂H1

∂u1 + i
∂H2

∂u1 = µ

(
∂

∂u1

)
− iν

(
∂

∂u1

)
,

we may go back to the (Θj)′ and write

(Θj)′ = H̃′Θj

on some neighbourhood π̂( ˜̃φ3( ˜̃U ′3)) of ũ0 (including ũ0). Comparing this

with (λj)′ we obtain H̃′ = (λj)′ on W̃ ′′j := W̃ ′j ∩ π̂( ˜̃φ3( ˜̃U ′3)). Hence there

exists dj ∈ C such that λj = H̃+ dj and

Θj = eH̃+dj = cje
H̃

with a non-zero constant cj := edj . We may extend this equality from W̃ ′′j

to some neighbourhood π̂( ˜̃φ3( ˜̃U3)) of ũ0, because both sides are continuous
and well defined in the neighbourhood of ũ0. Since Θn+1 6≡ 0, we have in
particular cn+1 6= 0.

Next we use the following isomorphism of Cn+1:

˜̃A0
4ẽk :=

{
ẽk for k = 1, . . . , n,
(1/cn+1)(ẽn+1 −

∑n
s=2 csẽs) for k = n+ 1.

In this way we obtain

˜̃A4 ◦ f ◦ ˜̃φ−1
3 (s̃, t̃ 1, . . . , t̃n−2, ũ) = (s̃, ˜̃σ1(t̃, ũ), . . . , ˜̃σn−1(t̃, ũ), ˜̃Q(t̃, ũ))

and
˜̃A4ξ ◦ ˜̃φ−1

3 (s̃, t̃ 1, . . . , t̃n−2, ũ) = Θ1(ũ) ẽ1 + eH̃(ũ) ẽn+1,

with ˜̃A4 := ˜̃A0
4 ◦ ˜̃A3, ˜̃σk(t̃, ũ) := t̃k − (ck+1/cn+1) ˜̃%(t̃, ũ) for k = 1, . . . , n− 2,

˜̃σn−1 := ˜̃χ(t̃, ũ)− (ck+1/cn+1) ˜̃%(t̃, ũ) and ˜̃Q(t̃, ũ) := (1/cn+1) ˜̃%(t̃, ũ).
Thus for any q > 0 it is possible to find a map φ̂3 and an isomorphism

Â4 of Cn+1 such that the immersion and the transversal field have the shape

Â4 ◦ f ◦ φ̂−1
3 (s̃1, . . . , s̃q, t̃1, . . . , t̃n−2q, ũ1, . . . , ũq)

= (s̃1, . . . , s̃q, σ̂1(t̃, ũ), . . . , σ̂n−q(t̃, ũ), Q̂(t̃, ũ))

and

Â4ξ ◦ φ̂−1
3 (s̃1, . . . , s̃q, t̃1, . . . , t̃n−2q, ũ1, . . . , ũq)

=
q∑

k=1

Θ̂k(ũ) ẽk + Θ̂n+1(ũ) ẽn+1,

where σ̂i, Q̂, Θ̂j are holomorphic functions and Θ̂n+1 6= 0.
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Since Â4 ◦ f is an immersion, and Â4 ◦ ξ is transversal to (Â4 ◦ f)∗TM ,
we have∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

Iq

0 · · · 0
...

. . .
...

0 · · · 0

0 · · · 0
...

. . .
...

0 · · · 0

Θ̂1

...
Θ̂q

0 · · · 0
...

. . .
...

0 · · · 0

[
∂σ̂k

∂t̃l

]
1≤k≤n−q;
1≤l≤n−2q

[
∂σ̂k

∂ũl

]
1≤k≤n−q;
1≤l≤q

0
...
0

0 · · · 0 ∂Q̂
∂t̃1

. . . ∂Q̂
∂t̃n−2q

∂Q̂
∂ũ1 . . . ∂Q̂

∂ũq
Θ̂n+1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

6= 0.

Therefore

det
([

∂σ̂k

∂t̃l

]

k=1,...,n−q; l=1,...,n−2q

[
∂σ̂k

∂ũl

]

k=1,...,n−q; l=1,...,q

)
6= 0

and there exist i1 < . . . < in−2q such that

det
[
∂σ̂ik

∂t̃l

]

k=1,...,n−2q; l=1,...,n−2q
6= 0.

By an appropiate isomorphism Â0
5 we may vary the order of basis vectors in

Cn+1, putting σ̂i1 , . . . , σ̂in−2q at positions q+ 1, . . . , n− q. This permutation
does not affect the field Â4ξ, because its coordinates from the (q + 1)th to
the nth vanish.

Applying now the local diffeomorphism

φ̂0
4(s̃1, . . . , s̃q, t̃1, . . . , t̃n−2q, ũ1, . . . , ũq)

:= (s̃1, . . . , s̃q, σ̂i1(t̃, ũ), . . . , σ̂in−2q (t̃, ũ), ũ1, . . . , ũq)

gives a new chart φ̂4 := φ̂0
4 ◦ φ̂3 such that Â5 ◦ f and Â5 ◦ ξ are described by

the formulas

Â5 ◦ f ◦ φ̂−1
4 (x̃1, . . . , x̃q, ỹ1, . . . , ỹn−2q, z̃1, . . . , z̃q)

= (x̃1, . . . , x̃q, ỹ1, . . . , ỹn−2q, ψ̂1(ỹ, z̃), . . . , ψ̂q(ỹ, z̃), F̂(ỹ, z̃))

and

Â5 ◦ ξ ◦ φ̂−1
4 (x̃1, . . . , x̃q, ỹ1, . . . , ỹn−2q, z̃1, . . . , z̃q)

=
q∑

k=1

Θ̂k(z̃) ẽk + Θ̂n+1(z̃) ẽn+1.

Lemma 12. For k = 1, . . . , q,

ψ̂k(ỹ, z̃) =
q∑

s=1

Cksỹ
s + Π̂k(z̃),
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where Cks, s = 1, . . . , n−2q, are complex numbers, and Π̂k is a holomorphic
function.

Proof. We now use the real representation of Â5 ◦ f and Â5 ◦ ξ, setting
ψ̂l = ψ̌2l−1 + iψ̌2l for l = 1, . . . , q, F̂ = F̌1 + iF̌2, and Θ̂s = Θ̌2s−1 + iΘ̌2s:

Ǎ5 ◦ f ◦ φ̌−1
4 (x1, . . . , x2q, y1, . . . , y2n−4q, z1, . . . , z2q)

= (x1, . . . , x2q, y1, . . . , y2n−4q, ψ̌1(y, z), . . . , ψ̌2q(y, z), F̌1(y, z), F̌2(y, z)),

Ǎ5 ◦ ξ ◦ φ̌−1
4 (x1, . . . , x2q, y1, . . . , y2n−4q, z1, . . . , z2q)

=
q∑

k=1

[Θ̌2k−1(z)e2k−1 − Θ̌2k(z)e2k] + Θ̌2n+1(z)e2n+1 − Θ̌2n+2(z)e2n+2.

At any point m′ of the domain Ǔ of φ̌4, kerS is spanned by

∂

∂x1 , . . . ,
∂

∂x2q ,
∂

∂y1 , . . . ,
∂

∂y2n−4q .

For any W ∈ Tm′M and any j = 1, . . . , 2n− 4q,

S

(
∇W

∂

∂yj

)
= ∇W

(
S
∂

∂yj

)
= 0,

therefore

∇ ∂
∂ys

∂

∂yj
=

2q∑

k=1

αksj
∂

∂xk
+

2n−4q∑

l=1

βlsj
∂

∂yl
,

∇ ∂
∂zs

∂

∂yj
=

2q∑

k=1

γksj
∂

∂xk
+

2n−4q∑

l=1

δlsj
∂

∂yl
.

We have

(Ǎ5 ◦ f)∗

(
∂

∂xk

)
= ek,

(Ǎ5 ◦ f)∗

(
∂

∂yl

)
= e2q+l +

2q∑

r=1

∂ψ̌r

∂yl
e2n−2q+r +

∂F̌1

∂yl
e2n+1 +

∂F̌2

∂yl
e2n+2;

hence

(Ǎ5 ◦ f)∗

(
∇∂/∂ys

∂

∂yj

)

=
2q∑

k=1

αksjek +
2n−4q∑

l=1

βlsje2q+l +
2q∑

r=1

( 2n−4q∑

l=1

βlsj
∂ψ̌r

∂yl

)
e2n−2q+r

+
( 2n−4q∑

l=1

βlsj
∂F̌1

∂yl

)
e2n+1 +

( 2n−4q∑

l=1

βlsj
∂F̌2

∂yl

)
e2n+2
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and

(Ǎ5 ◦ f)∗

(
∇∂/∂zs

∂

∂yj

)

=
2q∑

k=1

γksjek +
2n−4q∑

l=1

δlsje2q+l +
2q∑

r=1

( 2n−4q∑

l=1

δlsj
∂ψ̌r

∂yl

)
e2n−2q+r

+
( 2n−4q∑

l=1

δlsj
∂F̌1

∂yl

)
e2n+1 +

( 2n−4q∑

l=1

δlsj
∂F̌2

∂yl

)
e2n+2.

On the other hand, using the Gauss formula we may write

(Ǎ5 ◦ f)∗

(
∇∂/∂ys

∂

∂yj

)

= D∂/∂ys(Ǎ5 ◦ f)∗
∂

∂yj
− h
(

∂

∂ys
,
∂

∂yj

)
Ǎ5ξ + h

(
J
∂

∂ys
,
∂

∂yj

)
JǍ5ξ

=
q∑

k=1

[(
−h
(

∂

∂ys
,
∂

∂yj

)
Θ̌2k−1(z) + h

(
J
∂

∂ys
,
∂

∂yj

)
Θ̌2k(z)

)
e2k−1

+
(
h

(
∂

∂ys
,
∂

∂yj

)
Θ̌2k(z) + h

(
J
∂

∂ys
,
∂

∂yj

)
Θ̌2k−1(z)

)
e2k

]

+
2q∑

r=1

∂2ψ̌r

∂ys∂yj
e2n−2q+r

+
(
∂2F̌1

∂ys∂yj
− h
(

∂

∂ys
,
∂

∂yj

)
Θ̌2n+1(z) + h

(
J
∂

∂ys
,
∂

∂yj

)
Θ̌2n+2(z)

)
e2n+1

+
(
∂2F̌2

∂ys∂yj
+ h

(
∂

∂ys
,
∂

∂yj

)
Θ̌2n+2(z) + h

(
J
∂

∂ys
,
∂

∂yj

)
Θ̌2n+1(z)

)
e2n+2

and similarly

(Ǎ5 ◦ f)∗

(
∇∂/∂zs

∂

∂yj

)

= D∂/∂zs(Ǎ5 ◦ f)∗
∂

∂yj
− h
(

∂

∂zs
,
∂

∂yj

)
Ǎ5ξ + h

(
J
∂

∂zs
,
∂

∂yj

)
JǍ5ξ

=
q∑

k=1

[(
−h
(

∂

∂zs
,
∂

∂yj

)
Θ̌2k−1(z) + h

(
J
∂

∂zs
,
∂

∂yj

)
Θ̌2k(z)

)
e2k−1

+
(
h

(
∂

∂zs
,
∂

∂yj

)
Θ̌2k(z) + h

(
J
∂

∂zs
,
∂

∂yj

)
Θ̌2k−1(z)

)
e2k

]
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+
2q∑

r=1

∂2ψ̌r

∂zs∂yj
e2n−2q+r

+
(
∂2F̌1

∂zs∂yj
− h
(

∂

∂zs
,
∂

∂yj

)
Θ̌2n+1(z) + h

(
J
∂

∂zs
,
∂

∂yj

)
Θ̌2n+2(z)

)
e2n+1

+
(
∂2F̌2

∂zs∂yj
+ h

(
∂

∂zs
,
∂

∂yj

)
Θ̌2n+2(z) + h

(
J
∂

∂zs
,
∂

∂yj

)
Θ̌2n+1(z)

)
e2n+2.

Since in the second pair of expressions there are no terms containing the
basis vectors et with t ∈ {2q + 1, . . . , 2n − 2q}, we conclude that βlsj = 0
and δlsj = 0 for any l, s, j. Comparing now the coefficients of et′ with t′ ∈
{2n− 2q + 1, . . . , 2n} we obtain

∂2ψ̌r

∂ys∂yj
= 0 and

∂2ψ̌r

∂zs∂yj
= 0

for any r, s, j.
It follows that

∂ψ̌r

∂yj
= Erj = const and ψ̌r(y, z) =

2n−4q∑

j=1

Erj y
j + Π̌r(z).

The Cauchy–Riemann equations for ψ̂r imply that Π̂r := Π̌2r−1+iΠ̌2r is
a holomorphic function and E2r−1

2j−1 = E2r
2j , E2r−1

2j = −E2r
2j−1 for r = 1, . . . , q,

j = 1, . . . , n− 2q. We set Cks := E2k−1
2j−1 + iE2k

2j−1 and the lemma follows.

We define the isomorphism Â0
6 of Cn+1 by

Â0
6ẽk :=

{
ẽk if k 6∈ {q + 1, . . . , n− q},
ẽk −

∑q
j=1 C

j
kẽn−q+j if k ∈ {q + 1, . . . , n− q}.

Let Â6 := Â0
6 ◦ Â5. Then

Â6 ◦ f ◦ φ̂−1
4 (x̃1, . . . , x̃q, ỹ1, . . . , ỹn−2q, z̃1, . . . , z̃q)

= (x̃1, . . . , x̃q, ỹ1, . . . , ỹn−2q, Π̂1(z̃), . . . , Π̂q(z̃), F̂(ỹ, z̃))

and Â6ξ ◦ φ̂−1
4 is given by the same formula as Â5ξ ◦ φ̂−1

4 .

Lemma 13. If q > 1 then

Π̂r(z̃) =
q∑

s=1

C1
r
sz̃
s + C2

r

with C1
r
s, C2

r ∈ C.
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Proof. Recall that for q > 1,

Θ̂k(z̃1, . . . , z̃q) = z̃k for k = 1, . . . , q,

Θ̂n+1(z̃1, . . . , z̃q) ≡ 1.

Therefore we have

A6ξ ◦ φ−1
4 (x1, . . . , x2q, y1, . . . , y2n−4q, z1, . . . , z2q)

=
q∑

k=1

[z2k−1e2k−1 − z2ke2k] + e2n+1,

and

D∂/∂zs(A6ξ) = (−1)s−1es = −(A6 ◦ f)∗

(
(−1)s

∂

∂xs

)
,

which implies

S
∂

∂zs
= (−1)s

∂

∂xs
.

Applying the covariant derivative ∇W to the right-hand side of the above
formula we obtain zero, therefore

S

(
∇W

∂

∂zs

)
= ∇W

(
S
∂

∂zs

)
= 0

and so ∇W (∂/∂zs) ∈ kerS for any tangent vector W . We can now proceed
analogously to the proof of Lemma 12.

The matrix (C1
r
s)r,s=1,...,q is invertible, since Â6 ◦f is an immersion and

Â6ξ ◦ φ̂−1
4 (x̃1, . . . , x̃q, ỹ1, . . . , ỹn−2q, z̃1, . . . , z̃q) =

q∑

k=1

z̃k ẽk + ẽn+1

is a transversal field. Let

(C3
i
j)i,j=1,...,q = [(C1

r
s)r,s=1,...,q]−1.

To complete the proof of the theorem in the case q > 1 it remains to apply
the affine isomorphism Ã0

7 of Cn+1, where

Ã0
7(θ1, . . . , θn+1) :=

(
θ1, . . . , θn−q,

q∑

j1=1

C3
1
j1(θn−q+j1 − C2

j1), . . . ,

q∑

jq=1

C3
q
jq(θ

n−q+jq − C2
jq ), θn+1

)
.

The linear part of Ã0
7 does not change the transversal field Â6ξ, therefore

we have Ã ◦ f and ~̃
Aξ as claimed, with Ã := Ã0

7 ◦ Â6, F̃ = F̂ , φ̃ = φ̂4.
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For q = 1,

Â6 ◦ f ◦ φ̂−1
4 (x̃, ỹ1, . . . , ỹn−2, z̃) = (x̃, ỹ1, . . . , ỹn−2, Π̂(z̃), F̂(ỹ, z̃))

with Π̂ ′ 6= 0 in the neighbourhood of ˜̃φ4(m). We define a local diffeomor-
phism

˜̃φ0
5(x̃, ỹ1, . . . , ỹn−2, z̃) := (x̃, ỹ1, . . . , ỹn−2, Π̂(z̃))

and obtain

Â6 ◦ f ◦ ˜̃φ−1
5 (x̃, ỹ1, . . . , ỹn−2, z̃) = (x̃, ỹ1, . . . , ỹn−2, z̃, ̂̂F(ỹ, z̃)),

Â6ξ ◦ ˜̃φ−1
5 (x̃, ỹ1, . . . , ỹn−2, z̃) = ˜̃G(z̃) ẽ1 + e

˜̃M(z̃) ẽn+1

with ̂̂F = F̂ ◦ Π̂−1, ˜̃M = H̃ ◦ Π̂−1, ˜̃G = Θ1 ◦ Π̂−1, ˜̃φ5 = ˜̃φ0
5 ◦ φ̂4.

Lemma 14. ˜̃G′ − ˜̃M′ ˜̃G = const 6= 0.

Proof. Let ˜̃G = G1 + iG2 and ˜̃M = M1 + iM2. Then

˜̃G′ − ˜̃M′ ˜̃G

=
(
∂G1

∂z1 + i
∂G2

∂z1

)
−
(
∂M1

∂z1 + i
∂M2

∂z1

)
(G1 + iG2)

=
(
∂G1

∂z1 −
∂M1

∂z1 G
1 +

∂M2

∂z1 G
2
)

+ i

(
∂G2

∂z1 −
∂M2

∂z1 G
1 − ∂M1

∂z1 G
2
)
.

It is easily seen that

S
∂

∂z1 =
(
−∂G

1

∂z1 +
∂M1

∂z1 G
1 − ∂M2

∂z1 G
2
)

∂

∂x1

+
(
∂G2

∂z1 −
∂M2

∂z1 G
1 − ∂M1

∂z1 G
2
)

∂

∂x2 ,

because

D∂/∂z1A6ξ =
∂G1

∂z1 e1 −
∂G2

∂z1 e2

+
(
∂M1

∂z1 e
M1

cosM2 − ∂M2

∂z1 e
M1

sinM2
)
e2n+1

+
(
−∂M

1

∂z1 e
M1

sinM2 − ∂M2

∂z1 e
M1

cosM2
)
e2n+2

=
(
∂G1

∂z1 −
∂M1

∂z1 G
1 +

∂M2

∂z1 G
2
)
e1

+
(
−∂G

2

∂z1 +
∂M2

∂z1 G
1 +

∂M1

∂z1 G
2
)
e2 +

∂M1

∂z1 A6ξ −
∂M2

∂z1 JA6ξ.
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For any vector W ,

∇W
∂

∂z1 ∈ spanR

{
∂

∂x1 ,
∂

∂x2

}
⊂ kerS,

since

DW (A6 ◦ f)∗
∂

∂z1 = W

(
∂ ˇ̌F1

∂z1

)
e2n+1 +W

(
∂ ˇ̌F2

∂z1

)
e2n+2

∈ spanR{e1, e2, A6ξ, JA6ξ}.
It follows that ∇W (S∂/∂z1) = 0 for any W . Therefore

−∂G
1

∂z1 +
∂M1

∂z1 G
1 − ∂M2

∂z1 G
2 =: −B1 = const,

∂G2

∂z1 −
∂M2

∂z1 G
1 − ∂M1

∂z1 G
2 =: B2 = const.

Moreover, (B1)2 + (B2)2 6= 0, because S 6= 0.

Let
˜̃φ0

6(x̃, ỹ1, . . . , ỹn−2, z̃) := (x̃, ỹ1, . . . , ỹn−2, (B1 + iB2)z̃),

˜̃A0
7(ζ1, . . . , ζn+1) := (ζ1, . . . , ζn−1, (B1 + iB2)ζn, ζn+1).

Now ˜̃A7 ◦ f ◦ ˜̃φ−1
6 and ˜̃A7ξ ◦ ˜̃φ−1

6 have the same shape as Â6 ◦ f ◦ ˜̃φ−1
5 and

Â6ξ ◦ ˜̃φ−1
5 with ˜̃F , ˜̃G, ˜̃M replaced by F̃ , G̃ M̃, where

F̃(z̃) := ̂̂F
(

z̃

B1 + iB2

)
, G̃(z̃) := ˜̃G

(
z̃

B1 + iB2

)
,

M̃(z̃) := ˜̃M
(

z̃

B1 + iB2

)
.

It is easy to check that
G̃′ − M̃′G̃ = 1.

This finishes the proof of the theorem.

There are many examples of functions G̃ and M̃ satisfying the above
equation. In fact, for any holomorphic M̃ (and so for any µ, ν, because
µ(∂/∂zk) = ∂M1/∂zk and ν(∂/∂zk) = −∂M1/∂zk) there exists G̃ such
that G̃′ − M̃′G̃ ≡ 1. For example

G̃(z̃) = z̃, M̃(z̃) = 0

(that is what we obtain also for q > 1, with µ = ν = 0);

G̃(z̃) = 1, M̃(z̃) = −z̃;

G̃(z̃) = ez̃, M̃(z̃) = z̃ + e−z̃.
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