A local characterization of affine holomorphic immersions with an anti-complex and ∇-parallel shape operator

by Maria Robaszewska (Kraków)

Abstract

We study the complex hypersurfaces $f: M^{(n)} \rightarrow \mathbb{C}^{n+1}$ which together with their transversal bundles have the property that around any point of M there exists a local section of the transversal bundle inducing a ∇-parallel anti-complex shape operator S. We give a class of examples of such hypersurfaces with an arbitrary rank of S from 1 to $[n / 2]$ and show that every such hypersurface with positive type number and $S \neq 0$ is locally of this kind, modulo an affine isomorphism of \mathbb{C}^{n+1}.

1. Introduction. Among the connections induced on complex hypersurfaces $f: M^{(n)} \rightarrow \mathbb{C}^{n+1}$ by \mathcal{C}^{∞} complex transversal bundles there are two particular kinds of great interest: holomorphic connections and affine Kähler connections. The latter are meant to be a generalization of Kähler connections. In terms of the curvature tensor, a holomorphic affine connection is characterized by the condition

$$
R(J X, Y)=J R(X, Y) \quad \text { for all vector fields } X, Y,
$$

while for an affine Kähler connection we have, by definition,

$$
R(J X, J Y)=R(X, Y) \quad \text { for all } X, Y
$$

(see [NS]). Since, provided the affine fundamental form h does not vanish on M, a holomorphic connection is induced by a holomorphic transversal bundle, it is possible to adapt the ideas from the real affine hypersurface geometry to this case. For instance, having a non-degenerate hypersurface one can construct a holomorphic analogue of affine normal vector field [DVV]. Then one can consider the condition $S=\lambda I, \lambda=$ const, which describes the affine spheres [DVV].

On the contrary, the non-flat affine Kähler connections induced on hypersurfaces (in particular, the non-flat Kähler ones) cannot be treated in this

[^0]way. Instead of the holomorphic transversal bundles, with the complex shape operator, one has to consider the transversal bundles \mathcal{N} having the property that the shape operator corresponding to sections of \mathcal{N} is anti-complex. This property of \mathcal{N} implies the desired condition for the curvature tensor R of ∇ and is necessary for ∇ to be affine Kähler if $t f>1$ at some point of M (see [O]).

Clearly, no section ξ of such a bundle can induce S proportional to the identity, except for the case $S=0$. Being ∇-parallel is a weaker condition on S than $S=\lambda I, \lambda=$ const. This condition is shown to have some non-trivial realizations even if we require S to be anti-complex. It is worth noting that we need to consider degenerate hypersurfaces, because the nondegeneracy implies $S=0$ (Lemma 2).
2. Preliminaries. Let M be an n-dimensional connected complex manifold. We shall consider a holomorphic immersion $f: M \rightarrow \mathbb{C}^{n+1}$ together with a \mathcal{C}^{∞} complex transversal bundle \mathcal{N}. If $\xi: U \rightarrow \mathbb{C}^{n+1}$ is a local section of \mathcal{N}, then the induced connection ∇ on M, the second fundamental form h, the shape operator S and the transversal forms μ and ν are defined by the following Gauss and Weingarten formulas [NS]:

$$
\begin{aligned}
D_{X} f_{*} Y & =f_{*} \nabla_{X} Y+h(X, Y) \xi-h(J X, Y) J \xi \\
D_{X} \xi & =-f_{*} S X+\mu(X) \xi+\nu(X) J \xi
\end{aligned}
$$

Here D denotes the standard connection on \mathbb{C}^{n+1}, and J the complex structure on M and on \mathbb{C}^{n+1} as well.

Let $m \in M$. The complex rank of the \mathbb{C}-bilinear form $h_{m}^{c}(\cdot, \cdot)=h_{m}(\cdot, \cdot)-$ $i h_{m}(J \cdot, \cdot)$ depends on f only. It is called the type number of f at m and denoted by $t f_{m}$ (see $[\mathrm{O}]$). We shall assume that it is positive everywhere on M.

Our first requirement on the transversal bundle is that the induced shape operator S is anti-complex, i.e. $S J=-J S$ (see [O]). The fundamental equations satisfied by ∇, h, μ, ν and such an S are the following:

$$
\begin{gathered}
R(X, Y) Z=h(Y, Z) S X-h(X, Z) S Y+h(J Y, Z) S J X-h(J X, Z) S J Y \\
\quad(\text { Gauss }), \\
\begin{array}{c}
\left(\nabla_{X} h\right)(Y, Z)+\mu(X) h(Y, Z)+\nu(X) h(J Y, Z) \\
=\left(\nabla_{Y} h\right)(X, Z)+\mu(Y) h(X, Z)+\nu(Y) h(J X, Z) \quad(\text { Codazzi } I), \\
\left(\nabla_{X} S\right) Y-\mu(X) S Y+\nu(X) S J Y=\left(\nabla_{Y} S\right) X-\mu(Y) S X+\nu(Y) S J X \\
\\
h(X, S Y)-h(Y, S X)=2 d \mu(X, Y) \quad(\text { Ricci }), \\
h(S X, J Y)-h(S Y, J X)=2 d \nu(X, Y) \quad(\text { Ricci II) }
\end{array}
\end{gathered}
$$

Furthermore, we shall assume that for every point $m \in M$ there exists a local section $\xi: U \rightarrow \mathbb{C}^{n+1}$ of \mathcal{N} with $U \ni m$ such that $\nabla S^{\xi}=0$, where S^{ξ} denotes the shape operator induced by ξ. If the points $m_{1}, m_{2} \in U$ can be joined by a curve lying in U, and \mathcal{B}_{1} is a basis of $T_{m_{1}} M$, then by parallel displacement we can obtain a basis \mathcal{B}_{2} of $T_{m_{2}} M$ with respect to which $S_{m_{2}}^{\xi}$ has the same matrix as $S_{m_{1}}^{\xi}$ with respect to \mathcal{B}_{1}. Hence rank $S_{m_{1}}^{\xi}=\operatorname{rank} S_{m_{2}}^{\xi}$, where $\operatorname{rank} S_{m}^{\xi}:=\operatorname{dim}_{\mathbb{C}} \operatorname{im} S_{m}^{\xi}$. The assumed connectedness of M and the independence of $\operatorname{rank} S_{m}^{\xi}$ of ξ at a fixed m imply that $q:=\operatorname{rank} S$ is well defined for the whole M.

When studying immersions with ∇-parallel shape operator we shall make use of the following remarks:

Remark 1. If $\nabla S=0$, then for every X, Y, Z,

$$
R(X, Y) S Z=S(R(X, Y) Z)
$$

Proof. This is an obvious consequence of the commutativity of S and ∇_{W} for any W.

Remark 2. If $\nabla S=0$ and $S J=-J S$, then $\operatorname{ker} S \subset \operatorname{ker} \mu \cap \operatorname{ker} \nu$ or $S=0$.

Proof. Let $S X=0$. By the second Codazzi equation we have $-\mu(X) S Y$ $+\nu(X) S J Y=0$ for any Y. If $S \neq 0$, then there exists Y such that $S Y \neq 0$. Since $S Y$ and $S J Y=-J S Y$ are linearly independent over \mathbb{R}, it follows that $\mu(X)=0$ and $\nu(X)=0$.

Remark 3. If $\nabla S=0, S J=-J S$ and $S \neq 0$, then the section ξ inducing S is anti-holomorphic, i.e. $\nu(X)=\mu(J X)$ for any X.

Proof. We may assume that $S X \neq 0$. The assertion follows easily from the second Codazzi equation, written for $Y=J X$.

For an anti-holomorphic ξ we can rewrite the first Codazzi equation as

$$
\begin{aligned}
& \left(\nabla_{X} h\right)(Y, Z)+\mu(X) h(Y, Z)+\mu(J X) h(J Y, Z) \\
& \quad=\left(\nabla_{Y} h\right)(X, Z)+\mu(Y) h(X, Z)+\mu(J Y) h(J X, Z)
\end{aligned}
$$

3. Theorem. We can now formulate our main result.

Theorem. Let M be an n-dimensional connected complex manifold, $n>1, f: M \rightarrow \mathbb{C}^{n+1}$ a holomorphic immersion and ∇ a linear connection induced on M by a transversal bundle \mathcal{N}. Let f and M satisfy the following assumptions:
(1) $t f>0$ everywhere on M,
(2) for every $m \in M$ there exists a neighbourhood U of m and a local section $\xi: U \rightarrow \mathbb{C}^{n+1}$ of \mathcal{N} inducing an anti-complex and ∇-parallel shape operator S,
(3) $q:=\operatorname{rank} S>0$.

Under the conditions stated above,
(i) $q \leq n / 2$;
(ii) for every $m \in M$ there exists a neighbourhood V of m, a complex chart $\widetilde{\phi}: V \rightarrow \mathbb{C}^{n} \cong \mathbb{C}^{q} \times \mathbb{C}^{n-2 q} \times \mathbb{C}^{q}$, a complex affine isomorphism $\widetilde{A}: \mathbb{C}^{n+1} \rightarrow \mathbb{C}^{n+1}$, and a holomorphic function $\widetilde{\mathcal{F}}$ such that

$$
\begin{aligned}
& \widetilde{A} \circ f \circ \widetilde{\phi}^{-1}\left(\widetilde{x}^{1}, \ldots, \widetilde{x}^{q}, \widetilde{y}^{1}, \ldots, \widetilde{y}^{n-2 q}, \widetilde{z}^{1}, \ldots, \widetilde{z}^{q}\right) \\
& \quad=\left(\widetilde{x}^{1}, \ldots, \widetilde{x}^{q}, \widetilde{y}^{1}, \ldots, \widetilde{y}^{n-2 q}, \widetilde{z}^{1}, \ldots, \widetilde{z}^{q}, \widetilde{\mathcal{F}}\left(\widetilde{y}^{1}, \ldots, \widetilde{y}^{n-2 q}, \widetilde{z}^{1}, \ldots, \widetilde{z}^{q}\right)\right)
\end{aligned}
$$

(iii) if $q>1$, then the local section $\overrightarrow{\widetilde{A}} \circ \xi: V \rightarrow \mathbb{C}^{n+1}$ of $\overrightarrow{\widetilde{A}} \mathcal{N}$ (where $\overrightarrow{\widetilde{A}}$ denotes the linear part of $\widetilde{A})$ inducing the ∇-parallel shape operator is described in this chart by the following formula:

$$
\overrightarrow{\widetilde{A}} \circ \xi \circ \widetilde{\phi}^{-1}\left(\widetilde{x}^{1}, \ldots, \widetilde{x}^{q}, \widetilde{y}^{1}, \ldots, \widetilde{y}^{n-2 q}, \widetilde{z}^{1}, \ldots, \widetilde{z}^{q}\right)=(\overline{z^{1}}, \ldots, \overline{\widetilde{z}^{q}}, \underbrace{0, \ldots, 0}_{n-q \text { times }}, 1)
$$

(iv) if $q=1$, then

$$
\overrightarrow{\widetilde{A}} \circ \xi \circ \widetilde{\phi}^{-1}\left(\widetilde{x}, \widetilde{y}^{1}, \ldots, \widetilde{y}^{n-2}, \widetilde{z}\right)=(\overline{\widetilde{\mathcal{G}}}(\widetilde{z}), \underbrace{0, \ldots, 0}_{n-1 \text { times }}, \overline{e^{\widetilde{\mathcal{M}}(\widetilde{z})}})
$$

where $\widetilde{\mathcal{G}}$ and $\widetilde{\mathcal{M}}$ are holomorphic functions such that

$$
\widetilde{\mathcal{G}}^{\prime}(\widetilde{z})-\widetilde{\mathcal{M}}^{\prime}(\widetilde{z}) \widetilde{\mathcal{G}}(\widetilde{z}) \equiv 1
$$

In the real representation, setting $\widetilde{x}^{k}=x^{2 k-1}+i x^{2 k}, \widetilde{y}^{l}=y^{2 l-1}+i y^{2 l}$, $\widetilde{z}_{\sim}^{j}=z^{2 j-1}+i z^{2 j}$ for $j, k=1, \ldots, q ; l=1, \ldots, n-2 q ; \widetilde{\mathcal{F}}=\mathcal{F}^{1}+i \mathcal{F}^{2}$, $\widetilde{\mathcal{G}}=\mathcal{G}^{1}+i \mathcal{G}^{2}, \widetilde{\mathcal{M}}=\mathcal{M}^{1}+i \mathcal{M}^{2}$, we have

$$
\begin{aligned}
& A \circ f \circ \phi^{-1}\left(x^{1}, \ldots, x^{2 q}, y^{1}, \ldots, y^{2 n-4 q}, z^{1}, \ldots, z^{2 q}\right) \\
& \quad=\left(x^{1}, \ldots, x^{2 q}, y^{1}, \ldots, y^{2 n-4 q}, z^{1}, \ldots, z^{2 q}, \mathcal{F}^{1}(y, z), \mathcal{F}^{2}(y, z)\right) \\
& \vec{A} \circ \xi \circ \phi^{-1}\left(x^{1}, \ldots, x^{2 q}, y^{1}, \ldots, y^{2 n-4 q}, z^{1}, \ldots, z^{2 q}\right) \\
& \quad=(z^{1},-z^{2}, \ldots, z^{2 q-1},-z^{2 q}, \underbrace{0, \ldots, 0}_{2 n-2 q \text { times }}, 1,0)
\end{aligned}
$$

if $q>1$, and

$$
\begin{aligned}
& \vec{A} \circ \xi \circ \phi^{-1}\left(x^{1}, x^{2}, y^{1}, \ldots, y^{2 n-4}, z^{1}, z^{2}\right) \\
& \quad(\mathcal{G}^{1}(z),-\mathcal{G}^{2}(z), \underbrace{0, \ldots, 0}_{2 n-2 \text { times }}, e^{\mathcal{M}^{1}(z)} \cos \mathcal{M}^{2}(z),-e^{\mathcal{M}^{1}(z)} \sin \mathcal{M}^{2}(z))
\end{aligned}
$$

if $q=1$.

REMARK 4. An easy computation shows that the converse is also true:
(a) For any holomorphic function $\widetilde{\mathcal{F}}$ of $n-q$ variables, where $q \leq n / 2$, the shape operator S induced on the hypersurface

$$
\begin{aligned}
f: \mathbb{C}^{n} \supset U \ni & \left(\widetilde{x}^{1}, \ldots, \widetilde{x}^{q}, \widetilde{y}^{1}, \ldots, \widetilde{y}^{n-2 q}, \widetilde{z}^{1}, \ldots, \widetilde{z}^{q}\right) \\
& \mapsto\left(\widetilde{x}^{1}, \ldots, \widetilde{x}^{q}, \widetilde{y}^{1}, \ldots, \widetilde{y}^{n-2 q}, \widetilde{z}^{1}, \ldots, \widetilde{z}^{q}, \widetilde{\mathcal{F}}(\widetilde{y}, \widetilde{z})\right) \in \mathbb{C}^{n+1}
\end{aligned}
$$

endowed with the transversal field

$$
\xi\left(\widetilde{x}^{1}, \ldots, \widetilde{x}^{q}, \widetilde{y}^{1}, \ldots, \widetilde{y}^{n-2 q}, \widetilde{z}^{1}, \ldots, \widetilde{z}^{q}\right)=(\overline{\widetilde{z}^{1}}, \ldots, \overline{\widetilde{z}^{q}}, \underbrace{0, \ldots, 0}_{n-q \text { times }}, 1)
$$

is parallel with respect to the induced connection and $\operatorname{rank} S=q$.
(b) For any holomorphic function $\widetilde{\mathcal{F}}$ of $n-1$ variables and for any holomorphic functions $\widetilde{\mathcal{G}}$ and $\widetilde{\mathcal{M}}$ of one variable satisfying the equation

$$
\widetilde{\mathcal{G}}^{\prime}(\widetilde{z})-\widetilde{\mathcal{M}}^{\prime}(\widetilde{z}) \widetilde{\mathcal{G}}(\widetilde{z}) \equiv 1
$$

the shape operator S induced on the hypersurface

$$
f: \mathbb{C}^{n} \supset U \ni\left(\widetilde{x}, \widetilde{y}^{1}, \ldots, \widetilde{y}^{n-2}, \widetilde{z}\right) \mapsto\left(\widetilde{x}, \widetilde{y}^{1}, \ldots, \widetilde{y}^{n-2}, \widetilde{z}, \widetilde{\mathcal{F}}(\widetilde{y}, \widetilde{z})\right) \in \mathbb{C}^{n+1}
$$

endowed with the transversal field

$$
\xi\left(\widetilde{x}, \widetilde{y}^{1}, \ldots, \widetilde{y}^{n-2}, \widetilde{z}\right)=(\overline{\widetilde{\mathcal{G}}(\widetilde{z})}, \underbrace{0, \ldots, 0}_{n-1 \text { times }}, \overline{\left.e^{\widetilde{\mathcal{M}}(\widetilde{z}}\right)}
$$

is parallel with respect to the induced connection and has $\operatorname{rank} S=1$.
Proof of the Theorem. We begin by proving two lemmas in which we establish some inclusions between $\operatorname{im} S$, $\operatorname{ker} S$ and $\operatorname{ker} h$.

Lemma 1. If $t f>0, S J=-J S$, and $\nabla S=0$, then the following conditions are equivalent:
(1) $d \mu=0$ and $d \nu=0$,
(2) $\operatorname{im} S \subset \operatorname{ker} h$,
(3) $\operatorname{im} S \subset \operatorname{ker} S$.

Proof. (1) $\Leftrightarrow(2)$. Suppose that $d \mu=0$ and $d \nu=0$. Let $m^{\prime} \in M$ and $X, Y \in T_{m^{\prime}} M$. Applying the Ricci equations we have

$$
\begin{aligned}
0 & =2 d \mu(X, Y)+2 d \nu(J X, Y) \\
& =h(X, S Y)-h(Y, S X)-h\left(J^{2} X, S Y\right)+h(J Y, S J X) \\
& =h(X, S Y)-h(Y, S X)+h(X, S Y)+h(J Y,-J S X) \\
& =h(X, S Y)-h(Y, S X)+h(X, S Y)+h(Y, S X)=2 h(X, S Y)
\end{aligned}
$$

hence for any $X, Y \in T_{m^{\prime}} M$ we have $h(X, S Y)=0$. The Ricci equations make it obvious that (2) implies (1).
$(2) \Rightarrow(3)$. Suppose that $\operatorname{im} S \subset$ ker h, which yields $R(X, Y) S Z=0$ by the Gauss equation. Since $t f_{m^{\prime}}>0$, there exist $X_{0}, Y_{0} \in T_{m^{\prime}} M$ such that $h\left(X_{0}, Y_{0}\right) \neq 0$. We first show that $S^{2} X_{0}=0$. Indeed, making use of Remark 1 we have

$$
0=S\left(R\left(X_{0}, J X_{0}\right) Y_{0}\right)=2\left(h\left(J X_{0}, Y_{0}\right) S^{2} X_{0}-h\left(X_{0}, Y_{0}\right) S^{2} J X_{0}\right)
$$

with $h\left(X_{0}, Y_{0}\right) \neq 0$, which means that $S^{2} X_{0}$ and $S^{2} J X_{0}$ are linearly dependent over \mathbb{R}. This is possible only when $S^{2} X_{0}=S^{2} J X_{0}=0$.

Now we take an arbitrary $Z \in T_{m^{\prime}} M$. Then

$$
0=S\left(R\left(X_{0}, Z\right) Y_{0}\right)=-h\left(X_{0}, Y_{0}\right) S^{2} Z-h\left(J X_{0}, Y_{0}\right) S^{2} J Z
$$

and by a similar argument $S^{2} Z=0$.
$(3) \Rightarrow(2)$. If $S^{2}=0$, then the right-hand side of the equality $R(X, Y) S Z$ $=S(R(X, Y) Z)$ vanishes for every X, Y, Z. For $S=0$, (2) holds, therefore we can assume that $S \neq 0$. Take X_{0} such that $S X_{0} \neq 0$. Since

$$
0=R\left(X_{0}, J X_{0}\right) S Z=2\left(h\left(J X_{0}, S Z\right) S X_{0}-h\left(X_{0}, S Z\right) S J X_{0}\right)
$$

and $S X_{0}, S J X_{0}$ are linearly independent over \mathbb{R}, we have

$$
h\left(X_{0}, S Z\right)=h\left(J X_{0}, S Z\right)=0 \quad \text { for any } Z
$$

Now we can write for any Y, Z,

$$
0=R\left(X_{0}, Y\right) S Z=h(Y, S Z) S X_{0}+h(J Y, S Z) S J X_{0}
$$

Hence $h(Y, S Z)=0$ for any Y, Z.
Lemma 2. Under the assumptions of Lemma 1, the equivalent conditions (1), (2) and (3) are satisfied.

Proof. If $\nabla S=0$, then rank S is constant on the domain of S. We have to consider three cases.

Case 1: $\operatorname{rank} S=0$. Then, of course, (3) holds.
CASE 2: $\operatorname{rank} S=1$. Suppose, contrary to our claim, that $S^{2} \neq 0$. Let $m^{\prime} \in M$. We fix $X_{0} \in T_{m^{\prime}} M$ such that $S^{2} X_{0} \neq 0$. We shall obtain a contradiction with the assumption $t f>0$.

Step 1. ker $S \subset$ ker h.
Let $Z \in \operatorname{ker} S$. Then

$$
\begin{aligned}
0 & =R\left(X_{0}, J X_{0}\right) S Z=S\left(R\left(X_{0}, J X_{0}\right) Z\right) \\
& =2\left(h\left(J X_{0}, Z\right) S^{2} X_{0}-h\left(X_{0}, Z\right) S^{2} J X_{0}\right)
\end{aligned}
$$

hence $h\left(X_{0}, Z\right)=h\left(J X_{0}, Z\right)=0$. For any Y we now have

$$
0=R\left(X_{0}, Y\right) S Z=S\left(R\left(X_{0}, Y\right) Z\right)=h(Y, Z) S^{2} X_{0}+h(J Y, Z) S^{2} J X_{0}
$$

which implies $h(Y, Z)=0$ for any $Z \in \operatorname{ker} S$ and for any Y.
STEP 2. (a) $T_{m^{\prime}} M=\operatorname{ker} S \oplus \mathbb{C} X_{0}$ and (b) $T_{m^{\prime}} M=\operatorname{ker} S \oplus \mathbb{C} S X_{0}$.

Since $\operatorname{dim}_{\mathbb{C}} \operatorname{ker} S=n-1$, it is sufficient and easy to check that $\operatorname{ker} S \cap$ $\mathbb{C} X_{0}=\{0\}$ and $\operatorname{ker} S \cap \mathbb{C} S X_{0}=\{0\}$.

STEP 3. $h\left(X_{0}, S X_{0}\right)=h\left(J X_{0}, S J X_{0}\right)=0$.
If $h\left(X_{0}, X_{0}\right)=0$ and $h\left(X_{0}, J X_{0}\right)=0$ then $X_{0} \in$ ker h by Steps 1 and $2(\mathrm{a})$, and so the claimed equality holds.

Assume now that $h\left(X_{0}, X_{0}\right) \neq 0$ or $h\left(X_{0}, J X_{0}\right) \neq 0$. We have

$$
\begin{aligned}
0= & R\left(X_{0}, J X_{0}\right) S X_{0}-S\left(R\left(X_{0}, J X_{0}\right) X_{0}\right. \\
= & 2 S\left(h\left(J X_{0}, S X_{0}\right) X_{0}-h\left(X_{0}, S X_{0}\right) J X_{0}\right. \\
& \left.-h\left(J X_{0}, X_{0}\right) S X_{0}+h\left(X_{0}, X_{0}\right) S J X_{0}\right),
\end{aligned}
$$

therefore $Z_{0} \in \operatorname{ker} S$, where

$$
\begin{aligned}
Z_{0}:= & h\left(J X_{0}, S X_{0}\right) X_{0}-h\left(X_{0}, S X_{0}\right) J X_{0} \\
& -h\left(J X_{0}, X_{0}\right) S X_{0}+h\left(X_{0}, X_{0}\right) S J X_{0}
\end{aligned}
$$

According to Step 1, we have $h\left(Z_{0}, X_{0}\right)=0$ and $h\left(Z_{0}, J X_{0}\right)=0$, hence

$$
\begin{aligned}
h\left(J X_{0}, S X_{0}\right) & h\left(X_{0}, X_{0}\right)-h\left(X_{0}, S X_{0}\right) h\left(J X_{0}, X_{0}\right) \\
& -h\left(J X_{0}, X_{0}\right) h\left(S X_{0}, X_{0}\right)+h\left(X_{0}, X_{0}\right) h\left(S J X_{0}, X_{0}\right)=0
\end{aligned}
$$

and

$$
\begin{aligned}
& h\left(J X_{0}, S X_{0}\right) h\left(X_{0}, J X_{0}\right)-h\left(X_{0}, S X_{0}\right) h\left(J X_{0}, J X_{0}\right) \\
& \quad-h\left(J X_{0}, X_{0}\right) h\left(S X_{0}, J X_{0}\right)+h\left(X_{0}, X_{0}\right) h\left(S J X_{0}, J X_{0}\right)=0 .
\end{aligned}
$$

Thus we obtain

$$
h\left(S X_{0}, X_{0}\right) h\left(J X_{0}, X_{0}\right)=0 \quad \text { and } \quad h\left(S X_{0}, X_{0}\right) h\left(X_{0}, X_{0}\right)=0
$$

which implies $h\left(S X_{0}, X_{0}\right)=0$, and consequently, by the anti-complexity of S and the properties of $h(\cdot, \cdot), h\left(S J X_{0}, J X_{0}\right)=0$.

Step 4. $h(Z, S W)+h(W, S Z)=0$ for any $Z, W \in T_{m^{\prime}} M$.
By Step 2(a) we have $Z=Z_{1}+\alpha X_{0}+\beta J X_{0}, W=W_{1}+\gamma X_{0}+\delta J X_{0}$ with $Z_{1}, W_{1} \in \operatorname{ker} S$ and $\alpha, \beta, \gamma, \delta \in \mathbb{R}$. An easy computation gives

$$
\begin{aligned}
& h(Z, S W)+h(W, S Z) \\
& =h\left(\alpha X_{0}+\beta J X_{0}, S\left(\gamma X_{0}+\delta J X_{0}\right)\right)+h\left(\gamma X_{0}+\delta J X_{0}, S\left(\alpha X_{0}+\beta J X_{0}\right)\right) \\
& =2 \alpha \gamma h\left(X_{0}, S X_{0}\right)+2 \beta \delta h\left(J X_{0}, S J X_{0}\right)+(\alpha \delta+\beta \gamma) h\left(X_{0},(S J+J S) X_{0}\right)
\end{aligned}
$$

which vanishes by the anti-complexity of S and by Step 3 .
Step 5. $\left(\nabla_{W} h\right)\left(X_{0}, S X_{0}\right)=\left(\nabla_{W} h\right)\left(J X_{0}, S J X_{0}\right)=0$ for any W.
We extend X_{0} to a local vector field X_{0} such that $S^{2} X_{0} \neq 0$ at any point of the domain of X_{0}. We have

$$
\begin{aligned}
& \left(\nabla_{W} h\right)\left(X_{0}, S X_{0}\right) \\
& \quad=W\left(h\left(X_{0}, S X_{0}\right)\right)-h\left(\nabla_{W} X_{0}, S X_{0}\right)-h\left(X_{0}, \nabla_{W}\left(S X_{0}\right)\right) \\
& \quad=W\left(h\left(X_{0}, S X_{0}\right)\right)-\left(h\left(\nabla_{W} X_{0}, S X_{0}\right)+h\left(X_{0}, S\left(\nabla_{W} X_{0}\right)\right)\right)=0 .
\end{aligned}
$$

The same is true for $J X_{0}$ in place of X_{0}.
Step 6. $\nabla h=-2 \mu \otimes h$.
If $Y \in \operatorname{ker} S_{m^{\prime}}$, then we can extend Y to a local section Y of $\operatorname{ker} S$. For any $X, Z, \nabla_{X} Y \in \operatorname{ker} S$ and

$$
\begin{aligned}
\left(\nabla_{X} h\right)(Y, Z) & =X(h(Y, Z))-h\left(\nabla_{X} Y, Z\right)-h\left(Y, \nabla_{X} Z\right)=0 \\
& =-2 \mu(X) h(Y, Z) .
\end{aligned}
$$

Let $X \in \operatorname{ker} S$. Then for any Y, Z we have

$$
\begin{aligned}
\left(\nabla_{X} h\right)(Y, Z) \underset{\text { Codazzi I }}{=} & -\mu(X) h(Y, Z)-\mu(J X) h(J Y, Z) \\
& +\left(\nabla_{Y} h\right)(X, Z)+\mu(Y) h(X, Z)+\mu(J Y) h(J X, Z) \\
= & 0=-2 \mu(X) h(Y, Z),
\end{aligned}
$$

since $\operatorname{ker} S \subset \operatorname{ker} \mu \cap \operatorname{ker} \nu$ and $\operatorname{ker} S \subset \operatorname{ker} h$.
It follows that $\left(\nabla_{X} h\right)(Y, \cdot)=-2 \mu(X) h(Y, \cdot)$ if $X \in \operatorname{ker} S$ or $Y \in \operatorname{ker} S$.
From the first Codazzi equation we obtain

$$
\begin{aligned}
& \left(\nabla_{X_{0}} h\right)\left(J X_{0}, S X_{0}\right)+\mu\left(X_{0}\right) h\left(J X_{0}, S X_{0}\right)+\mu\left(J X_{0}\right) h\left(J^{2} X_{0}, S X_{0}\right) \\
& =\left(\nabla_{J X_{0}} h\right)\left(X_{0}, S X_{0}\right)+\mu\left(J X_{0}\right) h\left(X_{0}, S X_{0}\right)+\mu\left(J^{2} X_{0}\right) h\left(J X_{0}, S X_{0}\right) .
\end{aligned}
$$

Hence

$$
\left(\nabla_{X_{0}} h\right)\left(J X_{0}, S X_{0}\right)=-2 \mu\left(X_{0}\right) h\left(J X_{0}, S X_{0}\right),
$$

by Steps 3 and 5 .
Similarly,

$$
\begin{aligned}
& \left(\nabla_{X_{0}} h\right)\left(J X_{0}, S J X_{0}\right)+\mu\left(X_{0}\right) h\left(J X_{0}, S J X_{0}\right)+\mu\left(J X_{0}\right) h\left(J^{2} X_{0}, S J X_{0}\right) \\
& \quad=\left(\nabla_{J X_{0}} h\right)\left(X_{0}, S J X_{0}\right)+\mu\left(J X_{0}\right) h\left(X_{0}, S J X_{0}\right)+\mu\left(J^{2} X_{0}\right) h\left(J X_{0}, S J X_{0}\right),
\end{aligned}
$$

which gives

$$
\left(\nabla_{J X_{0}} h\right)\left(X_{0}, S J X_{0}\right)=-2 \mu\left(J X_{0}\right) h\left(X_{0}, S J X_{0}\right) .
$$

We now have

$$
\begin{gathered}
\left(\nabla_{X_{0}} h\right)\left(X_{0}, S X_{0}\right)=0=-2 \mu\left(X_{0}\right) h\left(X_{0}, S X_{0}\right), \\
\left(\nabla_{X_{0}} h\right)\left(X_{0}, S J X_{0}\right)=-\left(\nabla_{X_{0}} h\right)\left(J X_{0}, S X_{0}\right)=2 \mu\left(X_{0}\right) h\left(J X_{0}, S X_{0}\right) \\
=-2 \mu\left(X_{0}\right) h\left(X_{0}, S J X_{0}\right)
\end{gathered}
$$

and

$$
\left(\nabla_{X_{0}} h\right)\left(X_{0}, Z\right)=-2 \mu\left(X_{0}\right) h\left(X_{0}, Z\right)
$$

for $Z \in \operatorname{ker} S$. Therefore

$$
\left(\nabla_{X_{0}} h\right)\left(X_{0}, \cdot\right)=-2 \mu\left(X_{0}\right) h\left(X_{0}, \cdot\right)
$$

by Step 2(b).
In the same manner we can see that

$$
\begin{aligned}
\left(\nabla_{X_{0}} h\right)\left(J X_{0}, \cdot\right) & =-2 \mu\left(X_{0}\right) h\left(J X_{0}, \cdot\right) \\
\left(\nabla_{J X_{0}} h\right)\left(X_{0}, \cdot\right) & =-2 \mu\left(J X_{0}\right) h\left(X_{0}, \cdot\right) \\
\left(\nabla_{J X_{0}} h\right)\left(J X_{0}, \cdot\right) & =-2 \mu\left(J X_{0}\right) h\left(J X_{0}, \cdot\right),
\end{aligned}
$$

which completes the proof of Step 6.
As a consequence of Step 6 we obtain
Step 7. $R(X, Y) \cdot h=-4 d \mu(X, Y) h$ for any X, Y.
Applying the Ricci equation yields
Step 8. $R(X, Y) \cdot h=-2(h(X, S Y)-h(Y, S X)) h$. In particular, we have $R\left(X_{0}, J X_{0}\right) \cdot h=-4 h\left(X_{0}, S J X_{0}\right) h$.

On the other hand, a direct computation gives

$$
\begin{aligned}
\left(R\left(X_{0}, J X_{0}\right)\right. & \cdot h)\left(X_{0}, X_{0}\right) \\
& =-2 h\left(R\left(X_{0}, J X_{0}\right) X_{0}, X_{0}\right) \\
& =-2 h\left(2\left(h\left(J X_{0}, X_{0}\right) S X_{0}-h\left(X_{0}, X_{0}\right) S J X_{0}\right), X_{0}\right) \\
& =-4 h\left(J X_{0}, X_{0}\right) h\left(S X_{0}, X_{0}\right)+4 h\left(X_{0}, X_{0}\right) h\left(S J X_{0}, X_{0}\right) \\
& =4 h\left(X_{0}, X_{0}\right) h\left(X_{0}, S J X_{0}\right)
\end{aligned}
$$

and

$$
\begin{aligned}
&\left(R\left(X_{0}, J X_{0}\right) \cdot h\right)\left(X_{0}, J X_{0}\right) \\
&=-h\left(R\left(X_{0}, J X_{0}\right) X_{0}, J X_{0}\right)-h\left(X_{0}, R\left(X_{0}, J X_{0}\right) J X_{0}\right) \\
&=-h\left(2\left(h\left(J X_{0}, X_{0}\right) S X_{0}-h\left(X_{0}, X_{0}\right) S J X_{0}\right), J X_{0}\right) \\
&-h\left(X_{0}, 2\left(h\left(J X_{0}, J X_{0}\right) S X_{0}-h\left(X_{0}, J X_{0}\right) S J X_{0}\right)\right) \\
&=-2 h\left(J X_{0}, X_{0}\right) h\left(S X_{0}, J X_{0}\right)+2 h\left(X_{0}, X_{0}\right) h\left(S J X_{0}, J X_{0}\right) \\
&-2 h\left(J X_{0}, J X_{0}\right) h\left(X_{0}, S X_{0}\right)+2 h\left(X_{0}, J X_{0}\right) h\left(X_{0}, S J X_{0}\right) \\
&= 4 h\left(J X_{0}, X_{0}\right) h\left(X_{0}, S J X_{0}\right) .
\end{aligned}
$$

A comparison with Step 8 gives

$$
h\left(X_{0}, S J X_{0}\right)=0 \quad \text { or } \quad h\left(X_{0}, X_{0}\right)=h\left(X_{0}, J X_{0}\right)=0
$$

which together with Steps 1-3 leads to a contradiction with the assumption $h_{m^{\prime}} \neq 0$.

Case 3: $\operatorname{rank} S>1$. If $S X=0$, then, by Remark $2, \mu(X)=\nu(X)=0$. Let $S X \neq 0$. Then there exists Y such that $S X$ and $S Y$ are linearly independent over \mathbb{C}. From Codazzi II we have

$$
(\mu(X)+i \nu(X)) S Y-(\mu(Y)+i \nu(Y)) S X=0,
$$

which implies $\mu(X)=\nu(X)=0$. Therefore (1) of Lemma 1 holds.
We now return to the proof of the theorem.
Fix $m \in M$. Let $\xi: U \rightarrow \mathbb{C}^{n+1}$ be defined on a connected neighbourhood U of m and have the property described in assumption (2) of the Theorem.

Lemma 3. There exists a q-dimensional complex subspace \mathcal{W} of \mathbb{C}^{n+1} such that $f_{*} \operatorname{im} S_{m^{\prime}}=\mathcal{W}$ for every $m^{\prime} \in U$.

Proof. It is sufficient to show that $f_{*} \operatorname{im} S_{m}=f_{*} \operatorname{im} S_{m^{\prime}}$. Let $\gamma:[0,1] \rightarrow$ U be a \mathcal{C}^{1} curve joining m and $m^{\prime} ; \gamma(0)=m, \gamma(1)=m^{\prime}$. We choose $X_{1 m}, \ldots, X_{q m} \in T_{m} M$ such that $S X_{1 m}, \ldots, S X_{q m}$ form a basis over \mathbb{C} of f_{*} im S_{m}. Let $\widetilde{X}_{1}, \ldots, \widetilde{X}_{q}$ be the vector fields defined along the curve γ, parallel with respect to $\nabla, \widetilde{X}_{i}(0)=X_{i m}$ for $i \in\{1, \ldots, q\}$. It is easy to check that the map

$$
[0,1] \ni t \mapsto f_{*} S_{\gamma(t)} \widetilde{X}_{i}(t) \in \mathbb{C}^{n+1}
$$

is constant. Indeed,

$$
\begin{aligned}
\frac{d}{d t}\left(t \mapsto f_{*} S_{\gamma(t)} \widetilde{X}_{i}(t)\right)= & D_{\dot{\gamma}(t)} f_{*} S \widetilde{X}_{i} \\
= & f_{*} \nabla_{\dot{\gamma}(t)} S \widetilde{X}_{i}+h\left(\dot{\gamma}(t), S \widetilde{X}_{i}(t)\right) \xi_{\gamma(t)} \\
& -h\left(J \dot{\gamma}(t), S \widetilde{X}_{i}(t)\right) J \xi_{\gamma(t)} .
\end{aligned}
$$

The last two terms vanish because im $S \subset$ ker h, and $\nabla_{\dot{\gamma}(t)} S \widetilde{X}_{i}=S \nabla_{\dot{\gamma}(t)} \widetilde{X}_{i}$ $=S 0=0$. It follows that

$$
\operatorname{span}_{\mathbb{C}}\left\{f_{*} S_{m} \widetilde{X}_{i}(0): i=1, \ldots, q\right\}=\operatorname{span}_{\mathbb{C}}\left\{f_{*} S_{m^{\prime}} \widetilde{X}_{i}(1): i=1, \ldots, q\right\}
$$

that is, $f_{*} \operatorname{im} S_{m}=f_{*} \operatorname{im} S_{m^{\prime}}=: \mathcal{W}$.
Let $\widetilde{A}_{1}: \mathbb{C}^{n+1} \rightarrow \mathbb{C}^{n+1}$ be a linear isomorphism such that

$$
\widetilde{A}_{1} \mathcal{W}=\operatorname{span}_{\mathbb{C}}\left\{\widetilde{e}_{1}, \ldots, \widetilde{e}_{q}\right\} .
$$

Here and subsequently $\widetilde{e}_{1}, \ldots, \widetilde{e}_{n+1}$ denotes the standard basis of \mathbb{C}^{n+1}, whereas $e_{1}, \ldots, e_{2 n+2}$ is the standard basis of $\mathbb{R}^{2 n+2}$.

Lemma 4. There exists an $i_{0} \in\{q+1, \ldots, n+1\}$ such that $\widetilde{e}_{i_{0}} \notin$ $\left(\widetilde{A}_{1} \circ f\right)_{*} T_{m} M$ and the i_{0} th coordinate of $\widetilde{A}_{1} \xi_{m}$ does not vanish.

Proof. Suppose that the assertion is false. Then $\widetilde{e}_{j} \in\left(\widetilde{A}_{1} \circ f\right)_{*} T_{m} M$ for every $j \in\{q+1, \ldots, n+1\}$ such that the j th coordinate of $\widetilde{A}_{1} \xi$ does not
vanish at m. Then obviously $\widetilde{A}_{1} \xi_{m} \in\left(\widetilde{A}_{1} \circ f\right)_{*} T_{m} M$, which contradicts the transversality of ξ.

Let \widetilde{A}_{2}^{0} be the linear isomorphism of \mathbb{C}^{n+1} defined by

$$
\widetilde{A}_{2}^{0} \widetilde{e}_{k}:= \begin{cases}\widetilde{e}_{k} & \text { if } k \notin\left\{i_{0}, n+1\right\} \\ \widetilde{e}_{n+1} & \text { if } k=i_{0} \\ \widetilde{e}_{i_{0}} & \text { if } k=n+1\end{cases}
$$

Let $\widetilde{A}_{2}:=\widetilde{A}_{2}^{0} \circ \widetilde{A}_{1}$. Now \widetilde{e}_{n+1} is transversal to $\left(\widetilde{A}_{2} \circ f\right)_{*} T_{m} M$ and $\widetilde{A}_{2} \xi$ has the non-vanishing $(n+1)$ th coordinate at m. Moreover, the isomorphism \widetilde{A}_{2}^{0} does not change the subspace $\left(\widetilde{A}_{1} \circ f\right)_{*} \operatorname{im} S=\operatorname{span}_{\mathbb{C}}\left\{\widetilde{e}_{1}, \ldots, \widetilde{e}_{q}\right\}$.

We denote by π the projection $\pi: \mathbb{C}^{n+1} \ni\left(\zeta^{1}, \ldots, \zeta^{n+1}\right) \mapsto\left(\zeta^{1}, \ldots, \zeta^{n}\right)$ $\in \mathbb{C}^{n}$. It is easy to check that

$$
d_{m}\left(\pi \circ \widetilde{A}_{2} \circ f\right): T_{m} M \rightarrow \mathbb{C}^{n}
$$

is a monomorphism. Indeed, if $d_{m}\left(\pi \circ \widetilde{A}_{2} \circ f\right) . V=0$, then $\left(\widetilde{A}_{2} \circ f\right)_{*} V \in \mathbb{C} \widetilde{e}_{n+1}$. But $\left(\widetilde{A}_{2} \circ f\right)_{*} T_{m} M \cap \mathbb{C} \widetilde{e}_{n+1}=\{0\}$ and $\left(\widetilde{A}_{2} \circ f\right)_{*}$ is a monomorphism; therefore $V=0$.

We can now take $\widetilde{\phi}_{1}:=\pi \circ \widetilde{A}_{2} \circ f$ as a complex chart on some neighbourhood $U_{1} \subset U$ of m. In this chart

$$
\widetilde{A}_{2} \circ f \circ \widetilde{\phi}_{1}^{-1}\left(\zeta^{1}, \ldots, \zeta^{n}\right)=\left(\zeta^{1}, \ldots, \zeta^{n}, \widetilde{\varphi}(\zeta)\right)
$$

with a holomorphic function $\widetilde{\varphi}$.
In the real representation, identifying \mathbb{C}^{k} with $\mathbb{R}^{2 k}$,

$$
\iota_{k}: \mathbb{R}^{2 k} \ni\left(w^{1}, \ldots, w^{2 k}\right) \mapsto\left(w^{1}+i w^{2}, \ldots, w^{2 k-1}+i w^{2 k}\right) \in \mathbb{C}^{k}
$$

we can write

$$
A_{2} \circ f \circ \phi_{1}^{-1}\left(w^{1}, \ldots, w^{2 n}\right)=\left(w^{1}, \ldots, w^{2 n}, \varphi^{1}(w), \varphi^{2}(w)\right)
$$

Here $A_{2}:=\iota_{n+1}{ }^{-1} \circ \widetilde{A}_{2}$ and $\phi_{1}:=\iota_{n}{ }^{-1} \circ \widetilde{\phi}_{1}$.
Lemma 5. (a) $\partial \varphi^{k} / \partial w^{s}=0$ for $k=1,2$ and $s=1, \ldots, 2 q$.
(b) im $S=\operatorname{span}_{\mathbb{R}}\left\{\partial / \partial w^{s}: s=1, \ldots, 2 q\right\}$.

Proof. At any point $m^{\prime} \in U_{1}$ we have

$$
\left(A_{2} \circ f\right)_{*}\left(\frac{\partial}{\partial w^{s}}\right)=e_{s}+\frac{\partial \varphi^{1}}{\partial w^{s}} e_{2 n+1}+\frac{\partial \varphi^{2}}{\partial w^{s}} e_{2 n+2}
$$

If $s \in\{1, \ldots, 2 q\}$, then $e_{s}=\left(A_{2} \circ f\right)_{*} S W_{s}$ with some $W_{s} \in T_{m^{\prime}} M$, because $e_{s} \in \operatorname{span}_{\mathbb{R}}\left\{e_{1}, \ldots, e_{2 q}\right\}=\left(A_{2} \circ f\right)_{*} \operatorname{im} S_{m^{\prime}}$. Therefore we have

$$
\left(A_{2} \circ f\right)_{*}\left(\frac{\partial}{\partial w^{s}}-S W_{s}\right)=\frac{\partial \varphi^{1}}{\partial w^{s}} e_{2 n+1}+\frac{\partial \varphi^{2}}{\partial w^{s}} e_{2 n+2}
$$

From the transversality of $e_{2 n+1}$ and $e_{2 n+2}$ to $\left(A_{2} \circ f\right)_{*} T M$ and from the injectivity of $\left(A_{2} \circ f\right)_{*}$ it follows that (a) holds, and $\partial / \partial w^{s}-S W_{s}=0$ for
$s=1, \ldots, 2 q$. Hence $\operatorname{span}_{\mathbb{R}}\left\{\partial / \partial w^{s}: s=1, \ldots, 2 q\right\} \subset \operatorname{im} S$, which implies (b), because the dimensions are equal.

Lemma 6. The transversal field $A_{2} \xi$ does not depend on $w^{1}, \ldots, w^{2 q}$.
Proof. We use the Weingarten formula

$$
D_{\partial / \partial w^{s}} A_{2} \xi=-\left(A_{2} \circ f\right)_{*} S \frac{\partial}{\partial w^{s}}+\mu\left(\frac{\partial}{\partial w^{s}}\right) A_{2} \xi+\nu\left(\frac{\partial}{\partial w^{s}}\right) J A_{2} \xi .
$$

According to Lemmas 5(b), 2 and Remark 2, for $s=1, \ldots, 2 q$,

$$
\frac{\partial}{\partial w^{s}} \in \operatorname{im} S \subset \operatorname{ker} S \subset \operatorname{ker} \mu \cap \operatorname{ker} \nu,
$$

hence $D_{\partial / \partial w^{s}} A_{2} \xi=0$.
We now introduce the functions $\Xi^{1}, \ldots, \Xi^{2 n+2}$ by

$$
\left(A_{2} \xi \circ \phi_{1}^{-1}\right)(w)=\sum_{k=1}^{n+1}\left[\Xi^{2 k-1}(w) e_{2 k-1}-\Xi^{2 k}(w) e_{2 k}\right] .
$$

Lemma 7.

$$
\operatorname{rank}_{\mathbb{R}}\left[\frac{\partial \Xi^{k}}{\partial w^{j}}(w)\right]_{k=1, \ldots, 2 n+2 ; j=2 q+1, \ldots, 2 n}=2 q
$$

for $w \in \phi_{1}\left(U_{1}\right)$.
Proof. We have

$$
\begin{aligned}
& \operatorname{rank}_{\mathbb{R}}\left[\frac{\partial \Xi^{k}}{\partial w^{j}}(w)\right]_{k=1, \ldots, 2 n+2 ; j=2 q+1, \ldots, 2 n} \\
&=\operatorname{rank}_{\mathbb{R}}\left[(-1)^{k-1} \frac{\partial \Xi^{k}}{\partial w^{j}}(w)\right]_{k=1, \ldots, 2 n+2 ; j=2 q+1, \ldots, 2 n} \\
&=\operatorname{dim}_{\mathbb{R}} \operatorname{span}\left\{D_{\partial / \partial w^{j}} A_{2} \xi: j=2 q+1, \ldots, 2 n\right\} \\
&=\operatorname{dim}_{\mathbb{R}} \operatorname{span}\left\{D_{\partial / \partial w^{j}} A_{2} \xi: j=1, \ldots, 2 n\right\} \\
&=\operatorname{dim}_{\mathbb{R}} \operatorname{im} S_{\phi_{1}^{-1}(w)}
\end{aligned}
$$

The last equality is due to the isomorphism of im S and $\operatorname{im}\left\{X \mapsto D_{X} A_{2} \xi\right\}$.
A consequence of Lemma 7 is
Corollary. $n \geq 2 q$.
Lemma 8. $\widetilde{\Xi}^{k}:=\Xi^{2 k-1}+i \Xi^{2 k}$ is a holomorphic function for $k=$ $1, \ldots, n+1$.

Proof. It is sufficient to show that $\Xi^{2 k-1}$ and $\Xi^{2 k}$ satisfy the CauchyRiemann equations. From Remark 3 it follows that

$$
D_{J X}\left(A_{2} \xi\right)=-J D_{X}\left(A_{2} \xi\right)
$$

for any $X \in T_{m^{\prime}} M$. Let $X=\partial / \partial w^{2 s-1}$. Then $J X=\partial / \partial w^{2 s}$ and

$$
\begin{aligned}
D_{J X}\left(A_{2} \xi\right) & =\sum_{l=1}^{n+1}\left[\frac{\partial \Xi^{2 l-1}}{\partial w^{2 s}} e_{2 l-1}-\frac{\partial \Xi^{2 l}}{\partial w^{2 s}} e_{2 l}\right] \\
-J D_{X}\left(A_{2} \xi\right) & =-J \sum_{l=1}^{n+1}\left[\frac{\partial \Xi^{2 l-1}}{\partial w^{2 s-1}} e_{2 l-1}-\frac{\partial \Xi^{2 l}}{\partial w^{2 s-1}} e_{2 l}\right] \\
& =\sum_{l=1}^{n+1}\left[-\frac{\partial \Xi^{2 l-1}}{\partial w^{2 s-1}} e_{2 l}-\frac{\partial \Xi^{2 l}}{\partial w^{2 s-1}} e_{2 l-1}\right]
\end{aligned}
$$

Therefore

$$
\frac{\partial \Xi^{2 l-1}}{\partial w^{2 s}}=-\frac{\partial \Xi^{2 l}}{\partial w^{2 s-1}} \quad \text { and } \quad \frac{\partial \Xi^{2 l-1}}{\partial w^{2 s-1}}=\frac{\partial \Xi^{2 l}}{\partial w^{2 s}}
$$

Now $\widetilde{\Xi}^{k}, k=1, \ldots, n+1$, are holomorphic functions of the complex variables $\zeta^{s}=w^{2 s-1}+i w^{2 s}, s=q+1, \ldots, n$. By Lemma 7, we have

$$
\operatorname{rank}_{\mathbb{C}}\left[\frac{\partial \widetilde{\Xi}^{k}}{\partial \zeta^{l}}\right]_{k=1, \ldots, n+1 ; l=q+1, \ldots, n}=q
$$

Lemma 9. Let $r \leq N \leq M$. Let \mathcal{U} be an open set in \mathbb{K}^{N}, where $\mathbb{K}=\mathbb{R}$ or \mathbb{C}. Let $F: \mathcal{U} \rightarrow \mathbb{K}^{M}$ be a \mathcal{C}^{1} mapping such that rank $F^{\prime}(x)=r$ for every $x \in \mathcal{U}$. Let $x_{0} \in \mathcal{U}$ and let $i_{1}<\ldots<i_{r}$ and $j_{1}<\ldots<j_{r}$ be chosen so that

$$
\operatorname{det}\left[\frac{\partial F^{i_{k}}}{\partial x^{j_{l}}}\left(x_{0}\right)\right]_{k=1, \ldots, r ; l=1, \ldots, r} \neq 0
$$

Then there exist a neighbourhood $\mathcal{U}^{\prime} \subset \mathcal{U}$ of x_{0} and a diffeomorphism Φ : $\mathcal{U}^{\prime} \rightarrow \Phi\left(\mathcal{U}^{\prime}\right) \subset \mathbb{K}^{N}$ such that

$$
\left(F \circ \Phi^{-1}\right)^{i_{k}}\left(y^{1}, \ldots, y^{N}\right) \equiv y^{j_{k}} \quad \text { for } k=1, \ldots, r
$$

and

$$
\frac{\partial\left(F \circ \Phi^{-1}\right)^{k}}{\partial y^{l}} \equiv 0 \quad \text { if } l \notin\left\{j_{1}, \ldots, j_{r}\right\}, k \in\{1, \ldots, M\}
$$

Proof. We define

$$
\widehat{\Phi}\left(x^{1}, \ldots, x^{N}\right)^{k}= \begin{cases}x^{k} & \text { if } k \notin\left\{j_{1}, \ldots, j_{r}\right\} \\ F^{i_{s}}\left(x^{1}, \ldots, x^{N}\right) & \text { if } k=j_{s}\end{cases}
$$

Since

$$
\operatorname{det}\left[\frac{\partial \widehat{\Phi}^{k}}{\partial x^{l}}\left(x_{0}\right)\right]_{k=1, \ldots, N ; l=1, \ldots, N}=\operatorname{det}\left[\frac{\partial F^{i_{s}}}{\partial x^{j_{s}}}\left(x_{0}\right)\right]_{s=1, \ldots, r} \neq 0
$$

there exists a neighbourhood $\mathcal{U}^{\prime} \subset \mathcal{U}$ of x_{0} such that $\Phi:=\left.\widehat{\Phi}\right|_{\mathcal{U}^{\prime}}$ is a diffeomorphism.

It remains to prove that $F \circ \Phi^{-1}$ depends only on the variables $y^{j_{1}}, \ldots, y^{j_{r}}$.
Let $y \in \Phi\left(\mathcal{U}^{\prime}\right)$. Then $\left(F \circ \Phi^{-1}\right)^{\prime}(y)=F^{\prime}\left(\Phi^{-1}(y)\right) \circ\left(\Phi^{-1}\right)^{\prime}(y)$ and $\operatorname{rank}\left(F \circ \Phi^{-1}\right)^{\prime}(y)=\operatorname{rank} F^{\prime}\left(\Phi^{-1}(y)\right)=r$, because $\left(\Phi^{-1}\right)^{\prime}(y)$ is an isomorphism.

Suppose that for some $k_{0} \in\{1, \ldots, M\}$ and $l_{0} \in\{1, \ldots, N\} \backslash\left\{j_{1}, \ldots, j_{r}\right\}$,

$$
\frac{\partial\left(F \circ \Phi^{-1}\right)^{k_{0}}}{\partial y^{l_{0}}}(y) \neq 0
$$

Then $k_{0} \notin\left\{i_{1}, \ldots, i_{r}\right\}$ and

$$
\operatorname{det}\left[\frac{\partial\left(F \circ \Phi^{-1}\right)^{k}}{\partial y^{l}}(y)\right]_{k \in\left\{i_{1}, \ldots, i_{r}, k_{0}\right\} ; l \in\left\{j_{1}, \ldots, j_{r}, l_{0}\right\}} \neq 0
$$

which contradicts the rank assumption.
We now restrict our attention to the case $q>1$.
Lemma 10. If $q>1$, then
(a) $\operatorname{rank}_{\mathbb{C}}\left[\partial \widetilde{\Xi}^{k} / \partial \zeta^{l}\right]_{k=1, \ldots, q ; l=q+1, \ldots, n}=q$,
(b) $\widetilde{\Xi}^{k}(\cdot)=b^{k}=\mathrm{const}$ for $k=q+1, \ldots, n+1$,
(c) $b^{n+1} \neq 0$.

Proof. Since, for $q>1, \mu=0$ and $\nu=0$ (see proof of Lemma 2, Case 3), we have

$$
D_{\partial / \partial w^{l}} A_{2} \xi \in\left(A_{2} \circ f\right)_{*} \operatorname{im} S=\operatorname{span}_{\mathbb{R}}\left\{e_{1}, \ldots, e_{2 q}\right\},
$$

therefore $\partial \Xi^{k} / \partial w^{l}=0$ for $k=2 q+1, \ldots, 2 n+2$ and $l=2 q+1, \ldots, 2 n$, which implies

$$
\frac{\partial \widetilde{\Xi}^{k}}{\partial \zeta^{l}}=0 \quad \text { for } k=q+1, \ldots, n+1, l=q+1, \ldots, n
$$

and

$$
\operatorname{rank}_{\mathbb{C}}\left[\frac{\partial \widetilde{\Xi}^{k}}{\partial \zeta^{l}}\right]_{k=1, \ldots, n+1 ; l=q+1, \ldots, n}=\operatorname{rank}_{\mathbb{C}}\left[\frac{\partial \widetilde{\Xi}^{k}}{\partial \zeta^{l}}\right]_{k=1, \ldots, q ; l=q+1, \ldots, n}
$$

Point (c) is a consequence of Lemma 4 and the definition of \widetilde{A}_{2}.
We may now apply Lemma 9 , taking $r=q, N=n, M=n+1, \mathcal{U}=$ $\widetilde{\phi}_{1}\left(U_{1}\right), \mathbb{K}=\mathbb{C}, F=\left(\widetilde{\Xi}^{1}, \ldots, \widetilde{\Xi}^{n+1}\right),\left(i_{1}, \ldots, i_{q}\right)=(1, \ldots, q)$ and $j_{1}<\ldots$ $<j_{q}$ from $\{q+1, \ldots, n\}$ chosen so that

$$
\operatorname{det}\left[\frac{\partial \widetilde{\Xi}^{k}}{\partial \zeta^{j_{s}}}\left(\widetilde{\phi}_{1}(m)\right)\right]_{k=1, \ldots, q ; s=1, \ldots, q} \neq 0
$$

In this way we obtain a new chart $\widetilde{\phi}_{2}:=\Phi \circ \widetilde{\phi}_{1}$ on the neighbourhood $U_{2}:=\widetilde{\phi}_{1}^{-1}\left(\mathcal{U}^{\prime}\right)$ of m. Since

$$
\left(\widetilde{\Xi}^{k} \circ \Phi^{-1}\right)\left(\eta^{1}, \ldots, \eta^{n}\right)= \begin{cases}\eta^{j_{k}} & \text { for } k=1, \ldots, q \\ b^{k} & \text { for } k=q+1, \ldots, n+1\end{cases}
$$

the transversal field is now described by the formula

$$
\left(\widetilde{A}_{2} \xi \circ \widetilde{\phi}_{2}^{-1}\right)\left(\eta^{1}, \ldots, \eta^{n}\right)=\sum_{k=1}^{q} \overline{\eta^{j_{k}}} \widetilde{e}_{k}+\sum_{k=q+1}^{n+1} \overline{b^{k}} \widetilde{e}_{k}
$$

Let \widetilde{A}_{3}^{0} be the linear isomorphism of \mathbb{C}^{n+1} which transforms the basis $\left(\widetilde{e}_{1}, \ldots, \widetilde{e}_{n+1}\right)$ onto the basis

$$
\left(\widetilde{e}_{1}, \ldots, \widetilde{e}_{q}, \widetilde{e}_{q+1}, \ldots, \widehat{\widetilde{e}_{j_{1}}}, \ldots, \widehat{\widetilde{e}_{j_{q}}}, \ldots, \widetilde{e}_{n}, \widetilde{e}_{j_{1}}, \ldots, \widetilde{e}_{j_{q}}, \widetilde{e}_{n+1}\right)
$$

and let

$$
\widetilde{\phi}_{3}^{0}\left(\eta^{1}, \ldots, \eta^{n}\right):=\left(\eta^{1}, \ldots, \eta^{q}, \eta^{q+1}, \ldots, \widehat{\eta^{j_{1}}}, \ldots, \widehat{\eta^{j_{q}}}, \ldots, \eta^{n}, \eta^{j_{1}}, \ldots, \eta^{j_{q}}\right)
$$

Taking $\widetilde{A}_{3}:=\widetilde{A}_{3}^{0} \circ \widetilde{A}_{2}, \widetilde{\phi}_{3}:=\widetilde{\phi}_{3}^{0} \circ \widetilde{\phi}_{2}$, we may write

$$
\begin{aligned}
\widetilde{A}_{3} \circ f \circ \widetilde{\phi}_{3}^{-1} & \left(\widetilde{s}^{1}, \ldots, \widetilde{s}^{q}, \widetilde{t}^{1}, \ldots, \widetilde{t}^{n-2 q}, \widetilde{u}^{1}, \ldots, \widetilde{u}^{q}\right) \\
& =\left(\widetilde{s}^{1}, \ldots, \widetilde{s}^{q}, \widetilde{t}^{1}, \ldots, \widetilde{t}^{n-2 q}, \widetilde{\chi}^{1}(\widetilde{t}, \widetilde{u}), \ldots, \widetilde{\chi}^{q}(\widetilde{t}, \widetilde{u}), \widetilde{\varrho}(\widetilde{t}, \widetilde{u})\right)
\end{aligned}
$$

and

$$
\widetilde{A}_{3} \xi \circ \widetilde{\phi}_{3}^{-1}\left(\widetilde{s}^{1}, \ldots, \widetilde{s}^{q}, \widetilde{t}^{1}, \ldots, \widetilde{t}^{n-2 q}, \widetilde{u}^{1}, \ldots, \widetilde{u}^{q}\right)=\sum_{k=1}^{q} \overline{\widetilde{u}^{k}} \widetilde{e}_{k}+\sum_{k=q+1}^{n+1} \overline{a^{k}} \widetilde{e}_{k}
$$

Applying now the isomorphism \widetilde{A}_{4}^{0}, where

$$
\widetilde{A}_{4}^{0} \widetilde{e}_{k}:= \begin{cases}\widetilde{e}_{k} & \text { for } k=1, \ldots, n \\ \left(1 / \overline{a^{n+1}}\right)\left(-\sum_{k=q+1}^{n} \overline{a^{k}} \widetilde{e}_{k}+\widetilde{e}_{n+1}\right) & \text { for } k=n+1\end{cases}
$$

and $\widetilde{A}_{4}:=\widetilde{A}_{4}^{0} \circ \widetilde{A}_{3}$, we obtain

$$
\begin{aligned}
& \widetilde{A}_{4} \circ f \circ \widetilde{\phi}_{3}^{-1}\left(\widetilde{s}^{1}, \ldots, \widetilde{s}^{q}, \widetilde{t}^{1}, \ldots, \widetilde{t}^{n-2 q}, \widetilde{u}^{1}, \ldots, \widetilde{u}^{q}\right) \\
&=\left(\widetilde{s}^{1}, \ldots, \widetilde{s}^{q}, \widetilde{\sigma}^{1}(\widetilde{t}, \widetilde{u}), \ldots, \widetilde{\sigma}^{n-q}(\widetilde{t}, \widetilde{u}), \widetilde{\mathcal{Q}}(\widetilde{t}, \widetilde{u})\right)
\end{aligned}
$$

and

$$
\widetilde{A}_{4} \xi \circ \widetilde{\phi}_{3}^{-1}\left(\widetilde{s}^{1}, \ldots, \widetilde{s}^{q}, \widetilde{t}^{1}, \ldots, \widetilde{t}^{n-2 q}, \widetilde{u}^{1}, \ldots, \widetilde{u}^{q}\right)=\sum_{k=1}^{q} \overline{\widetilde{u}^{k}} \widetilde{e}_{k}+\widetilde{e}_{n+1}
$$

Here
$\widetilde{\sigma}^{k}(\widetilde{t}, \widetilde{u})= \begin{cases}\widetilde{t}^{k}-\frac{\overline{a^{q+k}}}{\overline{a^{n+1}}} \widetilde{\varrho}(\widetilde{t}, \widetilde{u}) & \text { for } k=1, \ldots, n-2 q, \\ \widetilde{\chi}^{k-(n-2 q)}(\widetilde{t}, \widetilde{u})-\frac{\overline{a^{q+k}}}{\overline{a^{n+1}}} \widetilde{\varrho}(\widetilde{t}, \widetilde{u}) & \text { for } k=n-2 q+1, \ldots, n-q ;\end{cases}$
and $\widetilde{\mathcal{Q}}=\left(1 / \overline{a^{n+1}}\right) \widetilde{\varrho}$.

We now turn to the case $q=1$.
By Lemmas $7-9$, on a connected neighbourhood $\widetilde{\widetilde{U}}_{2}$ of m we may define a complex chart $\widetilde{\phi}_{2}$ in which the coordinates of the transversal field are functions of one variable $\eta^{i_{0}}$ only, with $i_{0}>1$.

Next we apply the isomorphisms

$$
\widetilde{\widetilde{\phi}}_{3}^{0}\left(\eta^{1}, \ldots, \eta^{n}\right):=\left(\eta^{1}, \eta^{2}, \ldots, \widehat{\eta^{i_{0}}}, \ldots, \eta^{n}, \eta^{i_{0}}\right)
$$

and

$$
\widetilde{\widetilde{A}}_{3}^{0}\left(\theta^{1}, \ldots, \theta^{n+1}\right):=\left(\theta^{1}, \theta^{2}, \ldots, \widehat{\theta^{i_{0}}}, \ldots, \theta^{n}, \theta^{i_{0}}, \theta^{n+1}\right)
$$

to obtain

$$
\widetilde{\widetilde{A}}_{3} \circ f \circ \widetilde{\bar{\phi}}_{3}^{-1}\left(\widetilde{s}, \widetilde{t}^{1}, \ldots, \widetilde{t}^{n-2}, \widetilde{u}\right)=\left(\widetilde{s}, \widetilde{t}^{1}, \ldots, \widetilde{t}^{n-2}, \widetilde{\widetilde{\chi}}(\widetilde{t}, \widetilde{u}), \widetilde{\varrho}(\widetilde{t}, \widetilde{u})\right)
$$

and

$$
\widetilde{A}_{3} \xi \circ \widetilde{\widetilde{\phi}}_{3}^{-1}\left(\widetilde{s}, \widetilde{t}^{1}, \ldots, \widetilde{t}^{n-2}, \widetilde{u}\right)=\sum_{k=1}^{n+1} \overline{\Theta^{k}(\widetilde{u})} \widetilde{e}_{k}
$$

with $\Theta^{n+1}\left(\widetilde{\widetilde{\phi}}_{3}(m)\right) \neq 0 ; \widetilde{\widetilde{\phi}}_{3}:=\widetilde{\widetilde{\phi}}_{3}^{0} \circ \widetilde{\widetilde{\phi}}_{2}$ and $\widetilde{\widetilde{A}}_{3}:=\widetilde{\widetilde{A}}_{3}^{0} \circ \widetilde{A}_{2}$.
In the real representation $\tilde{\widetilde{\chi}}=\chi^{1}+i \chi^{2}, \widetilde{\widetilde{\varrho}}=\varrho^{1}+i \varrho^{2}, \Theta^{k}=\vartheta^{2 k-1}+i \vartheta^{2 k}$, we have

$$
\begin{aligned}
& A_{3} \circ f \circ \phi_{3}^{-1}\left(s^{1}, s^{2}, t^{1}, \ldots, t^{2 n-4}, u^{1}, u^{2}\right) \\
& \quad=\left(s^{1}, s^{2}, t^{1}, \ldots, t^{2 n-4}, \chi^{1}(t, u), \chi^{2}(t, u), \varrho^{1}(t, u), \varrho^{2}(t, u)\right)
\end{aligned}
$$

and

$$
A_{3} \xi \circ \phi_{3}^{-1}\left(s^{1}, s^{2}, t^{1}, \ldots, t^{2 n-4}, u^{1}, u^{2}\right)=\sum_{k=1}^{n+1}\left[\vartheta^{2 k-1}(u) e_{2 k-1}-\vartheta^{2 k}(u) e_{2 k}\right] .
$$

Let $\widehat{\pi}$ denote the projection

$$
\mathbb{C}^{n} \ni\left(\widetilde{s}, \widetilde{t}^{1}, \ldots, \widetilde{t}^{n-2}, \widetilde{u}\right) \mapsto \widetilde{u} \in \mathbb{C} .
$$

Lemma 11. There exist $c_{2}, \ldots, c_{n+1} \in \mathbb{C}, c_{n+1} \neq 0$, a neighbourhood $\widetilde{\widetilde{U}}_{3}$ of m and a holomorphic function $\widetilde{\mathcal{H}}$ such that

$$
\Theta^{k}(\widetilde{u})=c_{k} e^{\tilde{\mathcal{H}}(\widetilde{u})}
$$

for $k=1, \ldots, n+1$ and $\widetilde{u} \in \widehat{\pi}\left(\widetilde{\widetilde{\phi}}_{3}\left(\widetilde{\widetilde{U}}_{3}\right)\right)$.
Proof. We fix $j \in\{2, \ldots, n+1\}$. Since Θ^{j} is a holomorphic function, and since $\widetilde{\widetilde{U}}_{2}$ is assumed to be connected, there are two possibilities: either $\Theta^{j} \equiv 0$ on $\widehat{\pi} \circ \widetilde{\widetilde{\phi}}_{3}\left(\widetilde{\widetilde{U}}_{2}\right)$ or there exists a neighbourhood \widetilde{W}_{j} of $\widetilde{u}_{0}:=\widehat{\pi}\left(\widetilde{\widetilde{\phi}}_{3}(m)\right)$ such that $\Theta^{j}(\widetilde{u}) \neq 0$ for any $\widetilde{u} \in \widetilde{W}_{j} \backslash\left\{\widetilde{u}_{0}\right\}$.

In the former case we take $c_{j}=0$.

Suppose that $\Theta^{j} \not \equiv 0$. We can find $r>0$ such that $B\left(\widetilde{u}_{0}, r\right) \subset \widetilde{W}_{j}$. Then

$$
\widetilde{W}_{j}^{\prime}:=B\left(\widetilde{u}_{0}, r\right) \backslash\left\{\widetilde{u}: \operatorname{Re} \widetilde{u}=\operatorname{Re} \widetilde{u}_{0}, \operatorname{Im} \widetilde{u} \leq \operatorname{Im} \widetilde{u}_{0}\right\}
$$

is a simply connected domain and $\Theta^{j}(\widetilde{u}) \neq 0$ for any $\widetilde{u} \in \widetilde{W}_{j}^{\prime}$. If this is the case, there exists a holomorphic function λ^{j} on $\widetilde{W}_{j}^{\prime}$ such that $e^{\lambda^{j}}=\Theta^{j} \mid \widetilde{W}_{j}^{\prime}$ and $\left(\lambda^{j}\right)^{\prime}=\Theta^{j^{\prime}} / \Theta^{j}$ on $\widetilde{W}_{j}^{\prime}$.

On the other hand, using the real representation we may write

$$
\left(\Theta^{j}\right)^{\prime}=\frac{\partial \vartheta^{2 j-1}}{\partial u^{1}}+i \frac{\partial \vartheta^{2 j}}{\partial u^{1}} .
$$

From the Weingarten formula

$$
D_{\partial / \partial u^{1}} A_{3} \xi=-\left(A_{3} \circ f\right)_{*} S \frac{\partial}{\partial u^{1}}+\mu\left(\frac{\partial}{\partial u^{1}}\right) A_{3} \xi+\nu\left(\frac{\partial}{\partial u^{1}}\right) J A_{3} \xi
$$

it follows that for any $j \in\{2, \ldots, n+1\}$,

$$
\frac{\partial \vartheta^{2 j-1}}{\partial u^{1}}=\mu\left(\frac{\partial}{\partial u^{1}}\right) \vartheta^{2 j-1}+\nu\left(\frac{\partial}{\partial u^{1}}\right) \vartheta^{2 j}
$$

and

$$
\frac{\partial \vartheta^{2 j}}{\partial u^{1}}=\mu\left(\frac{\partial}{\partial u^{1}}\right) \vartheta^{2 j}-\nu\left(\frac{\partial}{\partial u^{1}}\right) \vartheta^{2 j-1}
$$

Hence

$$
\left(\Theta^{j}\right)^{\prime}=\left(\mu\left(\frac{\partial}{\partial u^{1}}\right)-i \nu\left(\frac{\partial}{\partial u^{1}}\right)\right)\left(\vartheta^{2 j-1}+i \vartheta^{2 j}\right) .
$$

We may also assume that $\widetilde{\widetilde{U}}_{2}$ is simply connected, and from Lemma 2 we know that the 1 -forms μ, ν are closed; therefore there exist functions \mathcal{K} and \mathcal{L} on \widetilde{U}_{2} such that $\mu=d \mathcal{K}, \nu=-d \mathcal{L}$. The functions $\mathcal{K} \circ \phi_{3}^{-1}$ and $\mathcal{L} \circ \phi_{3}^{-1}$ do not depend on the variables s and t, because $\partial / \partial s^{i}, \partial / \partial t^{j} \in \operatorname{ker} S \subset \operatorname{ker} \mu \cap \operatorname{ker} \nu$,

$$
\frac{\partial \mathcal{K} \circ \phi_{3}^{-1}}{\partial s^{i}}=d \mathcal{K}\left(\frac{\partial}{\partial s^{i}}\right)=\mu\left(\frac{\partial}{\partial s^{i}}\right)=0,
$$

and similarly for \mathcal{L} in place of \mathcal{K} or t in place of s. It follows that there exist functions \mathcal{H}^{1} and \mathcal{H}^{2} defined on some open subset of \mathbb{R}^{2} such that $\mathcal{K} \circ \phi_{3}^{-1}=\mathcal{H}^{1} \circ \widehat{\pi}$ and $\mathcal{L} \circ \phi_{3}^{-1}=\mathcal{H}^{2} \circ \widehat{\pi}$. We now have

$$
\mu\left(\frac{\partial}{\partial u^{s}}\right)=d \mathcal{K}\left(\left(\phi_{3}^{-1}\right)_{*} e_{2 n-2+s}\right)=d \mathcal{H}^{1}\left(\widehat{\pi}_{*} e_{2 n-2+s}\right)=d \mathcal{H}^{1}\left(e_{s}\right)=\frac{\partial \mathcal{H}^{1}}{\partial u^{s}}
$$

and

$$
\begin{aligned}
\nu\left(\frac{\partial}{\partial u^{s}}\right) & =-d \mathcal{L}\left(\left(\phi_{3}^{-1}\right)_{*} e_{2 n-2+s}\right)=-d \mathcal{H}^{2}\left(\widehat{\pi}_{*} e_{2 n-2+s}\right) \\
& =-d \mathcal{H}^{2}\left(e_{s}\right)=-\frac{\partial \mathcal{H}^{2}}{\partial u^{s}}
\end{aligned}
$$

According to Remark $3, \mathcal{H}^{1}$ and \mathcal{H}^{2} satisfy the Cauchy-Riemann equations, therefore $\widetilde{\mathcal{H}}:=\mathcal{H}^{1}+i \mathcal{H}^{2}$ is a holomorphic function.

Since

$$
(\widetilde{\mathcal{H}})^{\prime}=\frac{\partial \mathcal{H}^{1}}{\partial u^{1}}+i \frac{\partial \mathcal{H}^{2}}{\partial u^{1}}=\mu\left(\frac{\partial}{\partial u^{1}}\right)-i \nu\left(\frac{\partial}{\partial u^{1}}\right),
$$

we may go back to the $\left(\Theta^{j}\right)^{\prime}$ and write

$$
\left(\Theta^{j}\right)^{\prime}=\widetilde{\mathcal{H}^{\prime}} \Theta^{j}
$$

on some neighbourhood $\widehat{\pi}\left(\widetilde{\widetilde{\phi}}_{3}\left(\widetilde{\widetilde{U}}_{3}^{\prime}\right)\right)$ of \widetilde{u}_{0} (including $\left.\widetilde{\sim}_{0}\right)$. Comparing this with $\left(\lambda^{j}\right)^{\prime}$ we obtain $\widetilde{\mathcal{H}}^{\prime}=\left(\lambda^{j}\right)^{\prime}$ on $\widetilde{W}_{j}^{\prime \prime}:=\widetilde{W}_{j}^{\prime} \cap \widehat{\pi}\left(\widetilde{\phi_{\phi}}\left(\widetilde{\widetilde{U}}_{3}^{\prime}\right)\right)$. Hence there exists $d_{j} \in \mathbb{C}$ such that $\lambda^{j}=\widetilde{\mathcal{H}}+d_{j}$ and

$$
\Theta^{j}=e^{\tilde{\mathcal{H}}+d_{j}}=c_{j} e^{\tilde{\mathcal{H}}}
$$

with a non-zero constant $c_{j}:=e^{d_{j}}$. We may extend this equality from $\widetilde{W}_{j}^{\prime \prime}$ to some neighbourhood $\widehat{\pi}\left(\widetilde{\widetilde{\phi}}_{3}\left(\widetilde{\widetilde{U}}_{3}\right)\right)$ of \widetilde{u}_{0}, because both sides are continuous and well defined in the neighbourhood of \widetilde{u}_{0}. Since $\Theta^{n+1} \not \equiv 0$, we have in particular $c_{n+1} \neq 0$.

Next we use the following isomorphism of \mathbb{C}^{n+1} :

$$
\widetilde{\widetilde{A}}_{4}^{0} \widetilde{e}_{k}:= \begin{cases}\widetilde{e}_{k} & \text { for } k=1, \ldots, n \\ \left(1 / \bar{c}_{n+1}\right)\left(\widetilde{e}_{n+1}-\sum_{s=2}^{n} \bar{c}_{s} \widetilde{e}_{s}\right) & \text { for } k=n+1\end{cases}
$$

In this way we obtain

$$
\widetilde{\widetilde{A}}_{4} \circ f \circ \widetilde{\widetilde{\phi}}_{3}^{-1}\left(\widetilde{s}, \widetilde{t}^{1}, \ldots, \widetilde{t}^{n-2}, \widetilde{u}\right)=\left(\widetilde{s}, \widetilde{\sigma^{1}}(\widetilde{t}, \widetilde{u}), \ldots, \widetilde{\sigma}^{n-1}(\widetilde{t}, \widetilde{u}), \widetilde{\widetilde{\mathcal{Q}}}(\widetilde{t}, \widetilde{u})\right)
$$

and

$$
\widetilde{\widetilde{A}}_{4} \xi \circ \widetilde{\phi}_{3}^{-1}\left(\widetilde{s}, \widetilde{t}^{1}, \ldots, \widetilde{t}^{n-2}, \widetilde{u}\right)=\overline{\Theta^{1}(\widetilde{u})} \widetilde{e}_{1}+\overline{e^{\tilde{\mathcal{H}}(\widetilde{u})}} \widetilde{e}_{n+1},
$$

with $\widetilde{\widetilde{A}}_{4}:=\widetilde{\widetilde{A}}_{4}^{0} \circ \widetilde{\widetilde{A}}_{3}, \widetilde{\sigma}^{k}(\widetilde{t}, \widetilde{u}):=\widetilde{t}^{k}-\overline{\left(c_{k+1} / c_{n+1}\right)} \widetilde{\widetilde{\varrho}}(\widetilde{t}, \widetilde{u})$ for $k=1, \ldots, n-2$, $\widetilde{\widetilde{\sigma}}^{n-1}:=\widetilde{\widetilde{\chi}}(\widetilde{t}, \widetilde{u})-\overline{\left(c_{k+1} / c_{n+1}\right)} \widetilde{\widetilde{\varrho}}(\widetilde{t}, \widetilde{u})$ and $\widetilde{\widetilde{\mathcal{Q}}}(\widetilde{t}, \widetilde{u}):=\overline{\left(1 / c_{n+1}\right)} \widetilde{\widetilde{\varrho}}(\widetilde{t}, \widetilde{u})$.

Thus for any $q>0$ it is possible to find a map $\widehat{\phi}_{3}$ and an isomorphism \widehat{A}_{4} of \mathbb{C}^{n+1} such that the immersion and the transversal field have the shape

$$
\begin{aligned}
& \widehat{A}_{4} \circ f \circ \widehat{\phi}_{3}^{-1}\left(\widetilde{s}^{1}, \ldots, \widetilde{s}^{q}, \widetilde{t}^{1}, \ldots, \widetilde{t}^{n-2 q}, \widetilde{u}^{1}, \ldots, \widetilde{u}^{q}\right) \\
&=\left(\widetilde{s}^{1}, \ldots, \widetilde{s}^{q}, \widehat{\sigma}^{1}(\widetilde{t}, \widetilde{u}), \ldots, \widehat{\sigma}^{n-q}(\widetilde{t}, \widetilde{u}), \widehat{\mathcal{Q}}(\widetilde{t}, \widetilde{u})\right)
\end{aligned}
$$

and

$$
\begin{aligned}
& \widehat{A}_{4} \xi \circ \widehat{\phi}_{3}^{-1}\left(\widetilde{s}^{1}, \ldots, \widetilde{s}^{q}, \widetilde{t}^{1}, \ldots, \widetilde{t}^{n-2 q}, \widetilde{u}^{1}, \ldots, \widetilde{u}^{q}\right) \\
&=\sum_{k=1}^{q} \overline{\widehat{\Theta}^{k}(\widetilde{u})} \widetilde{e}_{k}+\overline{\widehat{\Theta}^{n+1}(\widetilde{u})} \widetilde{e}_{n+1},
\end{aligned}
$$

where $\widehat{\sigma}^{i}, \widehat{\mathcal{Q}}, \widehat{\Theta}^{j}$ are holomorphic functions and $\widehat{\Theta}^{n+1} \neq 0$.

Since $\widehat{A}_{4} \circ f$ is an immersion, and $\widehat{A}_{4} \circ \xi$ is transversal to $\left(\widehat{A}_{4} \circ f\right)_{*} T M$, we have

$$
\left|\begin{array}{|ccccccccc}
& & & 0 & \cdots & 0 & 0 & \cdots & 0 \\
& I_{q} & \vdots & \ddots & \vdots & \vdots & \ddots & \vdots & \vdots \\
& & 0 & \cdots & 0 & 0 & \cdots & 0 & \widehat{\Theta}^{1} \\
0 & \cdots & 0 & & & & & 0 \\
\vdots & \ddots & \vdots & {\left[\frac{\partial \widehat{\sigma}^{k}}{\partial \widehat{\epsilon}^{l}}\right]_{\substack{c \\
1 \leq l \leq n-2 q}}} & {\left[\frac{\partial \widehat{\sigma}^{k}}{\partial \widetilde{u}^{l}}\right]_{\substack{1 \leq k \leq n-q ; \\
1 \leq l \leq q}}} & \vdots \\
0 & \cdots & 0 & & & 0 \\
0 & \cdots & 0 & \frac{\partial \widehat{\mathcal{Q}}}{\partial \tilde{t}^{1}} & \cdots & \frac{\partial \widehat{\mathcal{Q}}}{\partial \tilde{t}^{n-2 q}} & \frac{\partial \widehat{\mathcal{Q}}}{\partial \widetilde{u}^{1}} & \cdots & \frac{\partial \widehat{\mathcal{Q}}}{\partial \widetilde{u}^{q}} \\
\widehat{\Theta}^{n+1}
\end{array}\right| \neq 0 .
$$

Therefore

$$
\operatorname{det}\left(\left[\frac{\partial \widehat{\sigma}^{k}}{\partial \widetilde{t}^{l}}\right]_{k=1, \ldots, n-q ; l=1, \ldots, n-2 q}\left[\frac{\partial \widehat{\sigma}^{k}}{\partial \widetilde{u}^{l}}\right]_{k=1, \ldots, n-q ; l=1, \ldots, q}\right) \neq 0
$$

and there exist $i_{1}<\ldots<i_{n-2 q}$ such that

$$
\operatorname{det}\left[\frac{\partial \widehat{\sigma}^{i_{k}}}{\partial \widetilde{t}^{l}}\right]_{k=1, \ldots, n-2 q ; l=1, \ldots, n-2 q} \neq 0
$$

By an appropiate isomorphism \widehat{A}_{5}^{0} we may vary the order of basis vectors in \mathbb{C}^{n+1}, putting $\widehat{\sigma}^{i_{1}}, \ldots, \widehat{\sigma}^{i_{n-2 q}}$ at positions $q+1, \ldots, n-q$. This permutation does not affect the field $\widehat{A}_{4} \xi$, because its coordinates from the $(q+1)$ th to the nth vanish.

Applying now the local diffeomorphism

$$
\begin{aligned}
& \widehat{\phi}_{4}^{0}\left(\widetilde{s}^{1}, \ldots, \widetilde{s}^{q}, \widetilde{t}^{1}, \ldots, \widetilde{t}^{n-2 q}, \widetilde{u}^{1}, \ldots, \widetilde{u}^{q}\right) \\
&:=\left(\widetilde{s}^{1}, \ldots, \widetilde{s}^{q}, \widehat{\sigma}^{i_{1}}(\widetilde{t}, \widetilde{u}), \ldots, \widehat{\sigma}^{i_{n-2 q}}(\widetilde{t}, \widetilde{u}), \widetilde{u}^{1}, \ldots, \widetilde{u}^{q}\right)
\end{aligned}
$$

gives a new chart $\widehat{\phi}_{4}:=\widehat{\phi}_{4}^{0} \circ \widehat{\phi}_{3}$ such that $\widehat{A}_{5} \circ f$ and $\widehat{A}_{5} \circ \xi$ are described by the formulas

$$
\begin{aligned}
& \widehat{A}_{5} \circ f \circ \widehat{\phi}_{4}^{-1}\left(\widetilde{x}^{1}, \ldots, \widetilde{x}^{q}, \widetilde{y}^{1}, \ldots, \widetilde{y}^{n-2 q}, \widetilde{z}^{1}, \ldots, \widetilde{z}^{q}\right) \\
& \quad=\left(\widetilde{x}^{1}, \ldots, \widetilde{x}^{q}, \widetilde{y}^{1}, \ldots, \widetilde{y}^{n-2 q}, \widehat{\psi}^{1}(\widetilde{y}, \widetilde{z}), \ldots, \widehat{\psi}^{q}(\widetilde{y}, \widetilde{z}), \widehat{\mathcal{F}}(\widetilde{y}, \widetilde{z})\right)
\end{aligned}
$$

and

$$
\begin{aligned}
& \widehat{A}_{5} \circ \xi \circ \widehat{\phi}_{4}^{-1}\left(\widetilde{x}^{1}, \ldots, \widetilde{x}^{q}, \widetilde{y}^{1}, \ldots, \widetilde{y}^{n-2 q}, \widetilde{z}^{1}, \ldots, \widetilde{z}^{q}\right) \\
&=\sum_{k=1}^{q} \overline{\widehat{\Theta}^{k}(\widetilde{z})} \widetilde{e}_{k}+\overline{\widehat{\Theta}^{n+1}(\widetilde{z})} \widetilde{e}_{n+1}
\end{aligned}
$$

Lemma 12. For $k=1, \ldots, q$,

$$
\widehat{\psi}^{k}(\widetilde{y}, \widetilde{z})=\sum_{s=1}^{q} C_{s}^{k} \widetilde{y}^{s}+\widehat{\Pi}^{k}(\widetilde{z})
$$

where $C^{k}{ }_{s}, s=1, \ldots, n-2 q$, are complex numbers, and $\widehat{\Pi}^{k}$ is a holomorphic function.

Proof. We now use the real representation of $\widehat{A}_{5} \circ f$ and $\widehat{A}_{5} \circ \xi$, setting $\widehat{\psi}^{l}=\check{\psi}^{2 l-1}+i \check{\psi}^{2 l}$ for $l=1, \ldots, q, \widehat{\mathcal{F}}=\check{\mathcal{F}}^{1}+i \check{\mathcal{F}}^{2}$, and $\widehat{\Theta}^{s}=\check{\Theta}^{2 s-1}+i \check{\Theta}^{2 s}$:
$\check{A}_{5} \circ f \circ \check{\phi}_{4}^{-1}\left(x^{1}, \ldots, x^{2 q}, y^{1}, \ldots, y^{2 n-4 q}, z^{1}, \ldots, z^{2 q}\right)$
$=\left(x^{1}, \ldots, x^{2 q}, y^{1}, \ldots, y^{2 n-4 q}, \check{\psi}^{1}(y, z), \ldots, \check{\psi}^{2 q}(y, z), \check{\mathcal{F}}^{1}(y, z), \check{\mathcal{F}}^{2}(y, z)\right)$,
$\check{A}_{5} \circ \xi \circ \check{\phi}_{4}^{-1}\left(x^{1}, \ldots, x^{2 q}, y^{1}, \ldots, y^{2 n-4 q}, z^{1}, \ldots, z^{2 q}\right)$

$$
=\sum_{k=1}^{q}\left[\check{\Theta}^{2 k-1}(z) e_{2 k-1}-\check{\Theta}^{2 k}(z) e_{2 k}\right]+\check{\Theta}^{2 n+1}(z) e_{2 n+1}-\check{\Theta}^{2 n+2}(z) e_{2 n+2}
$$

At any point m^{\prime} of the domain \check{U} of $\check{\phi}_{4}$, $\operatorname{ker} S$ is spanned by

$$
\frac{\partial}{\partial x^{1}}, \ldots, \frac{\partial}{\partial x^{2 q}}, \frac{\partial}{\partial y^{1}}, \ldots, \frac{\partial}{\partial y^{2 n-4 q}}
$$

For any $W \in T_{m^{\prime}} M$ and any $j=1, \ldots, 2 n-4 q$,

$$
S\left(\nabla_{W} \frac{\partial}{\partial y^{j}}\right)=\nabla_{W}\left(S \frac{\partial}{\partial y^{j}}\right)=0
$$

therefore

$$
\begin{aligned}
& \nabla_{\frac{\partial}{\partial y^{s}}} \frac{\partial}{\partial y^{j}}=\sum_{k=1}^{2 q} \alpha_{s j}^{k} \frac{\partial}{\partial x^{k}}+\sum_{l=1}^{2 n-4 q} \beta_{s j}^{l} \frac{\partial}{\partial y^{l}}, \\
& \nabla_{\frac{\partial}{\partial z^{s}}} \frac{\partial}{\partial y^{j}}=\sum_{k=1}^{2 q} \gamma_{s j}^{k} \frac{\partial}{\partial x^{k}}+\sum_{l=1}^{2 n-4 q} \delta_{s j}^{l} \frac{\partial}{\partial y^{l}} .
\end{aligned}
$$

We have

$$
\begin{aligned}
\left(\check{A}_{5} \circ f\right)_{*}\left(\frac{\partial}{\partial x^{k}}\right) & =e_{k} \\
\left(\check{A}_{5} \circ f\right)_{*}\left(\frac{\partial}{\partial y^{l}}\right) & =e_{2 q+l}+\sum_{r=1}^{2 q} \frac{\partial \check{\psi}^{r}}{\partial y^{l}} e_{2 n-2 q+r}+\frac{\partial \check{\mathcal{F}}^{1}}{\partial y^{l}} e_{2 n+1}+\frac{\partial \check{\mathcal{F}}^{2}}{\partial y^{l}} e_{2 n+2}
\end{aligned}
$$

hence

$$
\begin{aligned}
\left(\check{A}_{5} \circ f\right)_{*} & \left(\nabla_{\partial / \partial y^{s}} \frac{\partial}{\partial y^{j}}\right) \\
= & \sum_{k=1}^{2 q} \alpha_{s j}^{k} e_{k}+\sum_{l=1}^{2 n-4 q} \beta_{s j}^{l} e_{2 q+l}+\sum_{r=1}^{2 q}\left(\sum_{l=1}^{2 n-4 q} \beta_{s j}^{l} \frac{\partial \check{\psi}^{r}}{\partial y^{l}}\right) e_{2 n-2 q+r} \\
& +\left(\sum_{l=1}^{2 n-4 q} \beta_{s j}^{l} \frac{\partial \check{\mathcal{F}}^{1}}{\partial y^{l}}\right) e_{2 n+1}+\left(\sum_{l=1}^{2 n-4 q} \beta_{s j}^{l} \frac{\partial \check{\mathcal{F}}^{2}}{\partial y^{l}}\right) e_{2 n+2}
\end{aligned}
$$

and

$$
\begin{aligned}
\left(\check{A}_{5} \circ f\right)_{*} & \left(\nabla_{\partial / \partial z^{s}} \frac{\partial}{\partial y^{j}}\right) \\
= & \sum_{k=1}^{2 q} \gamma_{s j}^{k} e_{k}+\sum_{l=1}^{2 n-4 q} \delta_{s j}^{l} e_{2 q+l}+\sum_{r=1}^{2 q}\left(\sum_{l=1}^{2 n-4 q} \delta_{s j}^{l} \frac{\partial \check{\psi}^{r}}{\partial y^{l}}\right) e_{2 n-2 q+r} \\
& +\left(\sum_{l=1}^{2 n-4 q} \delta_{s j}^{l} \frac{\partial \check{\mathcal{F}}^{1}}{\partial y^{l}}\right) e_{2 n+1}+\left(\sum_{l=1}^{2 n-4 q} \delta_{s j}^{l} \frac{\partial \check{\mathcal{F}}^{2}}{\partial y^{l}}\right) e_{2 n+2} .
\end{aligned}
$$

On the other hand, using the Gauss formula we may write

$$
\begin{aligned}
&\left(\check{A}_{5} \circ f\right)_{*}\left(\nabla_{\partial / \partial y^{s}} \frac{\partial}{\partial y^{j}}\right) \\
&= D_{\partial / \partial y^{s}}\left(\check{A}_{5} \circ f\right)_{*} \frac{\partial}{\partial y^{j}}-h\left(\frac{\partial}{\partial y^{s}}, \frac{\partial}{\partial y^{j}}\right) \check{A}_{5} \xi+h\left(J \frac{\partial}{\partial y^{s}}, \frac{\partial}{\partial y^{j}}\right) J \check{A}_{5} \xi \\
&= \sum_{k=1}^{q}\left[\left(-h\left(\frac{\partial}{\partial y^{s}}, \frac{\partial}{\partial y^{j}}\right) \check{\Theta}^{2 k-1}(z)+h\left(J \frac{\partial}{\partial y^{s}}, \frac{\partial}{\partial y^{j}}\right) \check{\Theta}^{2 k}(z)\right) e_{2 k-1}\right. \\
&\left.+\left(h\left(\frac{\partial}{\partial y^{s}}, \frac{\partial}{\partial y^{j}}\right) \check{\Theta}^{2 k}(z)+h\left(J \frac{\partial}{\partial y^{s}}, \frac{\partial}{\partial y^{j}}\right) \check{\Theta}^{2 k-1}(z)\right) e_{2 k}\right] \\
&+\sum_{r=1}^{2 q} \frac{\partial^{2} \check{\psi}^{r}}{\partial y^{s} \partial y^{j}} e_{2 n-2 q+r} \\
&+\left(\frac{\partial^{2} \check{\mathcal{F}}^{1}}{\partial y^{s} \partial y^{j}}-h\left(\frac{\partial}{\partial y^{s}}, \frac{\partial}{\partial y^{j}}\right) \check{\Theta}^{2 n+1}(z)+h\left(J \frac{\partial}{\partial y^{s}}, \frac{\partial}{\partial y^{j}}\right) \check{\Theta}^{2 n+2}(z)\right) e_{2 n+1} \\
&+\left(\frac{\partial^{2} \check{\mathcal{F}}^{2}}{\partial y^{s} \partial y^{j}}+h\left(\frac{\partial}{\partial y^{s}}, \frac{\partial}{\partial y^{j}}\right) \check{\Theta}^{2 n+2}(z)+h\left(J \frac{\partial}{\partial y^{s}}, \frac{\partial}{\partial y^{j}}\right) \check{\Theta}^{2 n+1}(z)\right) e_{2 n+2}
\end{aligned}
$$

and similarly

$$
\begin{aligned}
&\left(\check{A}_{5} \circ f\right)_{*}\left(\nabla_{\partial / \partial z^{s}} \frac{\partial}{\partial y^{j}}\right) \\
&= D_{\partial / \partial z^{s}}\left(\check{A}_{5} \circ f\right)_{*} \frac{\partial}{\partial y^{j}}-h\left(\frac{\partial}{\partial z^{s}}, \frac{\partial}{\partial y^{j}}\right) \check{A}_{5} \xi+h\left(J \frac{\partial}{\partial z^{s}}, \frac{\partial}{\partial y^{j}}\right) J \check{A}_{5} \xi \\
&= \sum_{k=1}^{q}\left[\left(-h\left(\frac{\partial}{\partial z^{s}}, \frac{\partial}{\partial y^{j}}\right) \check{\Theta}^{2 k-1}(z)+h\left(J \frac{\partial}{\partial z^{s}}, \frac{\partial}{\partial y^{j}}\right) \check{\Theta}^{2 k}(z)\right) e_{2 k-1}\right. \\
&\left.+\left(h\left(\frac{\partial}{\partial z^{s}}, \frac{\partial}{\partial y^{j}}\right) \check{\Theta}^{2 k}(z)+h\left(J \frac{\partial}{\partial z^{s}}, \frac{\partial}{\partial y^{j}}\right) \check{\Theta}^{2 k-1}(z)\right) e_{2 k}\right]
\end{aligned}
$$

$$
\begin{aligned}
& +\sum_{r=1}^{2 q} \frac{\partial^{2} \check{\psi}^{r}}{\partial z^{s} \partial y^{j}} e_{2 n-2 q+r} \\
& +\left(\frac{\partial^{2} \check{\mathcal{F}}^{1}}{\partial z^{s} \partial y^{j}}-h\left(\frac{\partial}{\partial z^{s}}, \frac{\partial}{\partial y^{j}}\right) \check{\Theta}^{2 n+1}(z)+h\left(J \frac{\partial}{\partial z^{s}}, \frac{\partial}{\partial y^{j}}\right) \check{\Theta}^{2 n+2}(z)\right) e_{2 n+1} \\
& +\left(\frac{\partial^{2} \check{\mathcal{F}}^{2}}{\partial z^{s} \partial y^{j}}+h\left(\frac{\partial}{\partial z^{s}}, \frac{\partial}{\partial y^{j}}\right) \check{\Theta}^{2 n+2}(z)+h\left(J \frac{\partial}{\partial z^{s}}, \frac{\partial}{\partial y^{j}}\right) \check{\Theta}^{2 n+1}(z)\right) e_{2 n+2}
\end{aligned}
$$

Since in the second pair of expressions there are no terms containing the basis vectors e_{t} with $t \in\{2 q+1, \ldots, 2 n-2 q\}$, we conclude that $\beta_{s j}^{l}=0$ and $\delta_{s j}^{l}=0$ for any l, s, j. Comparing now the coefficients of $e_{t^{\prime}}$ with $t^{\prime} \in$ $\{2 n-2 q+1, \ldots, 2 n\}$ we obtain

$$
\frac{\partial^{2} \check{\psi}^{r}}{\partial y^{s} \partial y^{j}}=0 \quad \text { and } \quad \frac{\partial^{2} \check{\psi}^{r}}{\partial z^{s} \partial y^{j}}=0
$$

for any r, s, j.
It follows that

$$
\frac{\partial \check{\psi}^{r}}{\partial y^{j}}=E_{j}^{r}=\mathrm{const} \quad \text { and } \quad \check{\psi}^{r}(y, z)=\sum_{j=1}^{2 n-4 q} E_{j}^{r} y^{j}+\check{\Pi}^{r}(z)
$$

The Cauchy-Riemann equations for $\widehat{\psi}^{r}$ imply that $\widehat{\Pi}^{r}:=\check{\Pi}^{2 r-1}+i \check{\Pi}^{2 r}$ is a holomorphic function and $E_{2 j-1}^{2 r-1}=E_{2 j}^{2 r}, E_{2 j}^{2 r-1}=-E_{2 j-1}^{2 r}$ for $r=1, \ldots, q$, $j=1, \ldots, n-2 q$. We set $C^{k}{ }_{s}:=E_{2 j-1}^{2 k-1}+i E_{2 j-1}^{2 k}$ and the lemma follows.

We define the isomorphism \widehat{A}_{6}^{0} of \mathbb{C}^{n+1} by

$$
\widehat{A}_{6}^{0} \widetilde{e}_{k}:= \begin{cases}\widetilde{e}_{k} & \text { if } k \notin\{q+1, \ldots, n-q\} \\ \widetilde{e}_{k}-\sum_{j=1}^{q} C_{k}^{j} \widetilde{e}_{n-q+j} & \text { if } k \in\{q+1, \ldots, n-q\}\end{cases}
$$

Let $\widehat{A}_{6}:=\widehat{A}_{6}^{0} \circ \widehat{A}_{5}$. Then

$$
\begin{aligned}
& \widehat{A}_{6} \circ f \circ \widehat{\phi}_{4}^{-1}\left(\widetilde{x}^{1}, \ldots, \widetilde{x}^{q}, \widetilde{y}^{1}, \ldots, \widetilde{y}^{n-2 q}, \widetilde{z}^{1}, \ldots, \widetilde{z}^{q}\right) \\
&=\left(\widetilde{x}^{1}, \ldots, \widetilde{x}^{q}, \widetilde{y}^{1}, \ldots, \widetilde{y}^{n-2 q}, \widehat{\Pi}^{1}(\widetilde{z}), \ldots, \widehat{\Pi}^{q}(\widetilde{z}), \widehat{\mathcal{F}}(\widetilde{y}, \widetilde{z})\right)
\end{aligned}
$$

and $\widehat{A}_{6} \xi \circ \widehat{\phi}_{4}^{-1}$ is given by the same formula as $\widehat{A}_{5} \xi \circ \widehat{\phi}_{4}^{-1}$.
Lemma 13. If $q>1$ then

$$
\widehat{\Pi}^{r}(\widetilde{z})=\sum_{s=1}^{q} C_{1}^{r}{ }_{s} \widetilde{z}^{s}+C_{2}^{r}
$$

with $C_{1}{ }^{r}{ }_{s}, C_{2}{ }^{r} \in \mathbb{C}$.

Proof. Recall that for $q>1$,

$$
\begin{aligned}
\widehat{\Theta}^{k}\left(\widetilde{z}^{1}, \ldots, \widetilde{z}^{q}\right) & =\widetilde{z}^{k} \quad \text { for } k=1, \ldots, q \\
\widehat{\Theta}^{n+1}\left(\widetilde{z}^{1}, \ldots, \widetilde{z}^{q}\right) & \equiv 1
\end{aligned}
$$

Therefore we have

$$
\begin{aligned}
& A_{6} \xi \circ \phi_{4}^{-1}\left(x^{1}, \ldots, x^{2 q}, y^{1}, \ldots, y^{2 n-4 q}, z^{1}, \ldots, z^{2 q}\right) \\
&=\sum_{k=1}^{q}\left[z^{2 k-1} e_{2 k-1}-z^{2 k} e_{2 k}\right]+e_{2 n+1}
\end{aligned}
$$

and

$$
D_{\partial / \partial z^{s}}\left(A_{6} \xi\right)=(-1)^{s-1} e_{s}=-\left(A_{6} \circ f\right)_{*}\left((-1)^{s} \frac{\partial}{\partial x^{s}}\right)
$$

which implies

$$
S \frac{\partial}{\partial z^{s}}=(-1)^{s} \frac{\partial}{\partial x^{s}}
$$

Applying the covariant derivative ∇_{W} to the right-hand side of the above formula we obtain zero, therefore

$$
S\left(\nabla_{W} \frac{\partial}{\partial z^{s}}\right)=\nabla_{W}\left(S \frac{\partial}{\partial z^{s}}\right)=0
$$

and so $\nabla_{W}\left(\partial / \partial z^{s}\right) \in \operatorname{ker} S$ for any tangent vector W. We can now proceed analogously to the proof of Lemma 12.

The matrix $\left(C_{1}{ }^{r}{ }_{s}\right)_{r, s=1, \ldots, q}$ is invertible, since $\widehat{A}_{6} \circ f$ is an immersion and

$$
\widehat{A}_{6} \xi \circ \widehat{\phi}_{4}^{-1}\left(\widetilde{x}^{1}, \ldots, \widetilde{x}^{q}, \widetilde{y}^{1}, \ldots, \widetilde{y}^{n-2 q}, \widetilde{z}^{1}, \ldots, \widetilde{z}^{q}\right)=\sum_{k=1}^{q} \bar{z}^{k} \widetilde{e}_{k}+\widetilde{e}_{n+1}
$$

is a transversal field. Let

$$
\left(C_{3}{ }_{j}{ }_{j}\right)_{i, j=1, \ldots, q}=\left[\left(C_{1}{ }^{r}{ }_{s}\right)_{r, s=1, \ldots, q}\right]^{-1}
$$

To complete the proof of the theorem in the case $q>1$ it remains to apply the affine isomorphism \widetilde{A}_{7}^{0} of \mathbb{C}^{n+1}, where

$$
\begin{aligned}
& \widetilde{A}_{7}^{0}\left(\theta^{1}, \ldots, \theta^{n+1}\right):=\left(\theta^{1}, \ldots, \theta^{n-q}, \sum_{j_{1}=1}^{q} C_{3}{ }^{1}{ }_{j_{1}}\left(\theta^{n-q+j_{1}}-C_{2}{ }^{j_{1}}\right), \ldots,\right. \\
&\left.\sum_{j_{q}=1}^{q} C_{3}{ }^{q}{ }_{j_{q}}\left(\theta^{n-q+j_{q}}-C_{2}{ }^{j_{q}}\right), \theta^{n+1}\right) .
\end{aligned}
$$

The linear part of \widetilde{A}_{7}^{0} does not change the transversal field $\widehat{A}_{6} \xi$, therefore we have $\widetilde{A} \circ f$ and $\overrightarrow{\widetilde{A}} \xi$ as claimed, with $\widetilde{A}:=\widetilde{A}_{7}^{0} \circ \widehat{A}_{6}, \widetilde{\mathcal{F}}=\widehat{\mathcal{F}}, \widetilde{\phi}=\widehat{\phi}_{4}$.

For $q=1$,

$$
\widehat{A}_{6} \circ f \circ \widehat{\phi}_{4}^{-1}\left(\widetilde{x}, \widetilde{y}^{1}, \ldots, \widetilde{y}^{n-2}, \widetilde{z}\right)=\left(\widetilde{x}, \widetilde{y}^{1}, \ldots, \widetilde{y}^{n-2}, \widehat{\Pi}(\widetilde{z}), \widehat{\mathcal{F}}(\widetilde{y}, \widetilde{z})\right)
$$

with $\widehat{\Pi}^{\prime} \neq 0$ in the neighbourhood of $\widetilde{\phi}_{4}(m)$. We define a local diffeomorphism

$$
\widetilde{\widetilde{\phi}}_{5}^{0}\left(\widetilde{x}, \widetilde{y}^{1}, \ldots, \widetilde{y}^{n-2}, \widetilde{z}\right):=\left(\widetilde{x}, \widetilde{y}^{1}, \ldots, \widetilde{y}^{n-2}, \widehat{\Pi}(\widetilde{z})\right)
$$

and obtain

$$
\begin{aligned}
\widehat{A}_{6} \circ f \circ \widetilde{\widetilde{\phi}}_{5}^{-1}\left(\widetilde{x}, \widetilde{y}^{1}, \ldots, \widetilde{y}^{n-2}, \widetilde{z}\right) & =\left(\widetilde{x}, \widetilde{y}^{1}, \ldots, \widetilde{y}^{n-2}, \widetilde{z}, \widehat{\mathcal{F}}(\widetilde{y}, \widetilde{z})\right), \\
\widehat{A}_{6} \xi \circ \widetilde{\widetilde{\phi}}_{5}^{-1}\left(\widetilde{x}, \widetilde{y}^{1}, \ldots, \widetilde{y}^{n-2}, \widetilde{z}\right) & =\widetilde{\widetilde{\mathcal{G}}}(\widetilde{z}) \widetilde{e}_{1}+\overline{e^{\widetilde{\mathcal{M}}}(\widetilde{z})} \widetilde{e}_{n+1}
\end{aligned}
$$

with $\widehat{\hat{\mathcal{F}}}=\widehat{\mathcal{F}} \circ \widehat{\Pi}^{-1}, \widetilde{\widetilde{\mathcal{M}}}=\widetilde{\mathcal{H}} \circ \widehat{\Pi}^{-1}, \widetilde{\widetilde{\mathcal{G}}}=\Theta^{1} \circ \widehat{\Pi}^{-1}, \widetilde{\tilde{\phi}_{5}}=\widetilde{\tilde{\phi}_{5}^{0}} \circ \widehat{\phi}_{4}$.
Lemma 14. $\widetilde{\widetilde{\mathcal{G}}^{\prime}}-\widetilde{\widetilde{\mathcal{M}}^{\prime}} \widetilde{\widetilde{\mathcal{G}}}=$ const $\neq 0$.
Proof. Let $\widetilde{\mathcal{G}}=G^{1}+i G^{2}$ and $\widetilde{\widetilde{\mathcal{M}}}=M^{1}+i M^{2}$. Then

$$
\begin{aligned}
& \widetilde{\tilde{\mathcal{G}}^{\prime}}-\widetilde{\widetilde{\mathcal{M}}}^{\prime} \widetilde{\widetilde{\mathcal{G}}} \\
& =\left(\frac{\partial G^{1}}{\partial z^{1}}+i \frac{\partial G^{2}}{\partial z^{1}}\right)-\left(\frac{\partial M^{1}}{\partial z^{1}}+i \frac{\partial M^{2}}{\partial z^{1}}\right)\left(G^{1}+i G^{2}\right) \\
& =\left(\frac{\partial G^{1}}{\partial z^{1}}-\frac{\partial M^{1}}{\partial z^{1}} G^{1}+\frac{\partial M^{2}}{\partial z^{1}} G^{2}\right)+i\left(\frac{\partial G^{2}}{\partial z^{1}}-\frac{\partial M^{2}}{\partial z^{1}} G^{1}-\frac{\partial M^{1}}{\partial z^{1}} G^{2}\right) .
\end{aligned}
$$

It is easily seen that

$$
\begin{aligned}
S \frac{\partial}{\partial z^{1}}= & \left(-\frac{\partial G^{1}}{\partial z^{1}}+\frac{\partial M^{1}}{\partial z^{1}} G^{1}-\frac{\partial M^{2}}{\partial z^{1}} G^{2}\right) \frac{\partial}{\partial x^{1}} \\
& +\left(\frac{\partial G^{2}}{\partial z^{1}}-\frac{\partial M^{2}}{\partial z^{1}} G^{1}-\frac{\partial M^{1}}{\partial z^{1}} G^{2}\right) \frac{\partial}{\partial x^{2}},
\end{aligned}
$$

because

$$
\begin{aligned}
D_{\partial / \partial z^{1}} A_{6} \xi= & \frac{\partial G^{1}}{\partial z^{1}} e_{1}-\frac{\partial G^{2}}{\partial z^{1}} e_{2} \\
& +\left(\frac{\partial M^{1}}{\partial z^{1}} e^{M^{1}} \cos M^{2}-\frac{\partial M^{2}}{\partial z^{1}} e^{M^{1}} \sin M^{2}\right) e_{2 n+1} \\
& +\left(-\frac{\partial M^{1}}{\partial z^{1}} e^{M^{1}} \sin M^{2}-\frac{\partial M^{2}}{\partial z^{1}} e^{M^{1}} \cos M^{2}\right) e_{2 n+2} \\
= & \left(\frac{\partial G^{1}}{\partial z^{1}}-\frac{\partial M^{1}}{\partial z^{1}} G^{1}+\frac{\partial M^{2}}{\partial z^{1}} G^{2}\right) e_{1} \\
& +\left(-\frac{\partial G^{2}}{\partial z^{1}}+\frac{\partial M^{2}}{\partial z^{1}} G^{1}+\frac{\partial M^{1}}{\partial z^{1}} G^{2}\right) e_{2}+\frac{\partial M^{1}}{\partial z^{1}} A_{6} \xi-\frac{\partial M^{2}}{\partial z^{1}} J A_{6} \xi .
\end{aligned}
$$

For any vector W,

$$
\nabla_{W} \frac{\partial}{\partial z^{1}} \in \operatorname{span}_{\mathbb{R}}\left\{\frac{\partial}{\partial x^{1}}, \frac{\partial}{\partial x^{2}}\right\} \subset \operatorname{ker} S
$$

since

$$
\begin{aligned}
D_{W}\left(A_{6} \circ f\right)_{*} \frac{\partial}{\partial z^{1}} & =W\left(\frac{\partial \check{\mathcal{F}}^{1}}{\partial z^{1}}\right) e_{2 n+1}+W\left(\frac{\partial \check{\tilde{\mathcal{F}}}^{2}}{\partial z^{1}}\right) e_{2 n+2} \\
& \in \operatorname{span}_{\mathbb{R}}\left\{e_{1}, e_{2}, A_{6} \xi, J A_{6} \xi\right\}
\end{aligned}
$$

It follows that $\nabla_{W}\left(S \partial / \partial z^{1}\right)=0$ for any W. Therefore

$$
\begin{aligned}
-\frac{\partial G^{1}}{\partial z^{1}}+\frac{\partial M^{1}}{\partial z^{1}} G^{1}-\frac{\partial M^{2}}{\partial z^{1}} G^{2} & =:-B_{1}=\text { const, } \\
\frac{\partial G^{2}}{\partial z^{1}}-\frac{\partial M^{2}}{\partial z^{1}} G^{1}-\frac{\partial M^{1}}{\partial z^{1}} G^{2} & =: B_{2}=\text { const. }
\end{aligned}
$$

Moreover, $\left(B_{1}\right)^{2}+\left(B_{2}\right)^{2} \neq 0$, because $S \neq 0$.
Let

$$
\begin{aligned}
\widetilde{\widetilde{\phi}}_{6}^{0}\left(\widetilde{x}, \widetilde{y}^{1}, \ldots, \widetilde{y}^{n-2}, \widetilde{z}\right) & :=\left(\widetilde{x}, \widetilde{y}^{1}, \ldots, \widetilde{y}^{n-2},\left(B_{1}+i B_{2}\right) \widetilde{z}\right) \\
\widetilde{\widetilde{A}}_{7}^{0}\left(\zeta^{1}, \ldots, \zeta^{n+1}\right) & :=\left(\zeta^{1}, \ldots, \zeta^{n-1},\left(B_{1}+i B_{2}\right) \zeta^{n}, \zeta^{n+1}\right)
\end{aligned}
$$

Now $\widetilde{\widetilde{A}}_{7} \circ f \circ \widetilde{\widetilde{\phi}}_{6}^{-1}$ and $\widetilde{\widetilde{A}}_{7} \xi \circ \widetilde{\widetilde{\phi}}_{6}^{-1}$ have the same shape as $\widehat{A}_{6} \circ f \circ \widetilde{\widetilde{\phi}}_{5}^{-1}$ and $\widehat{A}_{6} \xi \circ \widetilde{\widetilde{\phi}}_{5}^{-1}$ with $\widetilde{\mathcal{F}}, \widetilde{\mathcal{G}}, \widetilde{\widetilde{\mathcal{M}}}$ replaced by $\widetilde{\mathcal{F}}, \widetilde{\mathcal{G}} \widetilde{\mathcal{M}}$, where

$$
\begin{gathered}
\widetilde{\mathcal{F}}(\widetilde{z}):=\widehat{\hat{\mathcal{F}}}\left(\frac{\widetilde{z}}{B_{1}+i B_{2}}\right), \quad \widetilde{\mathcal{G}}(\widetilde{z}):=\widetilde{\mathcal{G}}\left(\frac{\widetilde{z}}{B_{1}+i B_{2}}\right), \\
\widetilde{\mathcal{M}}(\widetilde{z}):=\widetilde{\widetilde{\mathcal{M}}}\left(\frac{\widetilde{z}}{B_{1}+i B_{2}}\right) .
\end{gathered}
$$

It is easy to check that

$$
\widetilde{\mathcal{G}}^{\prime}-\widetilde{\mathcal{M}}^{\prime} \widetilde{\mathcal{G}}=1
$$

This finishes the proof of the theorem.
There are many examples of functions $\widetilde{\mathcal{G}}$ and $\widetilde{\mathcal{M}}$ satisfying the above equation. In fact, for any holomorphic $\widetilde{\mathcal{M}}$ (and so for any μ, ν, because $\mu\left(\partial / \partial z^{k}\right)=\partial \mathcal{M}^{1} / \partial z^{k}$ and $\left.\nu\left(\partial / \partial z^{k}\right)=-\partial \mathcal{M}^{1} / \partial z^{k}\right)$ there exists $\widetilde{\mathcal{G}}$ such that $\widetilde{\mathcal{G}}^{\prime}-\widetilde{\mathcal{M}^{\prime}} \widetilde{\mathcal{G}} \equiv 1$. For example

$$
\widetilde{\mathcal{G}}(\widetilde{z})=\widetilde{z}, \quad \widetilde{\mathcal{M}}(\widetilde{z})=0
$$

(that is what we obtain also for $q>1$, with $\mu=\nu=0$);

$$
\begin{array}{ll}
\widetilde{\mathcal{G}}(\widetilde{z})=1, & \widetilde{\mathcal{M}}(\widetilde{z})=-\widetilde{z} \\
\widetilde{\mathcal{G}}(\widetilde{z})=e^{\widetilde{z}}, & \widetilde{\mathcal{M}}(\widetilde{z})=\widetilde{z}+e^{-\widetilde{z}}
\end{array}
$$

References

[DVV] F. Dillen, L. Vrancken and L. Verstraelen, Complex affine differential geometry, Atti. Acad. Peloritana Pericolanti Cl. Sci. Fis. Mat. Nat. 66 (1988), 231-260.
[NS] K. Nomizu and T. Sasaki, Affine Differential Geometry, Cambridge Univ. Press, 1994.
[O] B. Opozda, Equivalence theorems for complex affine hypersurfaces, Results Math. 27 (1995), 316-327.

Institute of Mathematics
Jagiellonian University
Reymonta 4
30-059 Kraków, Poland
E-mail: robaszew@im.uj.edu.pl

[^0]: 2000 Mathematics Subject Classification: 53A15, 53B05, 53C56.
 Key words and phrases: affine holomorphic immersion, affine Kähler connection, anticomplex shape operator, parallel shape operator.

