
ANNALES
POLONICI MATHEMATICI

LXXVIII.2 (2002)

The Dirichlet problem with sublinear nonlinearities

Aleksandra Orpel (Łódź)

Abstract. We investigate the existence of solutions of the Dirichlet problem for the
differential inclusion 0 ∈ ∆x(y) + ∂xG(y, x(y)) for a.e. y ∈ Ω, which is a generalized
Euler–Lagrange equation for the functional J(x) =

�
Ω
{ 1

2 |∇x(y)|2 − G(y, x(y))} dy. We
develop a duality theory and formulate the variational principle for this problem. As a
consequence of duality, we derive the variational principle for minimizing sequences of J .
We consider the case when G is subquadratic at infinity.

1. Introduction. We study the following differential inclusion:

0 ∈ ∆x(y) + ∂xG(y, x(y)) for a.e. y ∈ Ω,(1.1)

where Ω ⊂ Rn, ∆ is the Laplace operator and ∂xG(y, x) denotes the sub-
differential of the function R 3 x 7→ G(y, x), y ∈ Ω. We will prove the
existence of a solution for (1.1) in the subspace W 1,2

0 (Ω,R) consisting of all
functions in W 1,2(Ω,R) satisfying the boundary condition x|∂Ω = 0. To this
end we use variational methods and we consider the above inclusion as a
generalized Euler–Lagrange equation for the functional J : W 1,2

0 (Ω,R)→ R
given by

J(x) = �
Ω

{
1
2
|∇x(y)|2 −G(y, x(y))

}
dy.(1.2)

Our approach covers the case when the map G is subquadratic at infinity.

Hypothesis (H). Let Ω be a bounded domain in Rn having a locally
Lipschitz boundary. Assume that the function G : Ω×R→ R is measurable
with respect to the first variable, convex with respect to the second and

1
p
a|x|p + k(y) ≤ G(y, x) ≤ 1

r
b|x|r + l(y)

for a.e. y ∈ Ω and x ∈ R, where a, b ∈ (0,∞), k, l ∈ L1(Ω,R), 1 < p < r ≤ 2.
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This paper is organized as follows: first we show the existence of a critical
point x ∈ W 1,2

0 (Ω,R) for (1.2). In the next section we develop a duality
theory describing a relation between J and a dual object, the functional
JD, which will be introduced below. We also use the concept of the Fenchel
conjugate. The duality principle proved in Section 2 will be used to obtain
the existence of a minimizer p for JD and two interesting equalities which x
and p must satisfy. As a consequence, we shall prove that x is a solution of
the elliptic partial differential inclusion (1.1) with the boundary condition
x|∂Ω = 0.

Several authors have dealt with this and similar problems (see e.g. [8],
[9], [7], [15]). However the present paper takes a new viewpoint. It is worth
noting that we do not impose any regularity on G or G∗, where G∗(y, v) =
supx∈R[〈v, x〉 − G(y, x)] for y ∈ Ω and v ∈ R. That is why our method is
different from what was used in previous papers. The idea of the method
presented here is similar to that of [11] and [12], where the Dirichlet problem
for ordinary differential equations is studied.

If we assume stronger conditions concerning the smoothness of G, its
derivative Gx (Gx(y, x) := d

dxG(y, x)) and some additional estimates on Gx,
we can obtain the existence result for (1.1) from the existence of a mini-
mum of energy. In [9], where the one-dimensional case has been discussed,
G is continuously differentiable with respect to the second variable, more-
over G and Gx satisfy some special growth conditions. These assumptions
are associated with the existence of the Gateaux differential for the given
functional.

In the general case described by hypothesis (H), inclusion (1.1) cannot
be deduced from the existence of a minimum of J . In order to obtain the
existence of a solution for (1.1) we develop a duality theory. As we see
in Section 5, the duality principle enables a numerical characterization of
minimizing sequences and approximation of the infimum of (1.2). Moreover
we are able to establish an approximate solution for (1.1).

For the reader’s convenience, we repeat relevant material from [2] and
[4] without proofs.

Theorem 1.1. Let W : Y → R ∪ {+∞} be a proper , convex and lower
semicontinuous function, and A ∈ L(X,Y), where X,Y are Hilbert spaces.
If

0 ∈ Int(ImA− domW ),

then for every p ∈ A∗(domW ∗), there exists q ∈ Y∗ satisfying

A∗q = p, (WA)∗(p) = W ∗(q) = inf
A∗q=p

W ∗(q),

where A∗ and W ∗ denote the Fenchel conjugates of A and W , respectively.
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Theorem 1.2. Assume that F0 : Ω × Rn+r → R satisfies the Carathéo-
dory condition, F0 is convex with respect to the last variable and there exist
φ ∈ L1(Ω,R+ ∪ {0}) and C ≥ 0 such that for all (u,w) ∈ Rn+r and a.e.
x ∈ Ω,

F0(x, u,w) ≥ −φ(x)− C|w|.
If ζ, ζk, u, uk, k = 1, 2, . . . , are measurable functions such that ζ, ζk ∈
(L1(Ω))r, k = 1, 2, . . . , uk → u in measure on Ω and ζk ⇁ ζ weakly in
(L1(Ω))r, then

�
Ω

F0(x, u(x), ζ(x)) dx ≤ lim inf
k→∞

�
Ω

F0(x, uk(x), ζk(x)) dt.

2. The existence of a minimum for J. Now we prove the existence
of a minimum for the functional J . To this end we have to make some
additional assumptions concerning the set Ω:

Hypothesis (H1). Let Ω ⊂ B(z,R), where B(z,R) is the ball centered
at z with radius R. In the case r = 2 we assume that

√
p2/b > R.

Throughout the paper, unless otherwise stated, we shall assume hypothe-
ses (H) and (H1).

Theorem 2.1. There exists x ∈W 1,2
0 (Ω,R) such that

−∞ < J(x) = inf
x∈W 1,2

0 (Ω,R)
J(x) <∞.

Proof. By the assumptions on G, we obtain

J(x) = �
Ω

{
1
2
|∇x(y)|2 −G(y, x(y))

}
dy

≥ �
Ω

{
−1
r
b|x(y)|r +

1
2
|∇x(y)|2 − l(y)

}
dy

≥ �
Ω

{
−1
r
b|x(y)|r +

p2

2R2 |x(y)|2 − l(y)
}
dy,

where the last relation is a consequence of the Poincaré inequality ([10]).
When r < 2, this chain of relations gives the lower boundedness of J

on W 1,2(Ω,R) and on W 1,2
0 (Ω,R). Using hypothesis (H1), we get the same

conclusion in the case r = 2. The above condition and (H1) imply that there
is a minimizing sequence {xn}n∈N ⊂ W 1,2

0 (Ω,R) for J , which is bounded
in the || · ||W 1,2(Ω,R) norm. Hence we can choose a subsequence {xnk}k∈N
weakly convergent to x ∈ W 1,2(Ω,R). Since W 1,2

0 (Ω,R) is weakly closed in
W 1,2(Ω,R), we have x ∈W 1,2

0 (Ω,R). Applying Theorem 1.2 we obtain

J(x) ≤ lim inf
k→∞

J(xnk)
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and further, from the definition of {xn}n∈N,

J(x) = inf
x∈W 1,2

0 (Ω,R)
J(x).

3. Duality principles. Because hypothesis (H) is not sufficient to de-
duce the existence of a solution for (1.1) from Theorem 2.1, we develop a
duality theory. Using hypothesis (H) we can see that the functionals intro-
duced below are well defined. Set

C = {p ∈ L2(Ω,Rn); div p(y) = 0 for a.e. y ∈ Ω},
B = {p ∈ L2(Ω,Rn); div p ∈ L2(Ω,R)}.

As usual, B + C = {b+ c; b ∈ B and c ∈ C}.
We will prove a duality principle describing the relations between J and

the dual functional JD : B + C → R given by

JD(p+ v) = �
Ω

{
−1

2
|p(y) + v(y)|2 +G∗(y,−div p(y))

}
dy.(3.1)

Define the perturbation Jx : L2(Ω,R)→ R of J by

Jx(g) = �
Ω

{
−1

2
|∇x(y)|2 +G(y, x(y) + g(y))

}
dy.(3.2)

Also define the functional J#
x : B → R for x ∈W 1,2

0 (Ω,R) by

J#
x (p) = sup

g∈L2(Ω,R)
�
Ω

{
〈div p(y), g(y)〉 −G(y, x(y) + g(y)) +

1
2
|∇x(y)|2

}
dy.

After some calculations, we can give an equivalent and simpler form of J#
x :

J#
x (p) = �

Ω

{
〈−div p(y), x(y)〉+G∗(y,div p(y)) +

1
2
|∇x(y)|2

}
dy.(3.3)

Let
A = {∇x ∈ L2(Ω,Rn); x ∈W 1,2

0 (Ω,R)}.
Using (3.1), (3.3) and Theorem 1.1, we obtain

(3.4) sup
x∈W 1,2

0 (Ω,R)

(−J#
x (−p))

= sup
∇x∈A

�
Ω

{
〈p(y),∇x(y)〉 − 1

2
|∇x(y)|2 −G∗(y,−div p(y))

}
dy

= inf
v∈C

�
Ω

{
1
2
|p(y) + v(y)|2 −G∗(y,−div p(y))

}
dy

= inf
v∈C

(−JD(p+ v)).
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We now introduce the functional J##
x : L2(Ω,R) → R for x ∈ W 1,2

0 (Ω,R)
by

(3.5) J##
x (g)

= sup
h∈D

�
Ω

{
〈g(y), h(y)〉+ 〈x(y), h(y)〉 − 1

2
|∇x(y)|2 −G∗(y, h(y))

}
dy,

where
D = {div p ∈ L2(Ω,R); p ∈ B}.

Then J##
x (0) = −J(x) for all x ∈W 1,2

0 (Ω,R). Indeed, by the definitions of
J##
x and D, we have

J##
x (0) = sup

h∈L2(Ω,R)
�
Ω

{
〈x(y), h(y)〉 − 1

2
|∇x(y)|2 −G∗(y, h(y))

}
dy

= �
Ω

{
−1

2
|∇x(y)|2 +G(y, x(y))

}
dy = −J(x).

Now we can prove the following

Theorem 3.1.

inf
x∈W 1,2

0 (Ω,R)
J(x) = inf

div p∈D
sup
v∈C

JD(p+ v).

Proof. From (3.5), (3.4) and the definitions of C and D, we deduce

sup
x∈W 1,2

0 (Ω,R)

J##
x (0) = sup

x∈W 1,2
0 (Ω,R)

sup
div p∈D

�
Ω

{
〈x(y),−div p(y)〉

−G∗(y,−div p(y))− 1
2
|∇x(y)|2

}
dy

= sup
div p∈D

sup
x∈W 1,2

0 (Ω,R)

(−J#
x (−p)) = sup

div p∈D
inf
v∈C

(−JD(p+ v))

= − inf
div p∈D

sup
v∈C

JD(p+ v).

The above and the equality J##
x (0) = −J(x) imply

inf
x∈W 1,2

0 (Ω,R)
J(x) = inf

div p∈D
sup
v∈C

JD(p+ v).

4. Variational principles. We now formulate and prove the variational
principle for minimizers. From these results we will obtain the existence of
a solution of (1.1).

Theorem 4.1. Let x ∈ W 1,2
0 (Ω,R) and J(x) = inf

x∈W 1,2
0 (Ω,R) J(x).

There exists p = p̃ + v ∈ B + C such that − div p ∈ ∂Jx(0) (where ∂Jx(0)
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denotes the subdifferential of L2(Ω,R) 3 g 7→ Jx(g) at 0) and p satisfies

JD(p) = inf
div p∈D

sup
v∈C

JD(p+ v).(4.1)

Moreover ,

J#
x (−p) + Jx(0) = 0,(4.2)

J#
x (−p)− JD(p) = 0.(4.3)

Proof. From Theorem 2.1, we deduce the existence of an x ∈W 1,2
0 (Ω,R)

such that J(x) = infx∈W 1,2
0 (Ω,R) J(x). According to (H), the functional

L2(Ω,R) 3 z 7→M(z) = − �
Ω

{〈x(y),−z(y)〉 −G∗(y,−z(y))} dy

is convex, lower semicontinuous and coercive. Moreover L2(Ω,R) is a reflex-
ive space. Therefore the map M attains its infimum at some z ∈ L2(Ω,R).
On the other hand,

sup
z∈L2(Ω,R)

(−M(z)) = sup
z∈L2(Ω,R)

�
Ω

{〈x(y),−z(y)〉 −G∗(y,−z(y))} dy

= �
Ω

G(y, x(y)) dy.

Combining these results we deduce

(4.4) �
Ω

{
G(y, x(y))− 1

2
|∇x(y)|2

}
dy

+ �
Ω

{
〈x(y), z(y)〉+G∗(y,−z(y)) +

1
2
|∇x(y)|2

}
dy = 0.

Let p̃ ∈ B and div p̃ = z (we write for brevity

p̃(y) =
(y1

�
a1

z(t, y2, . . . , yn) dt, 0, . . . , 0︸ ︷︷ ︸
n−1

)
,

where y = (y1, . . . , yn), and a = (a1, . . . , an) is a certain element of Ω).
Writing p̃v = p̃+ v,where v ∈ C, we get div p̃v = div p̃ = z. Applying (4.4)
we have

J#
x (−p̃v) + Jx(0) = 0.(4.5)

We also note that

J∗x(− div p̃v) = J#
x (−p̃v),(4.6)

where J∗x is the polar of Jx. Indeed,
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J∗x(− div p̃v)

= sup
g∈L2(Ω,R)

�
Ω

{
〈− div p̃v(y), g(y)〉+

1
2
|∇x(y)|2 −G(y, x(y) + g(y))

}
dy

= �
Ω

{
1
2
|∇x(y)|2 + 〈div p̃v(y), x(y)〉+G∗(y,−div p̃v(y))

}
dy = J#

x (−p̃v).

Substituting (4.6) into (4.5) gives − div p̃v ∈ ∂Jx(0) for every v ∈ C.
Consider the map

C 3 v 7→ h(v) = − �
Ω

{
−1

2
|p̃(y) + v(y)|2 +G∗(y,−div p̃(y))

}
dy.

By hypothesis (H) this functional is convex, lower semicontinuous and co-
ercive. Thus, by the reflexivity of the space C, h attains its minimum at
v ∈ C. Using the fact that Jx(0) = −J(x), (4.5) and (3.4) we deduce that

−J(x) = −J#
x (−p̃v) ≤ sup

x∈W 1,2
0 (Ω,R)

(−J#
x (−p̃v)) = − sup

v∈C
JD(p̃+v) = −JD(p),

where p = p̃+ v. Thus Theorem 3.1 implies (4.1).
Combining the equality div p = div p̃ and (4.5) then gives (4.2); (4.3) is

a simple consequence of (4.2) and JD(p) = J(x) = −Jx(0).

Theorem 4.2. There exists a solution x ∈W 1,2
0 (Ω,R) of the inclusion

0 ∈ ∆x(y) + ∂xG(y, x(y)) for a.e. y ∈ Ω.
Proof. In view of Theorem 2.1 we deduce the existence of a minimizer x

of J : W 1,2
0 (Ω,R) → R. Using Theorem 4.1 we can find p = p̃+ v ∈ B + C

satisfying (4.1). Applying (4.2) yields

G(y, x(y)) +G∗(y,−div p(y))− 〈x(y),−div p(y)〉 = 0

for a.e. y ∈ Ω. Hence, by the properties of the subdifferential, we obtain

− div p(y) ∈ ∂xG(y, x(y))

for a.e. y ∈ Ω. On the other hand, (4.3) gives ∇x(y) = p(y) and further

∆x(y) = div p(y)

for a.e. y ∈ Ω. Combining these relations completes the proof.

Remark 4.1. When G is differentiable in the second variable and
Gx(y, x) denotes the differential of R 3 x 7→ G(y, x), y ∈ Ω, Theorem 4.2
shows that there exists a solution x ∈ W 1,2(Ω,R) of the Dirichlet problem
for the elliptic partial differential equation

∆x(y) +Gx(y, x(y)) = 0

for a.e. y ∈ Ω.
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5. Minimizing sequences. In this section we present another applica-
tion of the duality principle. We prove a theorem for minimizing sequences
of J analogous to Theorem 4.1. Due to these results we obtain a numerical
approximation of the minimum of J .

Theorem 5.1. Let {xn}n∈N ⊂W 1,2
0 (Ω,R) be a minimizing sequence for

J on W 1,2
0 (Ω,R). Then for all n ∈ N there exists pn = p0

n + vn ∈ B + C
such that

(5.1)

− div pn ∈ ∂Jxn(0),

sup
v∈C

JD(p0
n + v) = JD(p0

n + vn),

inf
n∈N

JD(pn) = inf
div p∈D

sup
v∈C

JD(p+ v).

Moreover for all n ∈ N,

Jxn(0) + J#
xn(−pn) = 0(5.2)

and for given ε > 0, there exists n0 ∈ N such that for n > n0,

J#
xn(−pn)− JD(pn) ≤ ε,(5.3)

|JD(pn)− J(xn)| ≤ ε.(5.4)

Proof. By hypothesis (H),

inf
x∈W 1,2

0 (Ω,R)
J(x) = a > −∞.(5.5)

From the definition of a we get

a = inf
x∈W 1,2

0 (Ω,R)
J(x) = inf

n∈N
J(xn).(5.6)

This implies that for given ε > 0, there exists n0 ∈ N such that ε > J(xn)−a
for n > n0. From now on, the proof is similar to that of Theorem 4.1.
Analogously we obtain for all n ∈ N the existence of p0

n ∈ B such that
(5.2) holds. Combining (5.2) and the equality J∗xn(− div pn) = J#

xn(−pn), we
conclude that − div pn ∈ ∂Jxn(0) for all n ∈ N. Now using the definition of
the perturbation Jx and the above results, we may infer that for all n ∈ N,

J(xn)− J#
xn(−pn) = 0.

On the other hand, ε+ a > J(xn) for n > n0. Thus we obtain

−a− ε < −J#
xn(−p0

n) ≤ sup
x∈W 1,2

0 (Ω,R)

(−J#
x (−p0

n)) = − sup
v∈C

JD(p0
n + v),

where the last equality follows from (3.4).
Using the ideas of the proof of Theorem 4.1, we deduce that for each

n ∈ N, there exists vn ∈ C such that

sup
v∈C

JD(p0
n + v) = JD(p0

n + vn).
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Taking pn = p0
n+vn, n ∈ N, we also deduce that for given ε > 0, there exists

n0 ∈ N such that JD(pn) < a+ ε for n > n0. This means that

a = inf
n∈N

JD(pn).(5.7)

Thus, by Theorem 3.1, we have

inf
n∈N

JD(pn) = inf
p∈W 1,2

0 (Ω,Rn)
JD(p).

Finally, we recall that J#
xn(−pn) ≤ a+ ε for n > n0. From this fact and the

previous assertion, we get (5.3). The last inequality is a consequence of the
definition of a and the equality (5.7).

6. An application. Now we give an application of this theory for a
class of PDE of elliptic type.

Example 6.1. Let m ∈ N and let Ω ⊂ Rn be a bounded , locally Lipschitz
domain. Consider the function G defined as follows:

G(y, x) = c(y)|x|(m+1)/m − xf(y),

where f ∈ L2(Ω,R), c ∈ L∞(Ω,R) and there exists a ∈ (0,∞) such that
a ≤ c(y) for a.e. y ∈ Ω. Then there exists a solution x0 ∈ W 1,2

0 (Ω,R) of
the Dirichlet problem for the following PDE :

∆x(y) + sgn(x(y))
m+ 1
m

c(y)|x(y)|1/m = f(y).

Proof. The function G satisfies all the assumptions of hypothesis (H).
Applying Theorem 4.2 (or Remark 4.1) we obtain the existence of a solution
of the Dirichlet problem for a particular case of inclusion (1.1):

∆x(y) + sgn(x(y))
m+ 1
m

c(y)|x(y)|1/m = f(y)

for a.e. y ∈ Ω.
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