On certain subclasses of analytic functions involving a linear operator

by J. Patel and G. P. Mohapatra (Bhubaneswar)

Abstract

A certain general class $\mathcal{S}(a, c, A, B)$ of analytic functions involving a linear operator is introduced. The objective is to investigate various properties and characteristics of this class. Several applications of the results (obtained here) to a class of fractional calculus operators are also considered. The results contain some of the earlier work in univalent function theory.

1. Introduction. Let \mathcal{A} denote the class of functions of the form

$$
\begin{equation*}
f(z)=z+\sum_{n=2}^{\infty} a_{n} z^{n} \tag{1.1}
\end{equation*}
$$

that are analytic in the open unit disc $E=\{z:|z|<1\}$. Let $\mathcal{S}, \mathcal{S}^{*}(\alpha)$ and $\mathcal{K}(\alpha)(0 \leq \alpha<1)$ be the usual subclasses of functions in \mathcal{A} that are univalent, starlike of order α and convex of order α, respectively. We note that

$$
f(z) \in \mathcal{K}(\alpha) \Leftrightarrow z f^{\prime}(z) \in \mathcal{S}^{*}(\alpha)
$$

For arbitrary fixed real numbers $A, B(-1 \leq B<A \leq 1)$, let $\mathcal{P}(A, B)$ denote the class of functions of the form

$$
\phi(z)=1+c_{1} z+c_{2} z^{2}+\ldots
$$

which are analytic in E and satisfy the condition

$$
\phi(z) \prec \frac{1+A z}{1+B z} \quad(z \in E)
$$

where the symbol \prec stands for subordination. The class $\mathcal{P}(A, B)$ was introduced and studied by Janowski [5].

[^0]For a function $f \in \mathcal{A}$ given by (1.1), the generalized Bernardi integral operator \mathcal{F}_{δ} is

$$
\begin{equation*}
\mathcal{F}_{\delta}(z)=\frac{\delta+1}{z^{\delta}} \int_{0}^{z} t^{\delta-1} f(t) d t=z+\sum_{n=2}^{\infty} \frac{\delta+1}{\delta+n} a_{n} z^{n} \quad(\delta>-1, z \in E) \tag{1.2}
\end{equation*}
$$

It readily follows from (1.2) that

$$
f(z) \in \mathcal{A} \Leftrightarrow \mathcal{F}_{\delta}(z) \in \mathcal{A}
$$

Several essentially equivalent definitions of fractional calculus have been given in the literature (cf., e.g., [12], [13], [14]). We state the following definitions due to Owa [10] which have been used rather frequently in the theory of analytic functions.

Definition 1. The fractional integral of order λ is defined, for a function $f(z)$, by

$$
\begin{equation*}
D_{z}^{-\lambda} f(z)=\frac{1}{\Gamma(\lambda)} \int_{0}^{z} \frac{f(\zeta)}{(\zeta-z)^{1-\lambda}} d \zeta \quad(\lambda>0) \tag{1.3}
\end{equation*}
$$

and the fractional derivative of order λ is defined by

$$
\begin{equation*}
D_{z}^{\lambda} f(z)=\frac{1}{\Gamma(1-\lambda)} \frac{d}{d z} \int_{0}^{z} \frac{f(\zeta)}{(\zeta-z)^{\lambda}} d \zeta \quad(0 \leq \lambda<1) \tag{1.4}
\end{equation*}
$$

where $f(z)$ is analytic in a simply connected region of the z-plane containing the origin, and the multiplicity of $(z-\zeta)^{\lambda-1}$ involved in (1.3) (and that of $z-\zeta$ involved in (1.4)) is removed by requiring $\log (z-\zeta)$ to be real when $z-\zeta>0$.

Definition 2. Under the hypotheses of Definition 1, the fractional derivative of order $n+\lambda$ is defined by

$$
D_{z}^{n+\lambda} f(z)=\frac{d^{n}}{d z^{n}}\left(D_{z}^{\lambda} f(z)\right) \quad\left(0 \leq \lambda<1, n \in \mathbb{N}_{0}=\{0,1, \ldots\}\right)
$$

Let

$$
\phi(a, c ; z)=\sum_{n=0}^{\infty} \frac{(a)_{n}}{(c)_{n}} z^{n+1} \quad(c \neq 0,-1,-2, \ldots)
$$

where $(x)_{n}$ is the Pochhammer symbol defined by

$$
(x)_{n}=\frac{\Gamma(x+n)}{\Gamma(x)}= \begin{cases}x(x+1)(x+2) \ldots(x+n-1), & n \in \mathbb{N}_{0} \\ 1, & n=0\end{cases}
$$

We note that $\phi(a, 1 ; z)=z /(1-z)^{a}$ and $\phi(2,1 ; z)$ is the well known Koebe function.

Corresponding to the function $\phi(a, c ; z)$ and for an analytic function $f(z)$ given by (1.1), Carlson and Shaffer [4] defined a linear operator $\mathcal{L}(a, c)$ by

$$
\begin{equation*}
\mathcal{L}(a, c) f(z)=\phi(a, c ; z) * f(z)=z+\sum_{n=2}^{\infty} \frac{(a)_{n-1}}{(c)_{n-1}} a_{n} z^{n} \tag{1.5}
\end{equation*}
$$

where the symbol $*$ stands for the Hadamard product (or convolution). We see that if $a=0,-1,-2, \ldots$, then $\mathcal{L}(a, c) f(z)$ is a polynomial. For $a \neq 0,-1,-2, \ldots$, an application of the root test shows that the infinite series for $\mathcal{L}(a, c) f(z)$ has the same radius of convergence as that of $f(z)$ because $\lim _{n \rightarrow \infty}\left|(a)_{n} /(c)_{n}\right|^{1 / n}=1$. Hence, $\mathcal{L}(a, c)$ maps \mathcal{A} into itself. The Ruscheweyh derivatives [11] of $f(z)$ are $\mathcal{L}(n+1,1) f(z), n \in \mathbb{N}_{0}$.

We further observe that

$$
\mathcal{L}(a, a) f(z)=f(z), \quad \mathcal{L}(2,1) f(z)=z f^{\prime}(z), \quad \mathcal{L}(\delta+1, \delta+2) f(z)=F_{\delta}(z)
$$

and

$$
\mathcal{L}(2,2-\lambda) f(z)=\Gamma(2-\lambda) z^{\lambda} D_{z}^{\lambda} f(z)=J_{z}^{\lambda} f(z) \quad(0 \leq \lambda<1) .
$$

Making use of the operator $\mathcal{L}(a, c)$, we now introduce a subclass of \mathcal{A} as follows:

Definition 3. A function $f \in \mathcal{A}$ is said to be in the class $\mathcal{S}(a, c, A, B)$ if it satisfies

$$
\begin{equation*}
\frac{\mathcal{L}(a, c-1) f(z)}{\mathcal{L}(a, c) f(z)} \prec \frac{1+A z}{1+B z} \quad(z \in E) \tag{1.6}
\end{equation*}
$$

for some $a>0, c>1$, and $-1 \leq B<A \leq 1$. By the definition of subordination, it follows that

$$
\begin{equation*}
\left|\frac{\mathcal{L}(a, c-1) f(z)-\mathcal{L}(a, c) f(z)}{A \mathcal{L}(a, c) f(z)-B \mathcal{L}(a, c-1) f(z)}\right|<1 \quad(z \in E) \tag{1.7}
\end{equation*}
$$

For convenience, we put
$\mathcal{S}(2,2-\lambda, \beta(1-2 \alpha),-\beta)=\mathcal{S}(\lambda, \alpha, \beta) \quad(0 \leq \lambda<1,0 \leq \alpha<1,0<\beta \leq 1)$, the class consisting of functions in \mathcal{A} satisfying the condition

$$
\left|\frac{J_{z}^{\lambda+1} f(z)-J_{z}^{\lambda} f(z)}{J_{z}^{\lambda} f(z)+(1-2 \alpha) J_{z}^{\lambda+1} f(z)}\right|<\beta \quad(z \in E) .
$$

The following observations are obvious:
(i) $\mathcal{S}(0, \alpha, 1)=\mathcal{S}^{*}(\alpha)$ is the class of starlike functions of order α;
(ii) $\mathcal{S}(\lambda, \gamma, 1)=\mathcal{A}(\lambda+1, \lambda, \gamma)(0 \leq \lambda<1,-\lambda /(1-\lambda) \leq \gamma<1)$, the class studied by Kim and Srivastava [7].

In the present paper, we derive various properties and characteristics of the class $\mathcal{S}(a, c, A, B)$ by using the techniques of Briot-Bouquet differential
subordination. We also obtain a sufficient condition, coefficient estimates and distortion theorems for this class. Further, we give some applications of our results to a class of fractional calculus operators. Many of our results improve and generalize the corresponding ones in [2], [3], and [7].
2. Preliminaries. In order to establish our results, we need the following lemmas.

Lemma 1 [8]. If $-1 \leq B<A \leq 1, \beta>0$ and the complex number γ satisfy $\operatorname{Re}(\gamma) \geq-\beta(1-A) /(1-B)$, then the differential equation

$$
q(z)+\frac{z q^{\prime}(z)}{\beta q(z)+\gamma}=\frac{1+A z}{1+B z}
$$

has a univalent solution in E given by

$$
q(z)= \begin{cases}\frac{z^{\beta+\gamma}(1+B z)^{\beta(A-B) / B}}{\beta \int_{0}^{z} t^{\beta+\gamma-1}(1+B t)^{\beta(A-B) / B} d t}-\frac{\gamma}{\beta}, & B \neq 0 \tag{2.1}\\ \frac{z^{\beta+\gamma} \exp (\beta A z)}{\beta \int_{0}^{z} t^{\beta+\gamma-1} \exp (\beta A t) d t}-\frac{\gamma}{\beta}, & B=0\end{cases}
$$

If $p(z)$ is analytic in E and satisfies

$$
p(z)+\frac{z p^{\prime}(z)}{\beta p(z)+\gamma} \prec \frac{1+A z}{1+B z}
$$

then

$$
p(z) \prec q(z) \prec \frac{1+A z}{1+B z}
$$

and $q(z)$ is the best dominant.
Lemma 2 [16]. Let μ be a positive measure on the unit interval [0, 1]. Let $g(t, z)$ be an analytic function in E for each $t \in[0,1]$, and integrable in t for each $z \in E$ and for almost all $t \in[0,1]$, and suppose that $\operatorname{Re}\{g(t, z)\}>0$ on $E, g(t,-r)$ is real and $\operatorname{Re}\{1 / g(t, z)\} \geq 1 / g(t,-r)$ for $|z| \leq r$ and $t \in[0,1]$. If $g(z)=\int_{0}^{z} g(t, z) d \mu(t)$, then $\operatorname{Re}\{1 / g(z)\} \geq 1 / g(-r)$ for $|z| \leq r$.

For real or complex numbers α_{1}, α_{2} and $\beta_{1}\left(\beta_{1} \neq 0,-1,-2, \ldots\right)$, the hypergeometric function ${ }_{2} F_{1}(z)$ is defined by

$$
\begin{equation*}
{ }_{2} F_{1}(z)={ }_{2} F_{1}\left(\alpha_{1}, \alpha_{2} ; \beta_{1} ; z\right)=\sum_{n=0}^{\infty} \frac{\left(\alpha_{1}\right)_{n}\left(\alpha_{2}\right)_{n}}{\left(\beta_{1}\right)_{n}} \frac{z^{n}}{n!} \tag{2.2}
\end{equation*}
$$

We note that the series in (2.2) converges absolutely in E (cf. [15]). The following identities are well known [15].

Lemma 3. For real or complex α_{1}, α_{2} and $\beta_{1}\left(\beta_{1} \neq 0,-1,-2, \ldots\right)$, we have

$$
\begin{align*}
& \int_{0}^{1} t^{\alpha_{2}-1}(1-t)^{\beta_{1}-\alpha_{2}-1}(1-t z)^{-\alpha_{1}} d t \tag{2.3}\\
& \quad=\frac{\Gamma\left(\alpha_{2}\right) \Gamma\left(\beta_{1}-\alpha_{2}\right)}{\Gamma\left(\beta_{1}\right)}{ }_{2} F_{1}\left(\alpha_{1}, \alpha_{2} ; \beta_{1} ; z\right) \quad\left(\operatorname{Re} \alpha_{1}>\operatorname{Re} \alpha_{2}>0\right)
\end{align*}
$$

$$
\begin{align*}
& { }_{2} F_{1}\left(\alpha_{1}, \alpha_{2} ; \beta_{1} ; z\right)={ }_{2} F_{1}\left(\alpha_{2}, \alpha_{1} ; \beta_{1} ; z\right) \tag{2.4}\\
& { }_{2} F_{1}\left(\alpha_{1}, \alpha_{2} ; \beta_{1} ; z\right)=(1-z)^{-\alpha_{1}}{ }_{2} F_{1}\left(\alpha_{1}, \beta_{1}-\alpha_{2} ; \beta_{1} ; z\right) . \tag{2.5}
\end{align*}
$$

Lemma 4. Let $p(z)$ be analytic in E with $p(0)=1$ and $p(z) \neq 0$ for $0<|z|<1$, and let $-1 \leq B<A \leq 1$.
(i) Let $B \neq 0$ and μ be a complex number with $\mu \neq 0$. Let A, B and μ satisfy either

$$
\begin{equation*}
\left|\mu \frac{A-B}{B}-1\right| \leq 1 \quad \text { or } \quad\left|\mu \frac{A-B}{B}+1\right| \leq 1 \tag{2.6}
\end{equation*}
$$

If $p(z)$ satisfies

$$
1+\frac{z p^{\prime}(z)}{\mu p(z)} \prec \frac{1+A z}{1+B z} \quad(z \in E)
$$

then

$$
p(z) \prec q(z)=(1+B z)^{\mu(A-B) / B}
$$

and $q(z)$ is the best dominant.
(ii) Let $B=0, \mu$ be a complex number with $\mu \neq 0$, and $|\mu A|<\pi$. If $p(z)$ satisfies

$$
1+\frac{z p^{\prime}(z)}{\mu p(z)} \prec \frac{1+A z}{1+B z} \quad(z \in E)
$$

then

$$
p(z) \prec \exp (\mu A z)
$$

and this is the best dominant.
To avoid repetition we lay down, once for all, that $a>0, c>1,0 \leq \lambda<1$, $0 \leq \alpha<1,0<\beta \leq 1,-1 \leq B<A \leq 1$.

3. Main results

Theorem 1. If $B<A \leq(c-B) /(c-A)$, then:
(i) $\mathcal{S}(a, c, A, B) \subset \mathcal{S}\left(a, c+1, A^{*}, B\right)$ where $A^{*}=\{(c-1) A+B\} / c$. Furthermore, if $f \in \mathcal{S}(a, c, A, B)$ then

$$
\frac{\mathcal{L}(a, c) f(z)}{\mathcal{L}(a, c+1) f(z)} \prec \frac{1}{c Q(z)}=\widetilde{q}(z) \quad(z \in E)
$$

where

$$
Q(z)= \begin{cases}\int_{0}^{1} t^{c-1}\left(\frac{1+B t z}{1+B z}\right)^{(c-1)(A-B) / B} d t, & B \neq 0 \tag{3.1}\\ \int_{0}^{1} t^{c-1} \exp \{(c-1)(t-1) A z\} d t, & B=0\end{cases}
$$

and $\widetilde{q}(z)$ is the best dominant.
(ii) If $B<0, A \leq \min \{(c-B) /(c-1),-2 B /(c-1)\}$ then for $f \in$ $\mathcal{S}(a, c, A, B)$,

$$
\begin{align*}
& \operatorname{Re}\left\{\frac{\mathcal{L}(a, c) f(z)}{\mathcal{L}(a, c+1) f(z)}\right\} \tag{3.2}\\
& \quad>\left\{{ }_{2} F_{1}\left(1, \frac{(c-1)(A-B)}{B} ; c+1 ; \frac{B}{B-1}\right)\right\}^{-1} \quad(z \in E)
\end{align*}
$$

The result is best possible.
Proof. From (1.5), it follows that

$$
\begin{equation*}
z(\mathcal{L}(a, c) f(z))^{\prime}=(c-1) \mathcal{L}(a, c-1) f(z)+(2-c) \mathcal{L}(a, c) f(z) \tag{3.3}
\end{equation*}
$$

Let $f \in \mathcal{S}(a, c, A, B)$. Setting

$$
\begin{equation*}
p(z)=\frac{\mathcal{L}(a, c) f(z)}{\mathcal{L}(a, c+1) f(z)} \tag{3.4}
\end{equation*}
$$

we see that $p(z)$ is analytic in E and $p(0)=1$. Making use of logarithmic differentiation in (3.4) and using the identity (3.3) in the resulting equation, we get

$$
\begin{equation*}
P(z)+\frac{z P^{\prime}(z)}{(c-1) P(z)+1} \prec \frac{1+A z}{1+B z} \quad(z \in E) \tag{3.5}
\end{equation*}
$$

where $P(z)=\{c p(z)-1\} /(c-1)$. Using Lemma 1, we deduce that

$$
\begin{equation*}
P(z) \prec q(z) \prec \frac{1+A z}{1+B z} \quad(z \in E) \tag{3.6}
\end{equation*}
$$

where $q(z)$ is the best dominant of (3.5) and is given by (2.1) for $\beta=c-1$ and $\gamma=1$. Again by (3.6), we obtain

$$
p(z) \prec \frac{1}{c Q(z)}=\widetilde{q}(z) \quad(z \in E)
$$

where $Q(z)$ is given by (3.1). This proves the first part of the theorem.
Now we prove (ii). We show that

$$
\begin{equation*}
\inf _{|z|<1}\{\operatorname{Re}(\widetilde{q}(z))\}=\widetilde{q}(-1) \tag{3.7}
\end{equation*}
$$

If we set $\alpha_{1}=\{(c-1)(B-A)\} / B, \alpha_{2}=c, \beta_{1}=c+1$, then $\beta_{1}>\alpha_{2}>0$. From (3.1), by using (2.3)-(2.5) we see that for $B \neq 0$,

$$
\begin{align*}
Q(z) & =(1+B z)^{\alpha_{1}} \int_{0}^{1} t^{\alpha_{2}-1}(1+B t z)^{-\alpha_{1}} d t \tag{3.8}\\
& =\frac{\Gamma\left(\alpha_{2}\right) \Gamma\left(\beta_{1}-\alpha_{2}\right)}{\Gamma\left(\beta_{1}\right)}{ }_{2} F_{1}\left(1, \alpha_{1} ; \beta_{1} ; \frac{B z}{1+B z}\right)
\end{align*}
$$

To prove (3.7), we show that $\operatorname{Re}\{1 / Q(z)\} \geq 1 / Q(-1), z \in E$. Again, by (3.8) for $B<0, A<-2 B /(c-1)$ (so that $\beta_{1}>\alpha_{1}>0$), (3.1) can be written as

$$
Q(z)=\int_{0}^{1} g(t, z) d \mu(t)
$$

where

$$
g(t, z)=\frac{1+B z}{1+(1-t) B z},
$$

and

$$
d \mu(t)=\frac{\Gamma\left(\alpha_{2}\right)}{\Gamma\left(\alpha_{1}\right) \Gamma\left(\beta_{1}-\alpha_{1}\right)} t^{\alpha_{1}-1}(1-t)^{\beta_{1}-\alpha_{1}-1} d t
$$

is a positive measure on $[0,1]$.
For $-1 \leq B<0$, it may be noted that $\operatorname{Re}\{g(t, z)\}>0, g(t,-r)$ is real for $0 \leq r<1, t \in[0,1]$ and

$$
\operatorname{Re}\left\{\frac{1}{g(t, z)}\right\} \geq \frac{1-(1-t) B r}{1-B r}=\frac{1}{g(t,-r)} \quad(|z| \leq r<1, t \in[0,1])
$$

Therefore, by using Lemma 2 , we deduce that $\operatorname{Re}\{1 / Q(z)\} \geq 1 / Q(-r)$, $|z| \leq r<1$ and by taking $r \rightarrow 1^{-}$, we obtain $\operatorname{Re}\{1 / Q(z)\} \geq 1 / Q(-1)$, $z \in E$. In the case $A=-2 B /(c-1)$, we obtain the required assertion by letting $A \rightarrow(-2 B /(c-1))^{+}$. This proves (3.7).

The result is best possible because of the best dominant property of $\widetilde{q}(z)$.
Putting $a=2, c=2-\lambda, A=\beta(1-2 \alpha)$ and $B=-\beta$ in Theorem 1, we get

Corollary 1. If $f \in \mathcal{S}(\lambda, \alpha, \beta)$, then
$\operatorname{Re}\left\{\frac{J_{z}^{\lambda} f(z)}{J_{z}^{\lambda-1} f(z)}\right\}>\left\{{ }_{2} F_{1}\left(1,2(1-\lambda)(1-\alpha) ; 3-\lambda ; \frac{\beta}{\beta+1}\right)\right\}^{-1} \quad(z \in E)$.
The result is best possible.
For $\lambda=0$ and $\beta=1$, Corollary 1 yields

Corollary 2. If $f \in \mathcal{S}^{*}(\alpha)$, then

$$
\operatorname{Re}\left\{z f(z)\left(\int_{0}^{z} f(t) d t\right)^{-1}\right\}>2\left({ }_{2} F_{1}(1,2(1-\alpha) ; 3 ; 1 / 2)\right)^{-1} \quad(z \in E) .
$$

The result is best possible.
Theorem 2. Let $f \in \mathcal{S}(a, c, A, B)$, where $-1 \leq B<A \leq 1(B \neq 0)$. If either

$$
\left|(c-1) \frac{A-B}{B}-1\right| \leq 1 \quad \text { or } \quad\left|(c-1) \frac{A-B}{B}+1\right| \leq 1
$$

then

$$
\begin{equation*}
\frac{\mathcal{L}(a, c) f(z)}{z} \prec(1+B z)^{(c-1)(A-B) / B} \quad(z \in E) . \tag{3.9}
\end{equation*}
$$

In case $B=0$, i.e., for $f \in \mathcal{S}(a, c, A, 0)(0<A \leq 1)$, we have

$$
\begin{equation*}
\frac{\mathcal{L}(a, c) f(z)}{z} \prec \exp ((c-1) A z) \quad(z \in E), \tag{3.10}
\end{equation*}
$$

where $|A|<\pi /(c-1)$. The result is best possible.
Proof. Setting $p(z)=(\mathcal{L}(a, c) f(z)) / z$, we note that $p(z)$ is analytic in E, $p(0)=1$ and $p(z) \neq 0$ for $z \in E$. Logarithmic differentiation $p(z)$ followed by the use of the identity (3.3) yields

$$
1+\frac{z p^{\prime}(z)}{(c-1) p(z)}=\frac{\mathcal{L}(a, c-1) f(z)}{\mathcal{L}(a, c) f(z)} \prec \frac{1+A z}{1+B z} \quad(z \in E) .
$$

For such $p(z)$, from (i) and (ii) of Lemma 4, we get the relations (3.9) and (3.10) of the theorem.

Corollary 3. Under the hypotheses of Theorem 2, we have, for $|z|=$ $r<1$,

$$
|\mathcal{L}(a, c) f(z)| \leq \begin{cases}r(1+B r)^{(c-1)(A-B) / B}, & B \neq 0 \tag{3.11}\\ r \exp ((c-1) A r), & B=0,\end{cases}
$$

and

$$
|\mathcal{L}(a, c) f(z)| \geq \begin{cases}r(1-B r)^{(c-1)(A-B) / B}, & B \neq 0 \tag{3.12}\\ r \exp (-(c-1) A r), & B=0\end{cases}
$$

All the above estimates are sharp.
Proof. For $B \neq 0$, we deduce from (3.9) that

$$
\frac{\mathcal{L}(a, c) f(z)}{z}=(1+B \omega(z))^{(c-1)(A-B) / B},
$$

where $\omega(z)$ is analytic in E satisfying the conditions $\omega(0)=0$ and $|\omega(z)|$ $\leq|z|$ for $z \in E$.
(i) When $B>0$,

$$
\begin{aligned}
\left|\frac{\mathcal{L}(a, c) f(z)}{z}\right| & =\left|(1+B \omega(z))^{(c-1)(A-B) / B}\right| \\
& =\left|\exp \left[\frac{(c-1)(A-B)}{B} \log (1+B \omega(z))\right]\right| \\
& =\exp \left[\operatorname{Re}\left\{\frac{(c-1)(A-B)}{B} \log (1+B \omega(z))\right\}\right] \\
& =\exp \left[\frac{(c-1)(A-B)}{B} \log |(1+B \omega(z))|\right] \\
& \leq \mid\left(1+\left.B \omega(z)\right|^{(c-1)(A-B) / B} \leq(1+B r)^{(c-1)(A-B) / B} .\right.
\end{aligned}
$$

(ii) When $B<0$, we put $B=-D, D>0$, so that

$$
\begin{aligned}
\left|\frac{\mathcal{L}(a, c) f(z)}{z}\right| & =\left|(1+B \omega(z))^{(c-1)(A-B) / B}\right|=\left|\left\{(1-D \omega(z))^{-1}\right\}^{(c-1)(A-B) / B}\right| \\
& \leq\left|(1-D \omega(z))^{-1}\right|^{(c-1)(A-B) / B} \leq\left(\frac{1}{1-D r}\right)^{(c-1)(A-B) / B} \\
& \leq(1+B r)^{(c-1)(A-B) / B} .
\end{aligned}
$$

In case $B=0$ and $|A|<\pi /(c-1)$, we have

$$
\left|\frac{\mathcal{L}(a, c) f(z)}{z}\right|=\exp \{(c-1) A \operatorname{Re}(\omega(z))\} \leq \exp \{(c-1) A r\}
$$

This proves the assertion (3.11). Similarly, we can prove (3.12).
The bounds are sharp, being attained by the function $f(z)$ defined by

$$
\mathcal{L}(a, c) f(z)= \begin{cases}z\left(1+B \delta_{1} z\right)^{(c-1)(A-B) / B}, & B \neq 0 \\ z \exp ((c-1) A z), & B=0\end{cases}
$$

For $a=2, c=2-\lambda, A=\beta(1-2 \alpha)$ and $B=-\beta$, Corollary 3 yields
Corollary 4. If $f \in \mathcal{S}(\lambda, \alpha, \beta)$, then for $|z|=r<1$,

$$
\frac{r}{(1+\beta r)^{2(1-\lambda)(1-\alpha)}} \leq\left|J_{z}^{\lambda}(z)\right| \leq \frac{r}{(1-\beta r)^{2(1-\lambda)(1-\alpha)}}
$$

The bounds are sharp.
Corollary 5. If $f \in \mathcal{S}(\lambda, \alpha, \beta)$, then

$$
\operatorname{Re}\left\{\frac{J_{z}^{\lambda}(z)}{z}\right\}>(1+\beta)^{-2(1-\lambda)(1-\alpha)} \quad(z \in E)
$$

The result is sharp.
Theorem 3. Let δ be a real number satisfying

$$
\begin{equation*}
B<A \leq B+\frac{(1-B)(\delta+1)}{c-1} \tag{3.13}
\end{equation*}
$$

(i) If $f \in \mathcal{S}(a, c, A, B)$, then the function \mathcal{F}_{δ} defined by (1.2) belongs to the class $\mathcal{S}(a, c, A, B)$. Furthermore,

$$
\begin{equation*}
\frac{\mathcal{L}(a, c-1) \mathcal{F}_{\delta}(z)}{\mathcal{L}(a, c) \mathcal{F}_{\delta}(z)} \prec \frac{1}{c-1}\left[\frac{1}{Q(z)}-(2+\delta-c)\right] \equiv \widetilde{q}(z) \quad(z \in E) \tag{3.14}
\end{equation*}
$$

where

$$
Q(z)= \begin{cases}\int_{0}^{1} t^{\delta}\left(\frac{1+B t z}{1+B z}\right)^{(c-1)(A-B) / B} d t, & B \neq 0, \tag{3.15}\\ \int_{0}^{1} t^{\delta} \exp \{(c-1)(t-1) A z\} d t, & B=0,\end{cases}
$$

and $\widetilde{q}(z)$ is the best dominant.
(ii) If $B<0$ and

$$
A \leq \min \left\{\frac{(1-B)(\delta+1)}{c-1}+B,-\frac{(\delta+3-c) B}{c-1}\right\},
$$

then for $f \in \mathcal{S}(a, c, A, B)$, we have

$$
\begin{aligned}
& \operatorname{Re}\left\{\frac{\mathcal{L}(a, c-1) \mathcal{F}_{\delta}(z)}{\mathcal{L}(a, c) \mathcal{F}_{\delta}(z)}\right\} \\
& > \\
& \quad \frac{1}{c-1}\left[(\delta+1)\left\{{ }_{2} F_{1}\left(1, \frac{(c-1)(A-B)}{B} ; \delta+2 ; \frac{B}{B-1}\right)\right\}^{-1}\right. \\
& \quad-(2+\delta-c)] \quad(z \in E) .
\end{aligned}
$$

The result is best possible.
Proof. Since $\mathcal{F}_{\delta}(z)=z+\sum_{n=2}^{\infty}\{(\delta+1) /(\delta+n)\} a_{n} z^{n}$, it follows from (1.5) that

$$
\begin{equation*}
z\left(\mathcal{L}(a, c) \mathcal{F}_{\delta}(z)\right)^{\prime}=(\delta+1) \mathcal{L}(a, c) f(z)-\delta \mathcal{L}(a, c) \mathcal{F}_{\delta}(z) \tag{3.16}
\end{equation*}
$$

Putting

$$
\begin{equation*}
p(z)=\frac{\mathcal{L}(a, c-1) \mathcal{F}_{\delta}(z)}{\mathcal{L}(a, c) \mathcal{F}_{\delta}(z)}, \tag{3.17}
\end{equation*}
$$

we see that $p(z)$ is analytic in E with $p(0)=1$. Since $f \in \mathcal{S}(a, c, A, B)$, it is clear that $\mathcal{L}(a, c) f(z) \neq 0$ in $0<|z|<1$ so that (3.3) and (3.16) give

$$
\begin{equation*}
\frac{\mathcal{L}(a, c) \mathcal{F}_{\delta}(z)}{\mathcal{L}(a, c) f(z)}=\frac{\delta+1}{(c-1) p(z)+(2+\delta-c)} \quad(z \in E) . \tag{3.18}
\end{equation*}
$$

Making use of the logarithmic differentiation in (3.18) and using (3.17), we deduce that

$$
p(z)+\frac{z p^{\prime}(z)}{(c-1) p(z)+(2+\delta-c)}=\frac{\mathcal{L}(a, c-1) f(z)}{\mathcal{L}(a, c) f(z)} \prec \frac{1+A z}{1+B z} \quad(z \in E) .
$$

Using Lemma 1, we obtain

$$
p(z) \prec \frac{1}{c-1}\left[\frac{1}{Q(z)}-(2+\delta-c)\right] \equiv \widetilde{q}(z) \prec \frac{1+A z}{1+B z} \quad(z \in E)
$$

where $Q(z)$ is given by (3.15), and $\widetilde{q}(z)$ is the best dominant. This proves the first part of the theorem.

Proceeding as in Theorem 1 we get the second part.
Taking $a=2, c=2-\lambda, A=\beta(1-2 \alpha)$ and $B=-\beta$ in Theorem 3, we obtain

Corollary 6. Let δ be a real number satisfying $\delta \geq\{(1-\lambda)(1-2 \alpha)-$ $(1+\beta \lambda)\} /(1+\beta)$.
(i) If $f \in \mathcal{S}(\lambda, \alpha, \beta)$, then the function \mathcal{F}_{δ} defined by (1.2) belongs to the class $\mathcal{S}(\lambda, \alpha, \beta)$. Furthermore,

$$
\frac{J_{z}^{1+\lambda} \mathcal{F}_{\delta}(z)}{J_{z}^{\lambda} \mathcal{F}_{\delta}(z)} \prec \frac{1}{1-\lambda}\left\{\frac{1}{Q(z)}-(\delta+\lambda)\right\} \equiv \widetilde{q}(z) \quad(z \in E)
$$

where $Q(z)$ is obtained from (3.15) for $c=2-\lambda, A=\beta(1-2 \alpha)$ and $B=-\beta$.
(ii) If

$$
\delta \geq \max \left\{\frac{(1-\lambda)(1-2 \alpha)-(1+\beta \lambda)}{1+\beta}, \frac{(1-\lambda)(1-2 \alpha)-\beta(1+\lambda)}{\beta}\right\}
$$

and $f \in \mathcal{S}(\lambda, \alpha, \beta)$, then $\mathcal{F}_{\delta} \in \mathcal{S}(\lambda, \varrho, \beta)$, where

$$
\varrho=\frac{1}{1-\lambda}\left[(\delta+1)\left\{{ }_{2} F_{1}\left(1,2(1-\lambda)(1-\alpha) ; \delta+2 ; \frac{\beta}{\beta+1}\right)\right\}^{-1}-(\delta+\lambda)\right] .
$$

The result is best possible.
Remark. Substituting $\lambda=0$ and $\beta=1$ in part (ii) of Corollary 6 , we see that $f \in \mathcal{S}^{*}(\alpha)(0 \leq \alpha<1)$ implies that $\mathcal{F}_{\delta} \in \mathcal{S}^{*}\left(\varrho_{2}\right)$, where $\varrho_{2}=(\delta+1)\left\{{ }_{2} F_{1}(1,2(1-\alpha) ; \delta+2 ; 1 / 2)\right\}^{-1}-\delta$, provided $\delta \geq-\alpha$. This is an improvement of a recent result of Bajpai and Srivastava [2] and Bernardi [3] for $\delta=1,2, \ldots$

Theorem 4. Let $f \in \mathcal{A}$ be given by (1.1) and $-1 \leq B<0$. If

$$
\begin{equation*}
\sum_{n=2}^{\infty} \frac{\{(1-B)(n-1)+(A-B)(c-1)\}(a)_{n}}{(c-1)_{n}}\left|a_{n}\right| \leq A-B \tag{3.19}
\end{equation*}
$$

then $f \in \mathcal{S}(a, c, A, B)$. The result is sharp.
Proof. Suppose (3.19) holds. Then for $|z|=r<1$,

$$
\begin{aligned}
\mid \mathcal{L}(a, c-1) & f(z)-\mathcal{L}(a, c) f(z)|-|A \mathcal{L}(a, c) f(z)-B \mathcal{L}(a, c-1) f(z)| \\
\leq & \sum_{n=2}^{\infty} \frac{(n-1)(a)_{n}}{(c-1)_{n}}\left|a_{n}\right| r^{n} \\
& -\left\{(A-B) r-\sum_{n=2}^{\infty} \frac{\{(A-B)(c-1)-(n-1) B\}(a)_{n}}{(c-1)_{n}}\left|a_{n}\right| r^{n}\right\} \\
< & \sum_{n=2}^{\infty} \frac{(n-1)(a)_{n}}{(c-1)_{n}}\left|a_{n}\right| \\
& -\left\{(A-B)-\sum_{n=2}^{\infty} \frac{\{(A-B)(c-1)-(n-1) B\}(a)_{n}}{(c-1)_{n}}\left|a_{n}\right|\right\} \\
= & \sum_{n=2}^{\infty} \frac{\{(1-B)(n-1)+(A-B)(c-1)\}(a)_{n}}{(c-1)_{n}}\left|a_{n}\right|-(A-B) \leq 0 .
\end{aligned}
$$

Thus, it follows from (1.7) that $f \in \mathcal{S}(a, c, A, B)$.
The result is sharp for the functions

$$
f_{n}(z)=z+\sum_{n=2}^{\infty} \frac{(A-B)(c-1)_{n}}{\{(1-B)(n-1)+(A-B)(c-1)\}(a)_{n}} z^{n} \quad(n \geq 2),
$$

because

$$
\left|\frac{\mathcal{L}(a, c-1) f_{n}(z)-\mathcal{L}(a, c) f_{n}(z)}{A \mathcal{L}(a, c) f_{n}(z)-B \mathcal{L}(a, c-1) f_{n}(z)}\right|=1 \quad \text { for } z=\exp (i \pi / n) .
$$

Corollary 7. Let $f \in \mathcal{A}$ be given by (1.1). If

$$
\sum_{n=2}^{\infty} \frac{\Gamma(n+1) \Gamma(1-\lambda)\{(1+\beta)(n-1)+2 \beta(1-\alpha)\}}{\Gamma(n+1-\lambda)}\left|a_{n}\right| \leq 2 \beta(1-\alpha)
$$

then $f \in \mathcal{S}(\lambda, \alpha, \beta)$. The result is sharp.
Theorem 5. If f given by (1.1) belongs to $\mathcal{S}(a, c, A, B)$, then

$$
\begin{equation*}
\left|a_{n}\right| \leq \frac{(A-B)(c-1)_{n}}{(n-1)(a)_{n-1}} \prod_{j=2}^{n-1}\left(1+\frac{(A-B)(c-1)}{j-1}\right) \quad(n \geq 2) . \tag{3.20}
\end{equation*}
$$

The result is sharp.
Proof. Since $f \in \mathcal{S}(a, c, A, B)$, we have

$$
\begin{equation*}
\mathcal{L}(a, c-1) f(z)=p(z) \mathcal{L}(a, c) f(z) \tag{3.21}
\end{equation*}
$$

where $p(z)=1+p_{1} z+p_{2} z^{2}+\ldots \in \mathcal{P}(A, B)$. Substituting the power series expansions of $\mathcal{L}(a, c-1) f(z), \mathcal{L}(a, c) f(z)$ and $p(z)$ in (3.21) and comparing the coefficients of z^{n} on both sides of the resulting equation, we obtain

$$
\begin{equation*}
\frac{(n-1)(a)_{n-1}}{(c-1)_{n}} a_{n}=p_{n-1}+\frac{(a)_{1}}{(c)_{1}} p_{n-2} a_{2}+\ldots+\frac{(a)_{n-2}}{(c)_{n-2}} p_{1} a_{n-1} \tag{3.22}
\end{equation*}
$$

Using the fact [1] that

$$
\left|p_{n}\right| \leq A-B \quad(n \geq 1)
$$

in (3.22), we get

$$
\begin{equation*}
\frac{(n-1)(a)_{n-1}}{(c-1)_{n}}\left|a_{n}\right| \leq(A-B)\left\{1+\sum_{m=2}^{n-1} \frac{(a)_{m-1}}{(c)_{m-1}}\left|a_{m}\right|\right\} \tag{3.23}
\end{equation*}
$$

We will prove by induction that the assertion (3.20) is satisfied for $n \geq 2$. If $n=2$, then

$$
\left|a_{2}\right| \leq \frac{(c-1)_{2}(A-B)}{(a)_{1}}
$$

Now suppose that (3.20) is satisfied for $n \leq k$. Then, from (3.23), we have

$$
\begin{aligned}
& \frac{k(a)_{k}}{(c-1)_{k+1}}\left|a_{k+1}\right| \leq(A-B)\left\{1+\sum_{m=2}^{k} \frac{(a)_{m-1}}{(c)_{m-1}}\left|a_{m}\right|\right\} \\
& \quad \leq(A-B)\left\{1+\sum_{m=2}^{k} \frac{(A-B)(c-1)}{m-1} \prod_{j=2}^{m-1}\left(1+\frac{(A-B)(c-1)}{j-1}\right)\right\} \\
& \quad=(A-B) \prod_{j=2}^{k}\left(1+\frac{(A-B)(c-1)}{j-1}\right)
\end{aligned}
$$

Hence

$$
\left|a_{n}\right| \leq \frac{(A-B)(c-1)_{n}}{(n-1)(a)_{n-1}} \prod_{j=2}^{n-1}\left(1+\frac{(A-B)(c-1)}{j-1}\right)
$$

for all $n \geq 2$.
Finally, we note that the result is sharp for the functions $f_{n}(z)$ given by

$$
f_{n}(z)=z+\frac{(A-B)(c-1)_{n}}{(n-1)(a)_{n-1}} \prod_{j=2}^{n-1}\left(1+\frac{(A-B)(c-1)}{j-1}\right) z^{n} \quad(n \geq 2)
$$

Corollary 8. If f, given by (1.1), belongs to the class $\mathcal{S}(\lambda, \alpha, \beta)$, then

$$
\left|a_{n}\right| \leq \frac{2 \beta(1-\alpha) \Gamma(n+1-\lambda)}{(n-1) \Gamma(n+1) \Gamma(1-\lambda)} \prod_{j=2}^{n-1}\left(1+\frac{2 \beta(1-\alpha)(1-\lambda)}{j-1}\right) \quad(n \geq 2)
$$

The result is sharp.

Theorem 6. Let f, given by (1.1), belong to the class $\mathcal{S}(a, c, A, B)$ and μ be any complex number. Then

$$
\begin{aligned}
\left|a_{3}-\mu a_{2}^{2}\right| & \leq \frac{(A-B)(c-1)_{3}}{2(a)_{2}} \\
& \times \max \left\{1,\left|\{B-(A-B)(c-1)\}+\mu \frac{2(A-B)(a+1)(c-1)_{2}}{a(c+1)}\right|\right\} .
\end{aligned}
$$

The result is sharp.
Proof. For $f \in \mathcal{S}(a, c, A, B)$, we have, by (1.6),

$$
\begin{align*}
& (3.24) \quad \sum_{n=2}^{\infty} \frac{(n-1)(a)_{n-1}}{(c-1)_{n}} a_{n} z^{n} \tag{3.24}\\
& =\left\{(A-B) z+\sum_{n=2}^{\infty} \frac{\{(A-B)(c-1)-(n-1) B\}(a)_{n-1}}{(c-1)_{n}} a_{n} z^{n}\right\}\left\{\sum_{j=1}^{\infty} \omega_{j} z^{j}\right\}
\end{align*}
$$

where $\omega(z)=\sum_{j=1}^{\infty} \omega_{j} z^{j}$ is analytic in E with $|\omega(z)|<1$ for $z \in E$. On equating the coefficients of z^{2} and z^{3} on both sides of (3.24), we deduce that

$$
\begin{equation*}
a_{2}=\frac{(A-B)(c-1)}{a} \omega_{1} \tag{3.25}
\end{equation*}
$$

and

$$
\begin{equation*}
a_{3}=\frac{(A-B)(c-1)}{2(a)_{2}}\left\{\omega_{2}+((A-B)(c-1)-B) \omega_{1}^{2}\right\} . \tag{3.26}
\end{equation*}
$$

It is known [6] that for every complex number γ,

$$
\begin{equation*}
\left|\omega_{2}-\gamma \omega_{1}^{2}\right| \leq \max \{1,|\gamma|\} \tag{3.27}
\end{equation*}
$$

and the estimate is sharp. Now, by using (3.25) and (3.26), we obtain

$$
\begin{equation*}
\left|a_{3}-\mu a_{2}^{2}\right| \leq \frac{(A-B)(c-1)_{3}}{2(a)_{2}}\left|\omega_{2}-\gamma \omega_{1}^{2}\right|, \tag{3.28}
\end{equation*}
$$

where

$$
\gamma=\{B-(A-B)(c-1)\}+\mu \frac{2(A-B)(a+1)(c-1)_{2}}{a(c+1)} .
$$

The assertion of the theorem follows by using (3.27) in (3.28). The result is sharp as the estimate (3.27) is sharp.

Corollary 9. If f, given by (1.1), belongs to the class $\mathcal{S}(\lambda, \alpha, \beta)$, then for any complex number μ

$$
\begin{aligned}
\left|a_{3}-\mu a_{2}^{2}\right| & \leq \frac{\beta(1-\alpha) \Gamma(4-\lambda)}{3!\Gamma(1-\lambda)} \\
& \times \max \left\{1,\left|\frac{6 \beta(1-\alpha)(1-\lambda)(2-\lambda)}{3-\lambda}-\beta\{2(1-\alpha)(1-\lambda)+1\}\right|\right\}
\end{aligned}
$$

The result is sharp.

References

[1] V. Anh, K-fold symmetric starlike univalent functions, Bull. Austral. Math. Soc. 32 (1985), 419-436.
[2] S. K. Bajpai and R. S. L. Srivastava, On the radius of convexity and starlikeness of univalent functions, Proc. Amer. Math. Soc. 32 (1972), 153-160.
[3] S. D. Bernardi, Convex and starlike univalent functions, Trans. Amer. Math. Soc. 135 (1969), 429-446.
[4] B. C. Carlson and S. B. Shaffer, Starlike and prestarlike hypergeometric functions, SIAM J. Math. Anal. 15 (1984), 737-745.
[5] Z. Janowski, Some extremal problems for certain families of analytic functions, Ann. Polon. Math. 28 (1973), 297-326.
[6] F. R. Keogh and E. P. Merkes, A coefficient inequality for certain classes of analytic functions, Proc. Amer. Math. Soc. 20 (1960), 8-12.
[7] Y. C. Kim and H. M. Srivastava, Fractional integral and other linear operators associated with the Gaussian hypergeometric functions, Complex Variables Theory Appl. 34 (1997), 293-312.
[8] S. S. Miller and P. T. Mocanu, Univalent solutions of Briot-Bouquet differential equations, J. Differential Equations 58 (1985), 297-309.
[9] M. Obradović and S. Owa, On certain properties for some classes of starlike functions, J. Math. Anal. Appl. 145 (1990), 357-364.
[10] S. Owa, On the distortion theorems. I, Kyungpook Math. J. 18 (1978), 53-59.
[11] S. Ruscheweyh, New criteria for univalent functions, Proc. Amer. Math. Soc. 49 (1975), 109-115.
[12] S. G. Samko, A. A. Kilbas and O. I. Marichev, Fractional Integrals and Derivatives. Theory and Applications, Gordon and Breach, New York, 1993.
[13] H. M. Srivastava and R. G. Buschman, Theory and Applications of Convolution Integral Equations, Kluwer, Dordrecht, 1992.
[14] H. M. Srivastava and S. Owa (eds.), Univalent Functions, Fractional Calculus, and Their Applications, Ellis Horwood, Chichester, 1989.
[15] E. T. Whittaker and G. N. Watson, A Course of Modern Analysis, 4th edition (reprinted), Cambridge Univ. Press, Cambridge, 1962.
[16] D. R. Wilken and J. Feng, A remark on convex and starlike functions, J. London Math. Soc. 21 (1980), 287-290.
J. Patel

Department of Mathematics
Utkal University
Vani Vihar
Bhubaneswar 751004, India
E-mail: jpatelmath@sify.com
G. P. Mohapatra

Silicon School of Information Technology Commercial Complex

Acharya Vihar
Bhubaneswar 751013, India

[^0]: 2000 Mathematics Subject Classification: Primary 30C45.
 Key words and phrases: differential subordination, hypergeometric functions, Hadamard product (or convolution).

