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On certain subclasses of analytic functions
involving a linear operator

by J. Patel and G. P. Mohapatra (Bhubaneswar)

Abstract. A certain general class S(a, c,A,B) of analytic functions involving a linear
operator is introduced. The objective is to investigate various properties and characteris-
tics of this class. Several applications of the results (obtained here) to a class of fractional
calculus operators are also considered. The results contain some of the earlier work in
univalent function theory.

1. Introduction. Let A denote the class of functions of the form

(1.1) f(z) = z +
∞∑

n=2

anz
n

that are analytic in the open unit disc E = {z : |z| < 1}. Let S, S∗(α)
and K(α) (0 ≤ α < 1) be the usual subclasses of functions in A that are
univalent, starlike of order α and convex of order α, respectively. We note
that

f(z) ∈ K(α) ⇔ zf ′(z) ∈ S∗(α).

For arbitrary fixed real numbers A,B (−1 ≤ B < A ≤ 1), let P(A,B)
denote the class of functions of the form

φ(z) = 1 + c1z + c2z
2 + . . .

which are analytic in E and satisfy the condition

φ(z) ≺ 1 + Az

1 +Bz
(z ∈ E)

where the symbol ≺ stands for subordination. The class P(A,B) was intro-
duced and studied by Janowski [5].
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For a function f ∈ A given by (1.1), the generalized Bernardi integral
operator Fδ is

(1.2) Fδ(z) =
δ + 1
zδ

z�

0

tδ−1f(t) dt = z+
∞∑

n=2

δ + 1
δ + n

anz
n (δ > −1, z ∈ E).

It readily follows from (1.2) that

f(z) ∈ A ⇔ Fδ(z) ∈ A.
Several essentially equivalent definitions of fractional calculus have been

given in the literature (cf., e.g., [12], [13], [14]). We state the following defini-
tions due to Owa [10] which have been used rather frequently in the theory
of analytic functions.

Definition 1. The fractional integral of order λ is defined, for a func-
tion f(z), by

(1.3) D−λz f(z) =
1

Γ (λ)

z�

0

f(ζ)
(ζ − z)1−λ dζ (λ > 0),

and the fractional derivative of order λ is defined by

(1.4) Dλ
z f(z) =

1
Γ (1− λ)

d

dz

z�

0

f(ζ)
(ζ − z)λ

dζ (0 ≤ λ < 1),

where f(z) is analytic in a simply connected region of the z-plane containing
the origin, and the multiplicity of (z − ζ)λ−1 involved in (1.3) (and that of
z − ζ involved in (1.4)) is removed by requiring log(z − ζ) to be real when
z − ζ > 0.

Definition 2. Under the hypotheses of Definition 1, the fractional deri-
vative of order n+ λ is defined by

Dn+λ
z f(z) =

dn

dzn
(Dλ

z f(z)) (0 ≤ λ < 1, n ∈ N0 = {0, 1, . . .}).

Let

φ(a, c; z) =
∞∑

n=0

(a)n
(c)n

zn+1 (c 6= 0,−1,−2, . . .)

where (x)n is the Pochhammer symbol defined by

(x)n=
Γ (x+ n)
Γ (x)

=
{
x(x+ 1)(x+ 2) . . . (x+ n− 1), n ∈ N0,
1, n = 0.

We note that φ(a, 1; z) = z/(1− z)a and φ(2, 1; z) is the well known Koebe
function.
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Corresponding to the function φ(a, c; z) and for an analytic function f(z)
given by (1.1), Carlson and Shaffer [4] defined a linear operator L(a, c) by

(1.5) L(a, c)f(z) = φ(a, c; z) ∗ f(z) = z +
∞∑

n=2

(a)n−1

(c)n−1
anz

n

where the symbol ∗ stands for the Hadamard product (or convolution).
We see that if a = 0,−1,−2, . . . , then L(a, c)f(z) is a polynomial. For
a 6= 0,−1,−2, . . . , an application of the root test shows that the infinite
series for L(a, c)f(z) has the same radius of convergence as that of f(z)
because limn→∞ |(a)n/(c)n|1/n = 1. Hence, L(a, c) maps A into itself. The
Ruscheweyh derivatives [11] of f(z) are L(n+ 1, 1)f(z), n ∈ N0.

We further observe that

L(a, a)f(z) = f(z), L(2, 1)f(z) = zf ′(z), L(δ + 1, δ + 2)f(z) = Fδ(z)

and

L(2, 2− λ)f(z) = Γ (2− λ)zλDλ
z f(z) = Jλz f(z) (0 ≤ λ < 1).

Making use of the operator L(a, c), we now introduce a subclass of A as
follows:

Definition 3. A function f ∈ A is said to be in the class S(a, c, A,B)
if it satisfies

(1.6)
L(a, c− 1)f(z)
L(a, c)f(z)

≺ 1 +Az

1 +Bz
(z ∈ E)

for some a > 0, c > 1, and −1 ≤ B < A ≤ 1. By the definition of subordi-
nation, it follows that

(1.7)
∣∣∣∣
L(a, c− 1)f(z)− L(a, c)f(z)

AL(a, c)f(z)−B L(a, c− 1)f(z)

∣∣∣∣ < 1 (z ∈ E).

For convenience, we put

S(2, 2−λ, β(1−2α),−β) = S(λ, α, β) (0 ≤ λ < 1, 0 ≤ α < 1, 0 < β ≤ 1),

the class consisting of functions in A satisfying the condition
∣∣∣∣

Jλ+1
z f(z)− Jλz f(z)

Jλz f(z) + (1− 2α)Jλ+1
z f(z)

∣∣∣∣ < β (z ∈ E).

The following observations are obvious:

(i) S(0, α, 1) = S∗(α) is the class of starlike functions of order α;
(ii) S(λ, γ, 1) = A(λ + 1, λ, γ) (0 ≤ λ < 1, −λ/(1 − λ) ≤ γ < 1), the

class studied by Kim and Srivastava [7].

In the present paper, we derive various properties and characteristics of
the class S(a, c, A,B) by using the techniques of Briot–Bouquet differential
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subordination. We also obtain a sufficient condition, coefficient estimates
and distortion theorems for this class. Further, we give some applications of
our results to a class of fractional calculus operators. Many of our results
improve and generalize the corresponding ones in [2], [3], and [7].

2. Preliminaries. In order to establish our results, we need the follow-
ing lemmas.

Lemma 1 [8]. If −1 ≤ B < A ≤ 1, β > 0 and the complex number γ
satisfy Re(γ) ≥ −β(1−A)/(1−B), then the differential equation

q(z) +
zq′(z)

βq(z) + γ
=

1 + Az

1 +Bz

has a univalent solution in E given by

(2.1) q(z) =





zβ+γ(1 +Bz)β(A−B)/B

β � z0 tβ+γ−1(1 +Bt)β(A−B)/B dt
− γ

β
, B 6= 0,

zβ+γ exp(βAz)
β � z0 tβ+γ−1 exp(βAt) dt

− γ

β
, B = 0.

If p(z) is analytic in E and satisfies

p(z) +
zp′(z)

βp(z) + γ
≺ 1 + Az

1 +Bz

then

p(z) ≺ q(z) ≺ 1 + Az

1 +Bz

and q(z) is the best dominant.

Lemma 2 [16]. Let µ be a positive measure on the unit interval [0, 1]. Let
g(t, z) be an analytic function in E for each t ∈ [0, 1], and integrable in t for
each z ∈ E and for almost all t ∈ [0, 1], and suppose that Re{g(t, z)} > 0 on
E, g(t,−r) is real and Re{1/g(t, z)} ≥ 1/g(t,−r) for |z| ≤ r and t ∈ [0, 1].
If g(z) = � z0 g(t, z) dµ(t), then Re{1/g(z)} ≥ 1/g(−r) for |z| ≤ r.

For real or complex numbers α1, α2 and β1 (β1 6= 0,−1,−2, . . .), the
hypergeometric function 2F1(z) is defined by

(2.2) 2F1(z) = 2F1(α1, α2;β1; z) =
∞∑

n=0

(α1)n(α2)n
(β1)n

zn

n!
.

We note that the series in (2.2) converges absolutely in E (cf. [15]). The
following identities are well known [15].
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Lemma 3. For real or complex α1, α2 and β1 (β1 6= 0,−1,−2, . . .), we
have

(2.3)
1�

0

tα2−1(1− t)β1−α2−1(1− tz)−α1 dt

=
Γ (α2)Γ (β1 − α2)

Γ (β1) 2F1(α1, α2;β1; z) (Reα1 > Reα2 > 0),

(2.4) 2F1(α1, α2;β1; z) = 2F1(α2, α1;β1; z),

(2.5) 2F1(α1, α2;β1; z) = (1− z)−α1
2F1(α1, β1 − α2;β1; z).

Lemma 4. Let p(z) be analytic in E with p(0) = 1 and p(z) 6= 0 for
0 < |z| < 1, and let −1 ≤ B < A ≤ 1.

(i) Let B 6= 0 and µ be a complex number with µ 6= 0. Let A, B and µ
satisfy either

(2.6)
∣∣∣∣µ
A−B
B

− 1
∣∣∣∣ ≤ 1 or

∣∣∣∣µ
A−B
B

+ 1
∣∣∣∣ ≤ 1.

If p(z) satisfies

1 +
zp′(z)
µp(z)

≺ 1 + Az

1 +Bz
(z ∈ E)

then
p(z) ≺ q(z) = (1 +Bz)µ(A−B)/B

and q(z) is the best dominant.
(ii) Let B = 0, µ be a complex number with µ 6= 0, and |µA| < π. If

p(z) satisfies

1 +
zp′(z)
µp(z)

≺ 1 + Az

1 +Bz
(z ∈ E)

then
p(z) ≺ exp(µAz)

and this is the best dominant.

To avoid repetition we lay down, once for all, that a > 0, c>1, 0 ≤ λ < 1,
0 ≤ α < 1, 0 < β ≤ 1, −1 ≤ B < A ≤ 1.

3. Main results

Theorem 1. If B < A ≤ (c−B)/(c− A), then:

(i) S(a, c, A,B) ⊂ S(a, c + 1, A∗, B) where A∗ = {(c − 1)A + B}/c.
Furthermore, if f ∈ S(a, c, A,B) then

L(a, c)f(z)
L(a, c+ 1)f(z)

≺ 1
cQ(z)

= q̃(z) (z ∈ E)
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where

(3.1) Q(z) =





1�

0

tc−1
(

1 +Btz

1 +Bz

)(c−1)(A−B)/B

dt, B 6= 0,

1�

0

tc−1 exp{(c− 1)(t− 1)Az} dt, B = 0,

and q̃(z) is the best dominant.
(ii) If B < 0, A ≤ min{(c − B)/(c − 1),−2B/(c − 1)} then for f ∈

S(a, c, A,B),

(3.2) Re
{ L(a, c)f(z)
L(a, c+ 1)f(z)

}

>

{
2F1

(
1,

(c− 1)(A−B)
B

; c+ 1;
B

B − 1

)}−1

(z ∈ E).

The result is best possible.

Proof. From (1.5), it follows that

(3.3) z(L(a, c)f(z))′ = (c− 1)L(a, c− 1)f(z) + (2− c)L(a, c)f(z).

Let f ∈ S(a, c, A,B). Setting

(3.4) p(z) =
L(a, c)f(z)
L(a, c+ 1)f(z)

,

we see that p(z) is analytic in E and p(0) = 1. Making use of logarithmic
differentiation in (3.4) and using the identity (3.3) in the resulting equation,
we get

(3.5) P (z) +
zP ′(z)

(c− 1)P (z) + 1
≺ 1 + Az

1 +Bz
(z ∈ E)

where P (z) = {c p(z)− 1}/(c− 1). Using Lemma 1, we deduce that

(3.6) P (z) ≺ q(z) ≺ 1 + Az

1 +Bz
(z ∈ E)

where q(z) is the best dominant of (3.5) and is given by (2.1) for β = c− 1
and γ = 1. Again by (3.6), we obtain

p(z) ≺ 1
cQ(z)

= q̃(z) (z ∈ E),

where Q(z) is given by (3.1). This proves the first part of the theorem.
Now we prove (ii). We show that

(3.7) inf
|z|<1
{Re(q̃(z))} = q̃(−1).
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If we set α1 = {(c− 1)(B − A)}/B, α2 = c, β1 = c + 1, then β1 > α2 > 0.
From (3.1), by using (2.3)–(2.5) we see that for B 6= 0,

Q(z) = (1 +Bz)α1

1�

0

tα2−1(1 +Btz)−α1 dt(3.8)

=
Γ (α2)Γ (β1 − α2)

Γ (β1) 2F1

(
1, α1;β1;

Bz

1 +Bz

)
.

To prove (3.7), we show that Re{1/Q(z)} ≥ 1/Q(−1), z ∈ E. Again,
by (3.8) for B < 0, A < −2B/(c − 1) (so that β1 > α1 > 0), (3.1) can be
written as

Q(z) =
1�

0

g(t, z) dµ(t),

where

g(t, z) =
1 +Bz

1 + (1− t)Bz ,

and

dµ(t) =
Γ (α2)

Γ (α1)Γ (β1 − α1)
tα1−1(1− t)β1−α1−1 dt

is a positive measure on [0, 1].
For −1 ≤ B < 0, it may be noted that Re{g(t, z)} > 0, g(t,−r) is real

for 0 ≤ r < 1, t ∈ [0, 1] and

Re
{

1
g(t, z)

}
≥ 1− (1− t)Br

1−Br =
1

g(t,−r) (|z| ≤ r < 1, t ∈ [0, 1]).

Therefore, by using Lemma 2, we deduce that Re{1/Q(z)} ≥ 1/Q(−r),
|z| ≤ r < 1 and by taking r → 1−, we obtain Re{1/Q(z)} ≥ 1/Q(−1),
z ∈ E. In the case A = −2B/(c − 1), we obtain the required assertion by
letting A→ (−2B/(c− 1))+. This proves (3.7).

The result is best possible because of the best dominant property of q̃(z).

Putting a = 2, c = 2− λ, A = β(1− 2α) and B = −β in Theorem 1, we
get

Corollary 1. If f ∈ S(λ, α, β), then

Re
{

Jλz f(z)

Jλ−1
z f(z)

}
>

{
2F1

(
1, 2(1− λ)(1− α); 3− λ;

β

β + 1

)}−1

(z ∈ E).

The result is best possible.

For λ = 0 and β = 1, Corollary 1 yields
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Corollary 2. If f ∈ S∗(α), then

Re
{
zf(z)

( z�

0

f(t) dt
)−1}

> 2(2F1(1, 2(1− α); 3; 1/2))−1 (z ∈ E).

The result is best possible.

Theorem 2. Let f ∈ S(a, c, A,B), where −1 ≤ B < A ≤ 1 (B 6= 0). If
either ∣∣∣∣(c− 1)

A−B
B

− 1
∣∣∣∣ ≤ 1 or

∣∣∣∣(c− 1)
A−B
B

+ 1
∣∣∣∣ ≤ 1

then

(3.9)
L(a, c)f(z)

z
≺ (1 +Bz)(c−1)(A−B)/B (z ∈ E).

In case B = 0, i.e., for f ∈ S(a, c, A, 0) (0 < A ≤ 1), we have

(3.10)
L(a, c)f(z)

z
≺ exp((c− 1)Az) (z ∈ E),

where |A| < π/(c− 1). The result is best possible.

Proof. Setting p(z) = (L(a, c)f(z))/z, we note that p(z) is analytic in E,
p(0) = 1 and p(z) 6= 0 for z ∈ E. Logarithmic differentiation p(z) followed
by the use of the identity (3.3) yields

1 +
zp′(z)

(c− 1)p(z)
=
L(a, c− 1)f(z)
L(a, c)f(z)

≺ 1 + Az

1 +Bz
(z ∈ E).

For such p(z), from (i) and (ii) of Lemma 4, we get the relations (3.9) and
(3.10) of the theorem.

Corollary 3. Under the hypotheses of Theorem 2, we have, for |z| =
r < 1,

(3.11) |L(a, c)f(z)| ≤
{
r(1 +Br)(c−1)(A−B)/B , B 6= 0,
r exp((c− 1)Ar), B = 0,

and

(3.12) |L(a, c)f(z)| ≥
{
r(1−Br)(c−1)(A−B)/B , B 6= 0,
r exp(−(c− 1)Ar), B = 0.

All the above estimates are sharp.

Proof. For B 6= 0, we deduce from (3.9) that

L(a, c)f(z)
z

= (1 +Bω(z))(c−1)(A−B)/B,

where ω(z) is analytic in E satisfying the conditions ω(0) = 0 and |ω(z)|
≤ |z| for z ∈ E.
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(i) When B > 0,∣∣∣∣
L(a, c)f(z)

z

∣∣∣∣ =
∣∣∣∣(1 +Bω(z))(c−1)(A−B)/B

∣∣∣∣

=
∣∣∣∣ exp

[
(c− 1)(A−B)

B
log(1 +Bω(z))

]∣∣∣∣

= exp
[

Re
{

(c− 1)(A−B)
B

log(1 +Bω(z))
}]

= exp
[

(c− 1)(A−B)
B

log |(1 +Bω(z))|
]

≤ |(1 +Bω(z)|(c−1)(A−B)/B ≤ (1 +Br)(c−1)(A−B)/B .

(ii) When B < 0, we put B = −D, D > 0, so that∣∣∣∣
L(a, c)f(z)

z

∣∣∣∣ = |(1 +Bω(z))(c−1)(A−B)/B| = |{(1−Dω(z))−1}(c−1)(A−B)/B |

≤ |(1−Dω(z))−1|(c−1)(A−B)/B ≤
(

1
1−Dr

)(c−1)(A−B)/B

≤ (1 +Br)(c−1)(A−B)/B.

In case B = 0 and |A| < π/(c− 1), we have∣∣∣∣
L(a, c)f(z)

z

∣∣∣∣ = exp{(c− 1)ARe(ω(z))} ≤ exp{(c− 1)Ar}.

This proves the assertion (3.11). Similarly, we can prove (3.12).
The bounds are sharp, being attained by the function f(z) defined by

L(a, c)f(z) =
{
z(1 +Bδ1z)(c−1)(A−B)/B, B 6= 0,
z exp((c− 1)Az), B = 0.

For a = 2, c = 2− λ, A = β(1− 2α) and B = −β, Corollary 3 yields

Corollary 4. If f ∈ S(λ, α, β), then for |z| = r < 1,
r

(1 + βr)2(1−λ)(1−α)
≤ |Jλz (z)| ≤ r

(1− βr)2(1−λ)(1−α)
.

The bounds are sharp.

Corollary 5. If f ∈ S(λ, α, β), then

Re
{
Jλz (z)
z

}
> (1 + β)−2(1−λ)(1−α) (z ∈ E).

The result is sharp.

Theorem 3. Let δ be a real number satisfying

(3.13) B < A ≤ B +
(1−B)(δ + 1)

c− 1
.
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(i) If f ∈ S(a, c, A,B), then the function Fδ defined by (1.2) belongs to
the class S(a, c, A,B). Furthermore,

(3.14)
L(a, c− 1)Fδ(z)
L(a, c)Fδ(z)

≺ 1
c− 1

[
1

Q(z)
− (2 + δ − c)

]
≡ q̃(z) (z ∈ E)

where

(3.15) Q(z) =





1�

0

tδ
(

1 +Btz

1 +Bz

)(c−1)(A−B)/B

dt, B 6= 0,

1�

0

tδ exp{(c− 1)(t− 1)Az} dt, B = 0,

and q̃(z) is the best dominant.
(ii) If B < 0 and

A ≤ min
{

(1−B)(δ + 1)
c− 1

+B,− (δ + 3− c)B
c− 1

}
,

then for f ∈ S(a, c, A,B), we have

Re
{L(a, c− 1)Fδ(z)
L(a, c)Fδ(z)

}

>
1

c− 1

[
(δ + 1)

{
2F1

(
1,

(c− 1)(A−B)
B

; δ + 2;
B

B − 1

)}−1

− (2 + δ − c)
]

(z ∈ E).

The result is best possible.

Proof. Since Fδ(z) = z +
∑∞
n=2{(δ + 1)/(δ + n)}anzn, it follows from

(1.5) that

(3.16) z(L(a, c)Fδ(z))′ = (δ + 1)L(a, c)f(z)− δL(a, c)Fδ(z).

Putting

(3.17) p(z) =
L(a, c− 1)Fδ(z)
L(a, c)Fδ(z)

,

we see that p(z) is analytic in E with p(0) = 1. Since f ∈ S(a, c, A,B), it is
clear that L(a, c)f(z) 6= 0 in 0 < |z| < 1 so that (3.3) and (3.16) give

(3.18)
L(a, c)Fδ(z)
L(a, c)f(z)

=
δ + 1

(c− 1)p(z) + (2 + δ − c) (z ∈ E).

Making use of the logarithmic differentiation in (3.18) and using (3.17), we
deduce that

p(z) +
zp′(z)

(c− 1)p(z) + (2 + δ − c) =
L(a, c− 1)f(z)
L(a, c)f(z)

≺ 1 + Az

1 +Bz
(z ∈ E).
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Using Lemma 1, we obtain

p(z) ≺ 1
c− 1

[
1

Q(z)
− (2 + δ − c)

]
≡ q̃(z) ≺ 1 + Az

1 +Bz
(z ∈ E),

where Q(z) is given by (3.15), and q̃(z) is the best dominant. This proves
the first part of the theorem.

Proceeding as in Theorem 1 we get the second part.

Taking a = 2, c = 2− λ, A = β(1− 2α) and B = −β in Theorem 3, we
obtain

Corollary 6. Let δ be a real number satisfying δ ≥ {(1−λ)(1− 2α)−
(1 + βλ)}/(1 + β).

(i) If f ∈ S(λ, α, β), then the function Fδ defined by (1.2) belongs to
the class S(λ, α, β). Furthermore,

J1+λ
z Fδ(z)
Jλz Fδ(z)

≺ 1
1− λ

{
1

Q(z)
− (δ + λ)

}
≡ q̃(z) (z ∈ E)

where Q(z) is obtained from (3.15) for c = 2−λ, A = β(1−2α) and B = −β.
(ii) If

δ ≥ max
{

(1− λ)(1− 2α)− (1 + βλ)
1 + β

,
(1− λ)(1− 2α)− β(1 + λ)

β

}

and f ∈ S(λ, α, β), then Fδ ∈ S(λ, %, β), where

% =
1

1− λ

[
(δ + 1)

{
2F1

(
1, 2(1− λ)(1− α); δ + 2;

β

β + 1

)}−1

− (δ + λ)
]
.

The result is best possible.

Remark. Substituting λ = 0 and β = 1 in part (ii) of Corollary 6,
we see that f ∈ S∗(α) (0 ≤ α < 1) implies that Fδ ∈ S∗(%2), where
%2 = (δ+ 1){2F1(1, 2(1−α); δ+ 2; 1/2)}−1− δ, provided δ ≥ −α. This is an
improvement of a recent result of Bajpai and Srivastava [2] and Bernardi [3]
for δ = 1, 2, . . .

Theorem 4. Let f ∈ A be given by (1.1) and −1 ≤ B < 0. If

(3.19)
∞∑

n=2

{(1−B)(n− 1) + (A−B)(c− 1)}(a)n
(c− 1)n

|an| ≤ A−B

then f ∈ S(a, c, A,B). The result is sharp.

Proof. Suppose (3.19) holds. Then for |z| = r < 1,
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|L(a, c− 1)f(z)− L(a, c)f(z)| − |AL(a, c)f(z)−BL(a, c− 1)f(z)|

≤
∞∑

n=2

(n− 1)(a)n
(c− 1)n

|an|rn

−
{

(A−B)r −
∞∑

n=2

{(A−B)(c− 1)− (n− 1)B}(a)n
(c− 1)n

|an|rn
}

<
∞∑

n=2

(n− 1)(a)n
(c− 1)n

|an|

−
{

(A−B)−
∞∑

n=2

{(A−B)(c− 1)− (n− 1)B}(a)n
(c− 1)n

|an|
}

=
∞∑

n=2

{(1−B)(n− 1) + (A−B)(c− 1)}(a)n
(c− 1)n

|an| − (A−B) ≤ 0.

Thus, it follows from (1.7) that f ∈ S(a, c, A,B).
The result is sharp for the functions

fn(z) = z +
∞∑

n=2

(A−B)(c− 1)n
{(1−B)(n− 1) + (A−B)(c− 1)}(a)n

zn (n ≥ 2),

because∣∣∣∣
L(a, c− 1)fn(z)− L(a, c)fn(z)

AL(a, c)fn(z)−BL(a, c− 1)fn(z)

∣∣∣∣ = 1 for z = exp(iπ/n).

Corollary 7. Let f ∈ A be given by (1.1). If
∞∑

n=2

Γ (n+ 1)Γ (1− λ){(1 + β)(n− 1) + 2β(1− α)}
Γ (n+ 1− λ)

|an| ≤ 2β(1− α)

then f ∈ S(λ, α, β). The result is sharp.

Theorem 5. If f given by (1.1) belongs to S(a, c, A,B), then

(3.20) |an| ≤
(A−B)(c− 1)n
(n− 1)(a)n−1

n−1∏

j=2

(
1 +

(A−B)(c− 1)
j − 1

)
(n ≥ 2).

The result is sharp.

Proof. Since f ∈ S(a, c, A,B), we have

(3.21) L(a, c− 1)f(z) = p(z)L(a, c)f(z)

where p(z) = 1 + p1z + p2z
2 + . . . ∈ P(A,B). Substituting the power series

expansions of L(a, c− 1)f(z), L(a, c)f(z) and p(z) in (3.21) and comparing
the coefficients of zn on both sides of the resulting equation, we obtain
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(3.22)
(n− 1)(a)n−1

(c− 1)n
an = pn−1 +

(a)1

(c)1
pn−2a2 + . . .+

(a)n−2

(c)n−2
p1an−1.

Using the fact [1] that

|pn| ≤ A−B (n ≥ 1)

in (3.22), we get

(3.23)
(n− 1)(a)n−1

(c− 1)n
|an| ≤ (A−B)

{
1 +

n−1∑

m=2

(a)m−1

(c)m−1
|am|

}
.

We will prove by induction that the assertion (3.20) is satisfied for n ≥ 2. If
n = 2, then

|a2| ≤
(c− 1)2(A−B)

(a)1
.

Now suppose that (3.20) is satisfied for n ≤ k. Then, from (3.23), we have

k(a)k
(c− 1)k+1

|ak+1| ≤ (A−B)
{

1 +
k∑

m=2

(a)m−1

(c)m−1
|am|

}

≤ (A−B)
{

1 +
k∑

m=2

(A−B)(c− 1)
m− 1

m−1∏

j=2

(
1 +

(A−B)(c− 1)
j − 1

)}

= (A−B)
k∏

j=2

(
1 +

(A−B)(c− 1)
j − 1

)
.

Hence

|an| ≤
(A−B)(c− 1)n
(n− 1)(a)n−1

n−1∏

j=2

(
1 +

(A−B)(c− 1)
j − 1

)

for all n ≥ 2.
Finally, we note that the result is sharp for the functions fn(z) given by

fn(z) = z +
(A−B)(c− 1)n
(n− 1)(a)n−1

n−1∏

j=2

(
1 +

(A−B)(c− 1)
j − 1

)
zn (n ≥ 2).

Corollary 8. If f , given by (1.1), belongs to the class S(λ, α, β), then

|an| ≤
2β(1− α)Γ (n+ 1− λ)

(n− 1)Γ (n+ 1)Γ (1− λ)

n−1∏

j=2

(
1 +

2β(1− α)(1− λ)
j − 1

)
(n ≥ 2).

The result is sharp.
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Theorem 6. Let f , given by (1.1), belong to the class S(a, c, A,B) and
µ be any complex number. Then

|a3 − µa2
2| ≤

(A−B)(c− 1)3

2(a)2

×max
{

1,
∣∣∣∣{B − (A−B)(c− 1)}+ µ

2(A−B)(a+ 1)(c− 1)2

a(c+ 1)

∣∣∣∣
}
.

The result is sharp.

Proof. For f ∈ S(a, c, A,B), we have, by (1.6),

(3.24)
∞∑

n=2

(n− 1)(a)n−1

(c− 1)n
anz

n

=
{

(A−B)z +
∞∑

n=2

{(A−B)(c− 1)− (n− 1)B}(a)n−1

(c− 1)n
anz

n

}{ ∞∑

j=1

ωjz
j
}

where ω(z) =
∑∞
j=1 ωjz

j is analytic in E with |ω(z)| < 1 for z ∈ E. On
equating the coefficients of z2 and z3 on both sides of (3.24), we deduce that

(3.25) a2 =
(A−B)(c− 1)

a
ω1

and

(3.26) a3 =
(A−B)(c− 1)

2 (a)2
{ω2 + ((A−B)(c− 1)−B)ω2

1}.

It is known [6] that for every complex number γ,

(3.27) |ω2 − γω2
1 | ≤ max{1, |γ|}

and the estimate is sharp. Now, by using (3.25) and (3.26), we obtain

(3.28) |a3 − µa2
2| ≤

(A−B)(c− 1)3

2 (a)2
|ω2 − γω2

1 |,
where

γ = {B − (A−B)(c− 1)}+ µ
2(A−B)(a+ 1)(c− 1)2

a(c+ 1)
.

The assertion of the theorem follows by using (3.27) in (3.28). The result is
sharp as the estimate (3.27) is sharp.

Corollary 9. If f , given by (1.1), belongs to the class S(λ, α, β), then
for any complex number µ

|a3 − µa2
2| ≤

β(1− α)Γ (4− λ)
3!Γ (1− λ)

×max
{

1,
∣∣∣∣
6β(1− α)(1− λ)(2− λ)

3− λ − β{2(1− α)(1− λ) + 1}
∣∣∣∣
}
.

The result is sharp.
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