Periodic solutions of *n*th order delay Rayleigh equations

by GEN-QIANG WANG (Guangzhou) and SUI SUN CHENG (Hsinchu)

Abstract. A priori bounds are established for periodic solutions of an *n*th order Rayleigh equation with delay. From these bounds, existence theorems for periodic solutions are established by means of Mawhin's continuation theorem.

In [4], a priori bounds for periodic solutions of the equation

(1)
$$x''(t) + \lambda f(x'(t)) + \lambda g(x(t - \tau(t))) = \lambda p(t), \quad \lambda \in (0, 1),$$

are established under relatively simple conditions on f, g and p. Then by means of continuation theorems [1], periodic solutions for the Rayleigh differential equation

$$x''(t) + f(x'(t)) + g(x(t - \tau(t))) = 0$$

are obtained.

In this note, we will be concerned with similar equations of the form

(2)
$$x^{(n)}(t) + \lambda f(t, x'(t - \tau_1(t)), \dots, x^{(n-1)}(t - \tau_{n-1}(t))) + \lambda g(t, x(t - \tau_0(t))) = \lambda p(t),$$

and

(3)
$$x^{(n)}(t) + f(t, x'(t - \tau_1(t)), \dots, x^{(n-1)}(t - \tau_{n-1}(t))) + g(t, x(t - \tau_0(t))) = p(t)$$

where $\lambda \in (0, 1), n \geq 2, \tau_0, \dots, \tau_{n-1}$ and p are T-periodic continuous functions defined on \mathbb{R} with

$$\int_{0}^{1} p(t) dt = 0.$$

f is continuous on \mathbb{R}^n , $f(t, 0, \dots, 0) = 0$ for $t \in \mathbb{R}$ and $f(t+T, x_1, \dots, x_{n-1})$ = $f(t, x_1, \dots, x_{n-1})$ for $(t, x_1, \dots, x_{n-1}) \in \mathbb{R}^n$, and g is continuous on \mathbb{R}^2

²⁰⁰⁰ Mathematics Subject Classification: 34K10, 34K13.

Key words and phrases: Rayleigh equation, delay, periodic solution.

such that g(t+T,x) = g(t,x) for $(t,x) \in \mathbb{R}^2$. To avoid trivial cases, we also assume that the period T is positive.

We will establish a priori bounds for periodic solutions of equation (2) under several conditions imposed on f and g. Once these bounds are obtained, existence of periodic solutions for equation (3) can be demonstrated.

We remark that there are a number of studies which are concerned with the existence of periodic solutions of Rayleigh differential equations (see e.g. [2, 3, 5]). But our conditions are novel and relatively simple as compared to many others. For example, in [3], smoothness in addition to boundedness assumptions are needed for the functions in (1) in order to guarantee a periodic solution.

THEOREM 1. Suppose there are constants $H \ge 0$, D > 0 and M > 0 such that

- (i) $|f(t, x_1, \dots, x_{n-1})| \le H$ for $(t, x_1, \dots, x_{n-1}) \in \mathbb{R}^n$,
- (ii) xg(t,x) > 0 and |g(t,x)| > H for $t \in \mathbb{R}$ and $|x| \ge D$, and
- (iii) $|g(t,x)| \leq M$ for $t \in \mathbb{R}$ and $x \leq -D$.

Then there exist $D_0, \ldots, D_{n-1} > 0$ such that for any T-periodic solution x = x(t) of (2),

 $|x^{(j)}(t)| \le D_j, \quad 0 \le j \le n-1, \ 0 \le t \le T.$

Proof. Let x = x(t) be a *T*-periodic solution of (2). In view of (2), and the periodicity of x(t),

(4)
$$\int_{0}^{T} \{f(t, x'(t - \tau_{1}(t)), \dots, x^{(n-1)}(t - \tau_{n-1}(t))) + g(t, x(t - \tau_{0}(t)))\} dt = 0.$$

Note also that

(5)
$$\int_{0}^{T} |f(t, x'(t - \tau_{1}(t)), \dots, x^{(n-1)}(t - \tau_{n-1}(t)))| dt \leq TH.$$

Thus,

$$(6) \quad \int_{0}^{T} \{g(t, x(t - \tau_{0}(t))) - H\} dt$$

$$\leq \int_{0}^{T} \{g(t, x(t - \tau_{0}(t))) - |f(t, x'(t - \tau_{1}(t)), \dots, x^{(n-1)}(t - \tau_{n-1}(t)))|\} dt$$

$$\leq \int_{0}^{T} \{g(t, x(t - \tau_{0}(t))) + f(t, x'(t - \tau_{1}(t)), \dots, x^{(n-1)}(t - \tau_{n-1}(t)))\} dt = 0.$$

Let

$$G_{+}(t) = \max\{g(t, x(t - \tau_{0}(t))) - H, 0\}, \quad t \in \mathbb{R}, G_{-}(t) = \max\{H - g(t, x(t - \tau_{0}(t))), 0\}, \quad t \in \mathbb{R}.$$

Then G_+ and G_- are nonnegative and continuous on \mathbb{R} ,

(7)
$$g(t, x(t - \tau_0(t))) - H = G_+(t) - G_-(t), \quad t \in \mathbb{R},$$

and in view of (ii) and (iii),

$$G_{-}(t) = |G_{-}(t)| \le H + M, \quad t \in \mathbb{R}.$$

In view of (6) and (7), we have

$$\int_{0}^{T} G_{+}(t) \, dt \le \int_{0}^{T} G_{-}(t) \, dt \le M_{1}$$

where $M_1 = (H + M)T$. In view of (7), we have

$$\int_{0}^{T} |g(t, x(t - \tau_0(t))) - H| \, dt \le 2M_1,$$

which implies

(8)
$$\int_{0}^{T} |g(t, x(t - \tau_0(t)))| dt \le 2M_1 + TH.$$

By integrating (2), in view of (5) and (8), we see that

$$\int_{0}^{T} |x^{(n)}(t)| dt \leq \int_{0}^{T} |f(t, x'(t - \tau_{1}(t)), \dots, x^{(n-1)}(t - \tau_{n-1}(t)))| dt + \int_{0}^{T} |g(t, x(t - \tau_{0}(t)))| dt + \int_{0}^{T} |p(t)| dt \leq TH + 2M_{1} + TH + T \max_{0 \leq t \leq T} |p(t)|.$$

Since $x^{(n-2)}(0) = x^{(n-2)}(T)$, there exists $t_1 \in [0,T]$ such that $x^{(n-1)}(t_1) = 0$. Thus

$$|x^{(n-1)}(t)| = \left| \int_{t_1}^t x^{(n)}(s) \, ds \right| \le \int_0^T |x^{(n)}(s)| \, ds \le D_{n-1}, \quad t \in [0,T],$$

where $D_{n-1} = TH + 2M_1 + TH + T \max_{0 \le t \le T} |p(t)| > 0$. Next we will show that when n > 2, we have $|x^{(j)}(t)| \le D_j$ for $1 \le j \le n-2$ and $0 \le t \le T$. Indeed, since $x^{(n-3)}(0) = x^{(n-3)}(T)$, there exists $t_2 \in [0,T]$ such that $x^{(n-2)}(t_2) = 0$. As a consequence,

$$|x^{(n-2)}(t)| = \left| \int_{t_2}^t x^{(n-1)}(s) \, ds \right| \le \int_0^T |x^{(n-1)}(s)| \, ds \le TD_{n-1} \equiv D_{n-2}.$$

The rest of the proof follows by induction. To complete our proof, we will show that $|x(t)| \leq D_0, t \in [0, T]$, for some $D_0 > 0$. Indeed, in view of (4),

$$f(t_3, x'(t_3 - \tau_1(t_3)), \dots, x^{(n-1)}(t_3 - \tau_{n-1}(t_3))) + g(t_3, x(t_3 - \tau_0(t_3))) = 0$$

for some $t_3 \in [0, T]$. Hence by (i),

$$|g(t_3, x(t_3 - \tau_0(t_3)))| = |f(t_3, x'(t_3 - \tau_1(t_3)), \dots, x^{(n-1)}(t_3 - \tau_{n-1}(t_3)))| \le H.$$

But then by (ii), $|x(t_3 - \tau_0(t_3))| < D.$ Since $x(t)$ is *T*-periodic, there exists

 $t_4 \in [0,T]$ such that $|x(t_4)| < D$. Finally,

$$|x(t)| = \left| x(t_4) + \int_{t_4}^{t} x'(s) \, ds \right| \le D + \int_{0}^{t} |x'(s)| \, ds \le D + TD_1$$

for $t \in [0, T]$. The proof is complete.

Having the a priori bounds just obtained, we may follow the standard procedures as explained in various places of [1] and the continuation theorem on page 40 of [1] to show the existence of a periodic solution of (3). For completeness, a brief sketch is included.

Let X be the Banach space of all functions $x = x(t) \in C^{(n-1)}(\mathbb{R})$ such that x(t+T) = x(t) for all t, endowed with the norm

$$||x|| = \sum_{j=0}^{n-1} \max_{0 \le t \le T} |x^{(j)}(t)|.$$

Also let Y be the Banach space of all continuous functions of the form y = y(t) defined on \mathbb{R} such that y(t+T) = y(t) for all t, and endowed with the norm $||y||_0 = \max_{0 \le t \le T} |y(t)|$. Now let $L : X \cap C^{(n)}(\mathbb{R}) \to Y$ be the operator defined by $(Lx)(t) = x^{(n)}(t)$ for $t \in \mathbb{R}$, and let $N : X \to Y$ be defined by

$$(Nx)(t) = -f(t, x'(t - \tau_1(t)), \dots, x^{(n-1)}(t - \tau_{n-1}(t))) - g(t, x(t - \tau_0(t))) + p(t)$$

for $t \in \mathbb{R}$. Let Im L and Ker L be respectively the image and kernel of the operator L. Clearly, Ker $L = \mathbb{R}$. Furthermore, if we define the projections $P: X \to \text{Ker } L$ and $Q: Y \to Y/\text{Im } L$ by

$$(Px)(t) = \frac{1}{T} \int_{0}^{T} x(t) dt, \quad (Qy)(t) = \frac{1}{T} \int_{0}^{T} y(t) dt, \quad t \in \mathbb{R},$$

then Ker L = Im P and Ker Q = Im L. Furthermore, L is a Fredholm operator of index zero. The operator N is continuous and maps bounded subsets

264

of X into bounded subsets of Y, thus for any bounded open subset Ω of X, $N(\overline{\Omega})$ is bounded. This shows that $(I - Q)N(\overline{\Omega})$ is bounded. Since the inverse K of $L_{|\text{dom }L\cap \ker P}$ is compact, $K(I - Q)N(\overline{\Omega})$ is relatively compact, and so L-compact on the closure of Ω (see e.g. [1, pp. 166–187]).

Let D, D_0, \ldots, D_{n-1} be as in Theorem 1, and let Ω be the subset of X consisting of the functions of the form x = x(t) such that $||x|| < \overline{D}$, where \overline{D} is a fixed number which satisfies $\overline{D} > \max\{D_0, D_1, \ldots, D_{n-1}\} + D$. For any $\lambda \in (0, 1)$ and any x = x(t) in the domain of L which also belongs to $\partial\Omega$, we must have $Lx \neq \lambda Nx$. For otherwise in view of $||x|| < \overline{D}$, x belongs to the interior of Ω , contrary to the assumption that $x \in \partial\Omega$. Next, note that a function $x = x(t) \in \text{Ker } L \cap \partial\Omega$ must be the constant function $x(t) \equiv \overline{D}$ or $x(t) \equiv -\overline{D}$. Hence

$$(QN)(x) = \frac{1}{T} \int_{0}^{T} \left[-f(t, x'(t - \tau_{1}(t)), \dots, x^{(n-1)}(t - \tau_{n-1}(t))) \right] dt$$

+ $\frac{1}{T} \int_{0}^{T} \left[-g(t, x(t - \tau_{0}(t)) + p(t)) \right] dt$
= $\frac{1}{T} \int_{0}^{T} \left[-f(t, 0, \dots, 0) - g(t, x(t - \tau_{0}(t))) \right] dt$
= $-\frac{1}{T} \int_{0}^{T} g(t, x(t - \tau_{0}(t))) dt = -\frac{1}{T} \int_{0}^{T} g(t, x) dt \neq 0.$

Finally, consider the mapping

$$H(x,s) = sx + (1-s)\frac{1}{T}\int_{0}^{T} g(t,x) dt, \quad 0 \le s \le 1.$$

Since for every $s \in [0, 1]$ and $x \in \text{Ker } L \cap \partial \Omega$, we have

$$xH(x,s) = sx^{2} + (1-s)x\frac{1}{T}\int_{0}^{T}g(t,x)\,dt > 0,$$

H(x,s) is an admissible homotopy. This shows that

$$\deg\{QNx, \Omega \cap \operatorname{Ker} L, 0\} = \deg\left\{-\frac{1}{T}\int_{0}^{T} g(t, x) dt, \Omega \cap \operatorname{Ker} L, 0\right\}$$
$$= \deg\{-x, \Omega \cap \operatorname{Ker} L, 0\}$$
$$= \deg\{-x, \Omega \cap \mathbb{R}, 0\} \neq 0.$$

We have thus verified all the assumptions of the continuation theorem [1, p. 40]. Under the assumptions of Theorem 1, equation (3) thus has a *T*-periodic solution.

THEOREM 2. Suppose the assumptions of Theorem 1 hold. Then equation (3) has a T-periodic solution.

As an example, consider the equation

$$x'''(t) + \exp\{-\sin^2 t - (x'(t - \cos t))^2 - (x''(t - \sin t))^2\} + (1 + \cos^2 t) \arctan(x(t - \sin t)))$$

 $= \sin t + \exp(-\sin^2 t).$

Take

$$f(t, x_1, x_2) = \exp(-\sin^2 t - x_1^2 - x_2^2) - \exp(-\sin^2 t),$$

$$g(t, x) = (1 + \cos^2 t) \arctan x,$$

 $\tau_0(t) = \sin t$, $\tau_1(t) = \cos t$, $\tau_2(t) = \sin t$, and $p(t) = \sin t$ and $T = 2\pi$. It is then easy to verify that all the assumptions of Theorem 1 are satisfied with H = 1, $D > \pi/4$ and $M = \pi$. Hence this equation has a 2π -periodic solution.

We remark that by symmetric arguments, we can establish the following existence theorem.

THEOREM 3. Suppose there are constants $H \ge 0$, D > 0 and M > 0 such that (i) $|f(t, x_1, \ldots, x_{n-1})| \le H$ for $(t, x_1, \ldots, x_{n-1}) \in \mathbb{R}^n$, (ii) xg(t, x) > 0 and |g(t, x)| > H for $t \in \mathbb{R}$ and $|x| \ge D$, and (iii) $|g(t, x)| \le M$ for $t \in \mathbb{R}$ and $x \ge D$. Then (3) has a T-periodic solution.

References

- R. E. Gaines and J. L. Mawhin, Coincidence Degree and Nonlinear Differential Equations, Lecture Notes in Math. 568, Springer, 1977.
- [2] X. K. Huang and Z. G. Xiang, 2π-periodic solutions of Duffing equations with a deviating argument, Chinese Sci. Bull. 39 (1994), 201–203.
- [3] S. Invernizzi and F. Zanolin, Periodic solutions of a differential delay equation of Rayleigh type, Rend. Sem. Mat. Univ. Padova 61 (1979), 115–124.
- [4] G. Q. Wang and S. S. Cheng, A priori bounds for periodic solutions of a delay Rayleigh equation, Appl. Math. Lett. 12 (1999), 41–44.
- [5] G. Q. Wang and J. R. Yan, Existence of periodic solutions for nth order nonlinear delay differential equation, Far East J. Appl. Math. 3 (1999), 129–134.

Department of Computer Science	Department of Mathematics
Guangdong Polytechnical Normal University	Tsing Hua University
Guangzhou, Gaungdong 510665, P.R. China	Hsinchu, Taiwan 30043, R.O.C.
	E-mail: sscheng@math.nthu.edu.tw

Reçu par la Rédaction le 15.1.2001 Révisé le 20.12.2001

(1234)