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Periodic solutions of nth order delay Rayleigh equations

by Gen-Qiang Wang (Guangzhou) and Sui Sun Cheng (Hsinchu)

Abstract. A priori bounds are established for periodic solutions of an nth order
Rayleigh equation with delay. From these bounds, existence theorems for periodic solutions
are established by means of Mawhin’s continuation theorem.

In [4], a priori bounds for periodic solutions of the equation

(1) x′′(t) + λf(x′(t)) + λg(x(t− τ(t))) = λp(t), λ ∈ (0, 1),

are established under relatively simple conditions on f , g and p. Then by
means of continuation theorems [1], periodic solutions for the Rayleigh dif-
ferential equation

x′′(t) + f(x′(t)) + g(x(t− τ(t))) = 0

are obtained.
In this note, we will be concerned with similar equations of the form

(2) x(n)(t) + λf(t, x′(t− τ1(t)), . . . , x(n−1)(t− τn−1(t)))

+λg(t, x(t− τ0(t))) = λp(t),

and

(3) x(n)(t) + f(t, x′(t− τ1(t)), . . . , x(n−1)(t− τn−1(t)))

+ g(t, x(t− τ0(t))) = p(t)

where λ ∈ (0, 1), n ≥ 2, τ0, . . . , τn−1 and p are T -periodic continuous func-
tions defined on R with

T�

0

p(t) dt = 0,

f is continuous on Rn, f(t, 0, . . . , 0) = 0 for t ∈ R and f(t+T, x1, . . . , xn−1)
= f(t, x1, . . . , xn−1) for (t, x1, . . . , xn−1) ∈ Rn, and g is continuous on R2
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such that g(t+ T, x) = g(t, x) for (t, x) ∈ R2. To avoid trivial cases, we also
assume that the period T is positive.

We will establish a priori bounds for periodic solutions of equation (2)
under several conditions imposed on f and g. Once these bounds are ob-
tained, existence of periodic solutions for equation (3) can be demonstrated.

We remark that there are a number of studies which are concerned with
the existence of periodic solutions of Rayleigh differential equations (see e.g.
[2, 3, 5]). But our conditions are novel and relatively simple as compared
to many others. For example, in [3], smoothness in addition to boundedness
assumptions are needed for the functions in (1) in order to guarantee a
periodic solution.

Theorem 1. Suppose there are constants H ≥ 0, D > 0 and M > 0
such that

(i) |f(t, x1, . . . , xn−1)| ≤ H for (t, x1, . . . , xn−1) ∈ Rn,
(ii) xg(t, x) > 0 and |g(t, x)| > H for t ∈ R and |x| ≥ D, and
(iii) |g(t, x)| ≤M for t ∈ R and x ≤ −D.

Then there exist D0, . . . ,Dn−1 > 0 such that for any T -periodic solution
x = x(t) of (2),

|x(j)(t)| ≤ Dj , 0 ≤ j ≤ n− 1, 0 ≤ t ≤ T.

Proof. Let x = x(t) be a T -periodic solution of (2). In view of (2), and
the periodicity of x(t),

(4)
T�

0

{f(t, x′(t−τ1(t)), . . . , x(n−1)(t−τn−1(t)))+g(t, x(t−τ0(t)))} dt = 0.

Note also that

(5)
T�

0

|f(t, x′(t− τ1(t)), . . . , x(n−1)(t− τn−1(t)))| dt ≤ TH.

Thus,

(6)
T�

0

{g(t, x(t− τ0(t)))−H} dt

≤
T�

0

{g(t, x(t− τ0(t)))− |f(t, x′(t− τ1(t)), . . . , x(n−1)(t− τn−1(t)))|} dt

≤
T�

0

{g(t, x(t− τ0(t))) + f(t, x′(t− τ1(t)), . . . , x(n−1)(t− τn−1(t)))} dt = 0.
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Let
G+(t) = max{g(t, x(t− τ0(t)))−H, 0}, t ∈ R,
G−(t) = max{H − g(t, x(t− τ0(t))), 0}, t ∈ R.

Then G+ and G− are nonnegative and continuous on R,

(7) g(t, x(t− τ0(t)))−H = G+(t)−G−(t), t ∈ R,
and in view of (ii) and (iii),

G−(t) = |G−(t)| ≤ H +M, t ∈ R.
In view of (6) and (7), we have

T�

0

G+(t) dt ≤
T�

0

G−(t) dt ≤M1

where M1 = (H +M)T . In view of (7), we have

T�

0

|g(t, x(t− τ0(t)))−H| dt ≤ 2M1,

which implies

(8)
T�

0

|g(t, x(t− τ0(t)))| dt ≤ 2M1 + TH.

By integrating (2), in view of (5) and (8), we see that

T�

0

|x(n)(t)| dt ≤
T�

0

|f(t, x′(t− τ1(t)), . . . , x(n−1)(t− τn−1(t)))| dt

+
T�

0

|g(t, x(t− τ0(t)))| dt+
T�

0

|p(t)| dt

≤ TH + 2M1 + TH + T max
0≤t≤T

|p(t)|.

Since x(n−2)(0) = x(n−2)(T ), there exists t1 ∈ [0, T ] such that x(n−1)(t1)
= 0. Thus

|x(n−1)(t)| =
∣∣∣
t�

t1

x(n)(s) ds
∣∣∣ ≤

T�

0

|x(n)(s)| ds ≤ Dn−1, t ∈ [0, T ],

where Dn−1 = TH + 2M1 + TH + T max0≤t≤T |p(t)| > 0. Next we will
show that when n > 2, we have |x(j)(t)| ≤ Dj for 1 ≤ j ≤ n − 2 and
0 ≤ t ≤ T . Indeed, since x(n−3)(0) = x(n−3)(T ), there exists t2 ∈ [0, T ] such
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that x(n−2)(t2) = 0. As a consequence,

|x(n−2)(t)| =
∣∣∣
t�

t2

x(n−1)(s) ds
∣∣∣ ≤

T�

0

|x(n−1)(s)| ds ≤ TDn−1 ≡ Dn−2.

The rest of the proof follows by induction. To complete our proof, we will
show that |x(t)| ≤ D0, t ∈ [0, T ], for some D0 > 0. Indeed, in view of (4),

f(t3, x′(t3 − τ1(t3)), . . . , x(n−1)(t3 − τn−1(t3))) + g(t3, x(t3 − τ0(t3))) = 0

for some t3 ∈ [0, T ]. Hence by (i),

|g(t3, x(t3−τ0(t3)))| = |f(t3, x′(t3−τ1(t3)), . . . , x(n−1)(t3−τn−1(t3)))| ≤ H.
But then by (ii), |x(t3 − τ0(t3))| < D. Since x(t) is T -periodic, there exists
t4 ∈ [0, T ] such that |x(t4)| < D. Finally,

|x(t)| =
∣∣∣x(t4) +

t�

t4

x′(s) ds
∣∣∣ ≤ D +

T�

0

|x′(s)| ds ≤ D + TD1

for t ∈ [0, T ]. The proof is complete.

Having the a priori bounds just obtained, we may follow the standard
procedures as explained in various places of [1] and the continuation theorem
on page 40 of [1] to show the existence of a periodic solution of (3). For
completeness, a brief sketch is included.

Let X be the Banach space of all functions x = x(t) ∈ C(n−1)(R) such
that x(t+ T ) = x(t) for all t, endowed with the norm

‖x‖ =
n−1∑

j=0

max
0≤t≤T

|x(j)(t)|.

Also let Y be the Banach space of all continuous functions of the form
y = y(t) defined on R such that y(t+ T ) = y(t) for all t, and endowed with
the norm ‖y‖0 = max0≤t≤T |y(t)|. Now let L : X ∩ C(n)(R) → Y be the
operator defined by (Lx)(t) = x(n)(t) for t ∈ R, and let N : X → Y be
defined by

(Nx)(t) = −f(t, x′(t−τ1(t)), . . . , x(n−1)(t−τn−1(t)))−g(t, x(t−τ0(t)))+p(t)

for t ∈ R. Let ImL and KerL be respectively the image and kernel of the
operator L. Clearly, KerL = R. Furthermore, if we define the projections
P : X → KerL and Q : Y → Y/ImL by

(Px)(t) =
1
T

T�

0

x(t) dt, (Qy)(t) =
1
T

T�

0

y(t) dt, t ∈ R,

then KerL = ImP and KerQ = ImL. Furthermore, L is a Fredholm opera-
tor of index zero. The operator N is continuous and maps bounded subsets
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of X into bounded subsets of Y , thus for any bounded open subset Ω of
X, N(Ω) is bounded. This shows that (I −Q)N(Ω) is bounded. Since the
inverse K of L|domL∩ kerP is compact, K(I−Q)N(Ω) is relatively compact,
and so L-compact on the closure of Ω (see e.g. [1, pp. 166–187]).

Let D,D0, . . . ,Dn−1 be as in Theorem 1, and let Ω be the subset of X
consisting of the functions of the form x = x(t) such that ‖x‖ < D, where D
is a fixed number which satisfies D > max{D0,D1, . . . ,Dn−1}+D. For any
λ ∈ (0, 1) and any x = x(t) in the domain of L which also belongs to ∂Ω,
we must have Lx 6= λNx. For otherwise in view of ‖x‖ < D, x belongs to
the interior of Ω, contrary to the assumption that x ∈ ∂Ω. Next, note that
a function x = x(t) ∈ KerL ∩ ∂Ω must be the constant function x(t) ≡ D
or x(t) ≡ −D. Hence

(QN)(x) =
1
T

T�

0

[−f(t, x′(t− τ1(t)), . . . , x(n−1)(t− τn−1(t)))] dt

+
1
T

T�

0

[−g(t, x(t− τ0(t)) + p(t)] dt

=
1
T

T�

0

[−f(t, 0, . . . , 0)− g(t, x(t− τ0(t)))] dt

= − 1
T

T�

0

g(t, x(t− τ0(t))) dt = − 1
T

T�

0

g(t, x) dt 6= 0.

Finally, consider the mapping

H(x, s) = sx+ (1− s) 1
T

T�

0

g(t, x) dt, 0 ≤ s ≤ 1.

Since for every s ∈ [0, 1] and x ∈ KerL ∩ ∂Ω, we have

xH(x, s) = sx2 + (1− s)x 1
T

T�

0

g(t, x) dt > 0,

H(x, s) is an admissible homotopy. This shows that

deg{QNx,Ω ∩KerL, 0} = deg
{
− 1
T

T�

0

g(t, x) dt,Ω ∩KerL, 0
}

= deg{−x,Ω ∩KerL, 0}
= deg{−x,Ω ∩ R, 0} 6= 0.

We have thus verified all the assumptions of the continuation theorem [1,
p. 40]. Under the assumptions of Theorem 1, equation (3) thus has a T -
periodic solution.
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Theorem 2. Suppose the assumptions of Theorem 1 hold. Then equa-
tion (3) has a T -periodic solution.

As an example, consider the equation

x′′′(t) + exp{− sin2 t− (x′(t− cos t))2 − (x′′(t− sin t))2}
+ (1 + cos2 t) arctan(x(t− sin t)))

= sin t+ exp(− sin2 t).

Take

f(t, x1, x2) = exp(− sin2 t− x2
1 − x2

2)− exp(− sin2 t),

g(t, x) = (1 + cos2 t) arctanx,

τ0(t) = sin t, τ1(t) = cos t, τ2(t) = sin t, and p(t) = sin t and T = 2π. It
is then easy to verify that all the assumptions of Theorem 1 are satisfied
with H = 1, D > π/4 and M = π. Hence this equation has a 2π-periodic
solution.

We remark that by symmetric arguments, we can establish the following
existence theorem.

Theorem 3. Suppose there are constants H ≥ 0, D > 0 and M > 0 such
that (i) |f(t, x1, . . . , xn−1)| ≤ H for (t, x1, . . . , xn−1) ∈ Rn, (ii) xg(t, x) > 0
and |g(t, x)| > H for t ∈ R and |x| ≥ D, and (iii) |g(t, x)| ≤ M for t ∈ R
and x ≥ D. Then (3) has a T -periodic solution.
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