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A multiplicity result
for the Schrödinger–Maxwell equations

with negative potential

by Giuseppe Maria Coclite (Trieste)

Abstract. We prove the existence of a sequence of radial solutions with negative
energy of the Schrödinger–Maxwell equations under the action of a negative potential.

1. Introduction. In this paper we study the interaction between the
electromagnetic field and the wave function related to a quantum non-
relativistic charged particle, which is described by the Schrödinger equation.

In [2, 3, 11] the case in which the electromagnetic field is given has been
studied. Here we shall assume that the unknowns of the problem are both
the wave function ψ = ψ(x, t) and the gauge potentials ϕ = ϕ(x, t) and
A = A(x, t) related to the electromagnetic fields E, H by the equations

E = −1
c

∂A
∂t
−∇ϕ, H = ∇×A.

Such a situation has been studied by Benci and Fortunato (cf. [5]) in the
case where the charged particle “lives” in a bounded space region Ω. Here
we want to analyze the case of Ω = R3. Moreover we assume that there is an
external field deriving from a potential −V (x). We consider the electrostatic
case, namely we look for potentials ϕ and A which do not depend on time t:

ϕ = ϕ(x), A = A(x), x ∈ R3,

and for standing wave functions

ψ(x, t) = u(x)eiωt, x ∈ R3, t ∈ R,
where ω ∈ R and u is real-valued. In this situation we can assume A = 0
(see the first part in Section 3 of [5]).
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It can be shown (cf. [5]) that ϕ, ω and u are related by the equations

(1)
{
− 1

2∆u− ϕu− V (x)u = ωu in R3,
∆ϕ = 4πu2 in R3.

We assume that V : R3 → R is a radial positive map satisfying

(V1) V is continuous in R3 \ {0};
(V2) V ∈ L3/2({|x| ≤ 1});
(V3) lim

|x|→+∞
V (x) = 0;

(V4) lim
|x|→+∞

x2V (x) = +∞.

Observe that the coulombian potential, which is physically the most inter-
esting one, satisfies (V1)–(V4) (cf. [13, 14]).

The equations in (1) have a variational structure; in fact, they are the
Euler–Lagrange equations for the functional

Fω(u, ϕ) =
1
4

�

R3

|∇u|2 dx− 1
2

�

R3

ϕu2 dx− 1
16π

�

R3

|∇ϕ|2 dx

− 1
2

�

R3

V (x)u2 dx− ω

2

�

R3

|u|2 dx.

This functional is strongly indefinite, which means that Fω is neither
bounded from below nor from above and this indefiniteness cannot be re-
moved by a compact perturbation. Moreover Fω is not even. By a suitable
variational principle we are reduced to studying an even functional which
does not exhibit the same indefiniteness of Fω. The main result of this paper
is the following.

Theorem 1. Let V satisfy (V1)–(V4). Then for all ω < 0 problem (1)
has infinitely many solutions {(uk, ϕk)}k∈N with uk ∈ H1(R3),

�

R3

|∇ϕk|2 dx <∞

and such that Fω(uk, ϕk) < −ω/2.

The case where V is radially decreasing and belongs to Lp(R3), with
3/2 < p < ∞, is investigated in [9, Cap. 6] and the nonlinear case is stud-
ied in [10]. Finally we recall that the Maxwell equations coupled with the
nonlinear Klein–Gordon equation and with the Dirac equation have been
studied respectively in [6, 12].

2. The variational principle. In this section we shall prove a varia-
tional principle which permits us to reduce (1) to the study of the critical
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points of an even functional which is not strongly indefinite. To this end we
need some technical preliminaries.

We define the space D1,2(R3) as the closure of C∞0 (R3) with respect to
the norm

‖u‖D1,2
.=
( �

R3

|∇u|2 dx
)1/2

.

The following lemma holds (cf. [7, Theorem 2.4]):

Lemma 2. For all % ∈ L1(R3)∩Lr(R3) with 6/5 < r ≤ 2, there exists a
unique ϕ ∈ D1,2(R3) such that ∆ϕ = %. Moreover ,

‖ϕ‖2D1,2 ≤ c(‖%‖2L1 + ‖%‖2Lr)
and the map

% ∈ L1(R3) ∩ Lr(R3) 7→ ϕ = ∆−1(%) ∈ D1,2(R3)

is continuous.

By Lemma 2 and the Sobolev inequalities, for any given u ∈ H1(R3) the
second equation of (1) has the unique solution

ϕ = 4π∆−1u2 (∈ D1,2(R3)).

For this reason we can reduce (1) to

(2) −1
2
∆u− 4π(∆−1u2)u− V (x)u = ωu in R3.

Observe that (2) is the Euler–Lagrange equation of the functional

Jω(u) =
1
4

�

R3

|∇u|2 dx+ π
�

R3

|∇∆−1u2|2 dx

− 1
2

�

R3

V (x)u2 dx− ω

2

�

R3

u2 dx.

Now we set

H1
r (R3) := {u ∈ H1(R3) | u(x) = u(|x|), x ∈ R3}.

Lemma 3. For all ω ∈ R:

(i) Jω is even;
(ii) Jω is C1 on H1(R3) and its critical points are solutions of (2);
(iii) any critical point of Jω|H1

r (R3) is also a critical point of Jω.

Proof. The proof of (i) is trivial. Since

d

dλ

( �

R3

|∇∆−1(u+ λv)|2 dx
)∣∣∣∣
λ=0

= −2
�

R3

(∆−1u | v) dx,
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(ii) holds true. To prove (iii), consider the O(3) group action Tg on H1(R3)
defined by

Tgu(x) = u(g(x)),

where g ∈ O(3) and u ∈ H1(R3). Then the conclusion follows by well known
arguments (see for example [16]) because Jω is invariant under the Tg action,
namely

Jω(Tgu) = Jω(u),

where g ∈ O(3) and u ∈ H1(R3). So (iii) is proved.

3. Proof of Theorem 1. We begin by proving some lemmas.

Lemma 4. Let V satisfy (V1)–(V3). Then for all ω < 0 the functional Jω
is weakly lower semicontinuous in H1

r (R3). Precisely

u ∈ H1
r (R3) 7→

�

R3

|∇u|2 dx− 2ω
�

R3

u2 dx

is weakly lower semicontinuous and

u ∈ H1
r (R3) 7→

�

R3

|∇∆−1u2|2 dx, u ∈ H1
r (R3) 7→

�

R3

V (x)u2 dx

are weakly continuous.

Proof. Let ω < 0. By a well known argument the functional

u ∈ H1
r (R3) 7→

�

R3

|∇u|2 dx− 2ω
�

R3

u2 dx

is weakly lower semicontinuous.
We prove that the functional

u ∈ H1
r (R3) 7→

�

R3

|∇∆−1u2|2 dx

is weakly continuous. It suffices to observe that the operator

Q : u ∈ H1
r (R3) 7→ u2 ∈ L6/5(R3) ∩ L2(R3)

is compact; in fact, by the compact embeddings of H1
r (R3) (see [8, Theo-

rem A.I′], [16]) the operator

H1
r (R3) ↪→ L12/5(R3) ∩ L4(R3)

Q−→ L6/5(R3) ∩ L2(R3)

is compact, and by Lemma 2 the operator

∆−1 : L6/5(R3) ∩ L2(R3)→ D1,2(R3)

is continuous.
Next, we prove that the functional

u ∈ H1
r (R3) 7→

�

R3

V (x)u2 dx
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is weakly continuous. Let {uk} ⊂ H1
r (R3) and u ∈ H1

r (R3) such that uk ⇀ u
weakly in H1

r (R3). Since uk ⇀ u weakly in L2(R3), there exists C > 0 such
that

‖uk‖L2 ≤ C, ‖u‖L2 ≤ C.
By (V3) for all ε > 0 there exists R > 0 such that

|x| ≤ R ⇒ 0 ≤ V (x) < ε/C2.

Then

(3)
�

{|x|≥R}
V (x)u2

k dx < ε,
�

{|x|≥R}
V (x)u2 dx < ε.

By the Sobolev inequality, clearly u2
k ⇀ u2 weakly in L3(R3), and by (V1)

and (V2), �

{|x|≤R}
V (x)u2

k dx→
�

{|x|≤R}
V (x)u2 dx.

Therefore (3) yields
∣∣∣

�

R3

V (x)u2
k dx−

�

R3

V (x)u2 dx
∣∣∣

≤ 2ε+
∣∣∣

�

{|x|≥R}
V (x)u2

k dx−
�

{|x|≥R}
V (x)u2 dx

∣∣∣,

so
lim
k

∣∣∣
�

R3

V (x)u2
k dx−

�

R3

V (x)u2 dx
∣∣∣ ≤ 2ε,

and we conclude that �

R3

V (x)u2
k dx→

�

R3

V (x)u2 dx.

So the proof of the weak lower semicontinuity is complete.

Remark 5. Observe that only for 3 ≤ n < 6 are we able to prove that
the functional

u ∈ H1
r (Rn) 7→

�

Rn
|∇∆−1u2|2 dx

is weakly continuous by using the compact embedding results for radial
solutions (see [8, Theorem A.I′], [16]) and Lemma 2.

Lemma 6. Let V satisfy (V1)–(V3). Then for all ω < 0 the functional Jω
is coercive in H1

r (R3), i.e. for every sequence {uk} ⊂ H1
r (R3) such that

‖uk‖H1 → +∞ we have limk Jω(uk) = +∞.

Proof. Let ω < 0. Define

B′ = {u ∈ H1
r (R3) | ‖u‖H1 = 1}.
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Let {uk} ⊂ H1
r (R3) be such that ‖uk‖H1 → +∞. Write uk = λkũk with

λk ∈ R and ũk ∈ B′. We have

Jω(uk) = akλ
2
k + bkλ

4
k − ckλ2

k + dkλ
2
k

with

ak =
1
4

�

R3

|∇ũk|2 dx ∈ [0, 1/4], bk = π
�

R3

|∇∆−1ũ2
k|2 dx ≥ 0,

ck =
1
2

�

R3

V (x)ũ2
k dx ≥ 0, dk = −ω

2

�

R3

ũ2
k dx ∈ [0,−ω/2].

Observe that by the Sobolev inequality and (V1)–(V3),

2ck =
�

{|x|≤1}
V (x)ũ2

k dx+
�

{|x|>1}
V (x)ũ2

k dx

≤ ‖V ‖L3/2({|x|≤1})‖ũk‖2L6 + sup
|x|≥1

V (x)‖ũk‖2L2

≤ (C‖V ‖L3/2({|x|≤1}) + sup
|x|≥1

V (x))‖ũk‖2H1

= (C‖V ‖L3/2({|x|≤1}) + sup
|x|≥1

V (x)),

where C > 0 is the Sobolev embedding constant. Since

u ∈ H1
r (R3) 7→

�

R3

|∇∆−1u2|2 dx

is weakly continuous and B′ is bounded in H1
r (R3) there exists α > 0 such

that bk ≥ α > 0. Hence we conclude that limk Jω(uk) = +∞.

Using a well-known argument based on Lemmas 4 and 6 we immediately
obtain the following result.

Lemma 7. Let V satisfy (V1)–(V3). Then for all ω < 0 the functional Jω
is bounded from below in H1

r (R3).

Lemma 8. Let V satisfy (V1)–(V3). Then for all ω < 0 the functional
Jω|H1

r (R3) satisfies the Palais–Smale condition, i.e. any sequence {uk} ⊂
H1

r (R3) such that {Jω(uk)} is bounded and (Jω(uk)|H1
r (R3))′ → 0 contains

a converging subsequence.

Proof. Let ω < 0 and {uk} ⊂ H1
r (R3) be such that {Jω(uk)} is bounded

and (Jω(uk)|H1
r (R3))′ → 0. First of all observe that, by Lemma 3(iii),

(Jω|H1
r (R3))

′(u) = 0 ⇔ J ′ω(u) = 0,

hence we can suppose J ′ω(uk) → 0. By Lemma 6, the sequence {uk} is
bounded in H1

r (R3); consequently, passing to a subsequence there exists
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u ∈ H1
r (R3) such that

(4) uk ⇀ u weakly in H1
r (R3).

Clearly then

(5) J ′ω(u) = 0.

We prove that uk → u in H1
r (R3). By Lemma 4 and (4),

�

R3

|∇uk|2 dx− 2ω
�

R3

u2
k dx

= 2〈J ′ω(uk), uk〉 − 8π
�

R3

|∇∆−1u2
k|2 dx+ 2

�

R3

V (x)u2
k dx

→ − 8π
�

R3

|∇∆−1u2|2 dx+ 2
�

R3

V (x)u2 dx

=
�

R3

|∇u|2 dx− 2ω
�

R3

u2 dx− 2〈J ′ω(u), u〉.

By (5) and since ω < 0, our claim is proved.

Remark 9. Since for all ω < 0 the functional Jω is bounded from be-
low and satisfies the Palais–Smale condition there exists at least one critical
point, namely the minimum. Assumption (V4) is needed to prove the exis-
tence of other critical points.

Lemma 10. Let V satisfy (V1)–(V4). Then for all k ∈ N\{0}, there exist
a subspace Vk ⊂ H1

r (R3) of dimension k and ν > 0 such that
�

R3

(
1
2
|∇u|2 − V (x)u2

)
dx ≤ −ν for all u ∈ Vk ∩B,

where B = {u ∈ H1
r (R3) | � R3 |u|2 dx = 1}.

Proof. Let u be a smooth map with compact support such that
�

R3

|u|2 dx = 1, supp(u) ⊂ B2(0) \B1(0),

where B%(x) = {y ∈ R3 | |x− y| < %}, x ∈ R3, % > 0. Setting

uλ(x) = λ3/2u(λx), λ > 0, x ∈ R3,

and
Aλ = B2/λ(0) \B1/λ(0), λ > 0,

we obtain �

R3

|u|2 dx =
�

R3

|uλ|2 dx = 1, supp(uλ) ⊂ Aλ.
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By (V1) we have
�

R3

(
1
2
|∇uλ|2 − V (x)u2

λ

)
dx =

�

R3

(
λ2 1

2
|∇u|2 − V

(
x

λ

)
u2
)
dx

≤ λ2
�

R3

1
2
|∇u|2 dx− inf

(1/λ) suppu
V ≤ λ2

�

R3

1
2
|∇u|2 dx− inf

Aλ
V

= λ2
�

R3

1
2
|∇u|2 dx− V (xλ),

where xλ belongs to the closure of Aλ, V (xλ) = infAλ V and (1/λ) suppu .=
{(x/λ) | x ∈ suppu}. By (V3) and (V4) there exists λ0 > 0 such that

�

R3

(
1
2
|∇uλ0 |2 − V (x)u2

λ0

)
dx < 0.

Let k ∈ N\{0} and u1, . . . , uk be smooth maps with compact supports such
that

�

R3

|ui|2 dx = 1, supp(ui) ⊂ B2i(0) \Bi(0), i = 1, . . . , k.

Using an analogous argument we find λ1, . . . , λk > 0 such that
�

R3

(
1
2
|∇uiλi |2 − V (x)u2

iλi

)
dx < 0, i = 1, . . . , k;

here uiλ =̇ (ui)λ. Let

0 < λ < min{λ1, . . . , λk}
and Vk be the subspace spanned by u1λ, . . . , ukλ. Since the supports of these
maps are pairwise disjoint, Vk has dimension k. Since for all i = 1, . . . , k and
λ ≤ λi we have

�

R3

(
1
2
|∇uiλ|2 − V (x)u2

iλ

)
dx < 0

and Vk ∩B is compact, the lemma is proved.

Lemma 11. Let V satisfy (V1)–(V4). Then for all ω < 0 the func-
tional Jω has infinitely many critical points {uk}k∈N ⊂ H1

r (R3) such that
Jω(uk) < −ω/2.

Proof. Let ω < 0 and define

cωk = inf{supJω(A) | A ∈ A, γ(A) ≥ k}, k ∈ N \ {0},
with

A = {A ⊂ H1
r (R3) | A closed, symmetric and 0 6∈ A}
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and γ is the genus (cf. e.g. [1, Definition 1.1]). We have to prove that
cωk < −ω/2 for all k ∈ N. Let k ∈ N \ {0} and ν > 0. By Lemma 10, there
exists a subspace Vk ⊂ H1

r (R3) of dimension k such that for all u ∈ Vk ∩B,
�

R3

(
1
2
|∇u|2 − V (x)u2

)
dx ≤ −ν.

Let λ > 0 and define

hλ : Vk ∩B → H1
r (R3), hλ(u) = λ1/2u.

Fix u ∈ Vk ∩B and 0 < λ < 1. Then

(6) Jω(hλ(u)) ≤ −λ
2
ν + cλ2 − ω

2
λ ≤ −λ

2
ν + cλ2 − ω

2
,

where c is a positive constant. Then there exists 0 < λ < 1 such that
Jω(hλ(u)) < −ω/2 for all u ∈ Vk ∩ B. Since hλ is continuous, odd and
0 6∈ Vk ∩B we have

(7) hλ(Vk ∩B) ∈ A.
Since Vk ∩B is compact, by (6) and (7) we have

inf Jω ≤ cωk ≤ supJω(hλ(Vk ∩B)) < −ω/2.
By Lemma 8 combined with [15, Theorem 9.1], [4] there exists a sequence
{uk} ⊂ B of critical points of Jω such that Jω(uk) = cωk < −ω/2. So,
Lemma 11 is proved.

Proof of Theorem 1. The proof is an immediate consequence of Lem-
mas 3 and 11, since

Fω(u, 4π∆−1u2) = Jω(u)

for all ω ∈ R and u ∈ H1(R3).
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