
ANNALES
POLONICI MATHEMATICI

LXXIX.1 (2002)

Solutions to some nonlinear PDE’s in the form of
Laplace type integrals

by Maria E. Pliś (Kraków)

Abstract. A nonlinear equation P (D)u = αum in 2 variables is considered. A formal
solution as a series of Laplace integrals is constructed. It is shown that assuming some
properties of CharP , one gets the Gevrey class of such solutions. In some cases convergence
“at infinity” is proved.

1. Introduction. In [P-Z] we have considered a nonlinear equation

P (D)u =
∞∑

j=1

cju
j(1)

with all cj constant (complex or real), D = (∂/∂x1, ∂/∂x2), and we have
found a formal solution of (1) represented at infinity as a formal sum of
Laplace type integrals. In general, solutions of this type are divergent. In
this work we show that in some cases these formal solutions are in some
formal Gevrey class. Similar problems for some nonlinear singular partial
differential equations were studied in [G-T].

This paper is a continuation of [P-Z], but we recall all definitions and
notations. We restrict our attention to the case

P (D)u = αum(2)

for some fixed m ∈ N, m ≥ 2, and α a real or complex number, where
P is a polynomial of two variables. In what follows, for a = (a1, a2) and
b = (b1, b2), we write a ≤ b (resp. a < b) whenever ai ≤ bi (resp. ai < bi)
for i = 1, 2 and ab is the scalar product. For η ∈ R we write ηa instead of
ηa1 + ηa2.

The assumptions on the left-hand side of (2) are given below. Set CharP
= {z ∈ C2 : P (z) = 0}. We assume that there exists an unbounded curve
Z ⊂ CharP ∩ R2

+ such that:

(i) 2Z ∩ Z = ∅;
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(ii) kZ ⊂ nZ for 2 ≤ n < k; n, k ∈ N (here kZ = Z + . . . + Z is the
algebraic sum of k summands);

(iii) |P (z)| ≥ 1 for z ∈ 2Z;
(iv) for every η > 0 there exists a constant Mη such that for every

c = (c1, c2) with ci ≥ η,
�
Ze
−cx dx ≤Mη.

The integral in (iv) is a line integral over Z.
Following [S-Z], for a ∈ R2 we define

La = {φ ∈ C∞((R+)2) : sup
x∈(R+)2

|e−ax(∂/∂x)νφ(x)| <∞, ν ∈ N2
0}

with convergence defined by the seminorms

‖φ‖a,ν = sup
x∈(R+)2

|e−ax(∂/∂x)νφ(x)|,

and for ω ∈ R2 we define

L(ω) = lim−→
a<ω

La,

equipped with the inductive limit topology. The dual space L′(ω) is called

the space of Laplace distributions on (R+)2.

2. Construction of solutions. The function e−xz as a function of z
(x fixed) belongs to the space La for every a ≥ −x, so it belongs to L(ω) for
every ω > −x. We look for a solution of (2) in the form

u(x) = T [e−xz](3)

for some Laplace distribution T . Applying P (D) to u of the form (3) we
arrive at the convolution equation

P (z)T = αT ∗m.(4)

Here T ∗m stands for T ∗ . . . ∗ T with m factors.
We modify slightly this equation by multiplying the right-hand side by

a factor ε ∈ (0, 1], so we consider

P (z)T = αεT ∗m,(5)

and we look for T in the form of a formal series

T =
∞∑

k=0

εkTk(6)

of Laplace distributions Tk.
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Inserting (6) in (5) we obtain
∞∑

k=0

P (z)Tkεk = εα

∞∑

k=0

εk
∑

k1+...+km=k

Tk1 ∗ . . . ∗ Tkm

=
∞∑

k=1

εkα
∑

k1+...+km=k−1

Tk1 ∗ . . . ∗ Tkm ,

therefore, we get the recurrence system

P (z)T0 = 0,(7)

P (z)Tk = α
∑

k1+...+km=k−1

Tk1 ∗ . . . ∗ Tkm for k ≥ 1.(8)

Fix η > 0, b = (b1, b2) ∈ R2 and set ω = −η − b = (−η − b1,−η − b2).
Let Mη be the constant in (iv) and Φ a function in C∞(R2

+) satisfying

0 < Φ(x) ≤ Cebx for all x ∈ R2
+,(9)

for some constant C < |α|−1/(m−1)M−1
η .

Exactly as in [P-Z] we define a Laplace distribution T0 by the formula

T0[φ] = �
Z

φ(x)Φ(x) dx(10)

for every test function φ ∈ L(ω).
One can see immediately that T0 is a solution of (7), T0 ∈ L′(ω) and

suppT0 ⊂ Z.
Definition (10) and properties of convolution imply that for p ∈ N and

φ ∈ La with a < ω,

|T ∗p0 [φ]| ≤ (CMη)p sup
z∈pZ

|φ(z)e−az|.(11)

Indeed,

T ∗p0 [φ] = �
Z×...×Z

φ(z1 + . . .+ zp)Φ(z1) . . . Φ(zp) dz1 . . . dzp

= �
Zp

φ(z1 + . . .+ zp)e−a(z1+...+zp)Φ(z1)eaz1 . . . Φ(zp)eazp dz1 . . . dzp.

Hence,

|T ∗p0 [φ]| ≤ sup
z∈pZ

|φ(z)e−az|
( �
Z

Φ(z)eaz dz
)p
,

which is due to the fact that z1 + . . .+ zp ∈ pZ for zi ∈ Z. This gives (11)
because

�
ZΦ(z)eaz dz ≤ C

�
Z e

(a+b)z dz ≤ CMη, since a+ b < −η.

Lemma 1. Let Θ be a function in C∞(R2k
+ ), k ≥ 2, satisfying

0 < Θ(z) ≤ Heb(z1+...+zk)
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for some constants H > 0, b = (b1, b2) ∈ R2, and for all z = (z1, . . . , zk),
zi ∈ R2

+ (i = 1, . . . , k). Let T ∈ L′(ω) be a Laplace distribution for ω = −b−η
with η > 0, given by

T [φ] = �
Zk

φ(z1 + . . .+ zk)Θ(z1, . . . , zk) dz1 . . . dzk(12)

for φ ∈ L(ω). Then the Laplace distribution S defined by

S[φ] = �
Zk

φ(z1 + . . .+ zk)
P (z1 + . . .+ zk)

Θ(z1, . . . , zk) dz1 . . . dzk,(13)

with |P (z)| ≥ 1 for z ∈ 2Z, solves the equation P (z)S = T , and for φ ∈ La
with a < ω,

|S[φ]| ≤ sup
u∈kZ

|φ(u)e−au|HMk
η .(14)

Proof. It follows from assumption (iii) that formula (13) makes sense. If
φ ∈ L(ω), then also Pφ ∈ L(ω). Therefore

(PS)[φ] = S[Pφ] = �
Zk

φ(z1 + . . .+ zk)Θ(z1, . . . , zk) dz1 . . . dzk = T [φ],

and for φ ∈ La with a < ω we obtain

|S[φ]| ≤ �
Zk

|φ(z1 + . . .+ zk)|e−a(z1+...+zk)

× |Θ(z1, . . . , zk)|ea(z1+...+zk) dz1 . . . dzk

≤ sup
u∈kZ

|φ(u)e−au|H �
Zk

e(b+a)(z1+...+zk) dz1 . . . dzk

≤ sup
u∈kZ

|φ(u)e−au|H
( �
Z

e(b+a)z dz
)k

and by (iv) we get (14), because −(a+ b) > η.
If T is as in Lemma 1, then we denote by 1

P T the distribution S given
by (13).

Lemma 2. Let m ∈ N, m ≥ 2 and {Bk}k∈N be a sequence of real numbers
defined by the recurrence formulas

B1 = 1,

Bk =
m̃∑

r=1

(
m

r

) ∑

m1+...+mr=k−1
mi≥1

Bm1 . . . Bmr for k > 1,(15)

where m̃ = min{m,k − 1}. Then Bk ≤ ((m− 1)k)!.
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Proof. The proof is by induction on k. Obviously, for every m ≥ 2,
B1 = 1 ≤ (m − 1)!. Suppose that Bs ≤ ((m − 1)s)! for every s < k. From
(15) it follows that

Bk ≤
m̃∑

r=1

(
m

r

) ∑

m1+...+mr=k−1
mi≥1

((m− 1)m1)! . . . ((m− 1)mr)!

≤
m̃∑

r=1

(
m

r

)
((m− 1)(k − 1))!

(
k − 2
r − 1

)

= ((m− 1)(k − 1))!
m̃∑

r=1

(
m

r

)(
k − 2
r − 1

)
,

due to the well known facts that the number of elements of {(m1, . . . ,mr) :
m1 + . . . + mr = n, mi ≥ 1, i = 1, . . . , r} is

(
n−1
r−1

)
, and that p1! . . . pr! ≤

(p1 + . . .+ pr)!. It is sufficient to show that

(16)
m̃∑

r=1

(
m

r

)(
k − 2
r − 1

)
≤ ((m− 1)k)!

((m− 1)(k − 1)!

= ((m− 1)k − (m− 2))((m− 1)k − (m− 3)) . . . ((m− 1)k)

=
m−1∏

l=1

((m− 1)k − (l − 1)).

We check at once that
m̃∑

r=1

(
m

r

)(
k − 2
r − 1

)
=
(
k +m− 2
m− 1

)
=

m−1∏

l=1

k + l − 1
l

and

(m− 1)k − (l − 1)− k + l − 1
l

=
[l(m− 1)− 1]k − (l2 − 1)

l
≥ 0

for l = 1, . . . ,m− 1 and k ≥ 1, and (16) is proved.

Let (k1, . . . , kr) ∈ Nr0 be such that k1 + . . .+kr = k−1, k ∈ N, ki ≥ 1 for
i = 1, . . . , r. Then we define k′j = (m− 1)(k1 + . . .+ kj) + j for j = 1, . . . , r,
k′0 = 0 and mk = (m − 1)k + 1. Clearly k′r = mk − (m − r). For z =
(z1, . . . , zmk) we set ukj = (zk′j−1+1, . . . , zk′j ) and s(ukj ) = zk′j−1+1 + . . .+ zk′j
for j = 1, . . . , r. Then we define Hk : R2mk

+ → R by the recurrence formula

(17) H1(z1, . . . , zm) =
Φ(z1) . . . Φ(zm)
P (z1 + . . .+ zm)

,
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(18) Hk(z1, . . . , zmk)

=
m̃∑

r=1

(
m

r

) ∑

k1+...+kr=k−1
ki≥1

Hk1(uk1) . . .Hkr(ukr)Φ(zk′r+1) . . . Φ(zmk)
P (s(uk1) + . . .+ s(ukr) + zk′r+1 + . . .+ zmk)

.

Lemma 3. If T0 is the Laplace distribution given by (10) then the dis-
tribution Tk defined by

Tk =
α

P

∑

k1+...+km=k−1

Tk1 ∗ . . . ∗ Tkm(19)

for k ≥ 1 satisfies the following conditions:

Tk ∈ L′(ω) for ω = −b− η, and Tk solves (8);(20)

suppTk ⊂ mkZ,(21)

where mk = (m− 1)k + 1; for every φ ∈ La with a < ω,

Tk[φ] = αk �
Zmk

φ(z1 + . . .+ zmk)Hk(z1, . . . , zmk)dz1 . . . dzmk(22)

with Hk given by (17) and (18);

�
Zmk

|Hk(z1, . . . , zmk)|ea(z1+...+zmk ) dz1 . . . dzmk ≤ Bk(CMη)mk ,(23)

and
|Tk[φ]| ≤ |α|kBk(CMη)mk sup

u∈mkZ
|φ(u)|e−au,(24)

where the sequence Bk is given by (15).

Proof. The condition (20) follows immediately from the properties of
convolution and from the assumptions on P .

In order to prove (21)–(24) we proceed by induction. For k = 1 we have
T1 = α(1/P )T ∗m0 , so suppT1 ⊂ mZ. By (17),

T1[φ] = α �
Zm

φ(z1 + . . .+ zm)H1(z1, . . . , zm) dz1 . . . dzm,

and

|H1(z1, . . . , zm)|ea(z1+...+zm) =
Φ(z1)eaz1 . . . Φ(zm)eazm

|P (z1 + . . .+ zm)| .

Hence by (iii),

�
Zm

|H1(z1, . . . , zm)|ea(z1+...+zm) dz1 . . . dzm ≤
( �
Z

Φ(z)eaz dz
)m

.

Therefore
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|T1[φ]|
= |α|

∣∣∣ �
Zm

φ(z1+ . . .+zm)e−a(z1+...+zm)H1(z1, . . . , zm)ea(z1+...+zm) dz1 . . . dzm

∣∣∣

≤ |α| sup
u∈mZ

|φ(u)|e−au(CMη)m.

Suppose now that for Ts with s < k, k > 1, (21)–(24) hold. Then for
k1 + . . .+ km = k − 1 we have

suppTk1 ∗ . . . ∗ Tkm ⊂
m∑

r=1

suppTkr ⊂
m∑

r=1

mkrZ = mkZ,

because mk1 + . . .+mkm = mk. Here
∑

is the algebraic sum of sets.
By the properties of convolution, assumption (iii) and by (15) we obtain

�
Zmk

|Hk(z1, . . . , zmk)|ea(z1+...+zmk ) dz1 . . . dzmk

=
m̃∑

r=1

(
m

r

) ∑

k1+...+kr=k−1
ki≥1

�
Zk
′
r

�
Zm−r

×
∏r
j=1 |Hkj (ukj )|e

as(ukj )
Φ(zk′r+1)eazk′r+1 . . . Φ(zmk)eazmk

|P (
∑r

j=1 s(ukj ) + zk′r+1 + . . .+ zmk)| du dz

≤
m̃∑

r=1

(
m

r

) ∑

k1+...+kr=k−1
ki≥1

Bk1(CMη)mk1 . . . Bkr(CMη)mkr (CMη)m−r

= Bk(CMη)mk ,

and

Tk[φ] = α

m̃∑

r=1

(
m

r

) ∑

k1+...+kr=k−1
ki≥1

�
Z
mk1

. . . �
Zmkr

�
Zm−r

φ
( r∑

j=1

s(uj) + zk′r+1 + . . .+ zmk

)

×
∏r
j=1 α

kjHkj (uj)Φ(zk′r+1) . . . Φ(zmk)

P (
∑r

j=1 s(uj) + zk′r+1 + . . .+ zmk)
du1 . . . dur dz

= αk �
Zmk

φ(u)Hk(u) du.



52 M. E. Pliś

Moreover

|Tk[φ]| ≤ |α|k sup
u∈mkZ

|φ(u)|e−au
m̃∑

r=1

(
m

r

) ∑

k1+...+kr=k−1
ki≥1

r∏

j=1

�
Z
mkj

|Hkj (uj)|eas(uj)duj
( �
Z

Φ(z)eaz dz
)m−r

≤ |α|k sup
u∈mkZ

|φ(u)|e−au

×
m̃∑

r=1

(
m

r

) ∑

k1+...+kr=k−1
ki≥1

Bk1 . . . Bkr(CMη)mk1+...+mkr+m−r

= |α|k sup
u∈mkZ

|φ(u)|e−auBk(CMη)mk .

By Lemma 2 we have

Corollary 1. The distribution Tk defined by (19) satisfies the estimate

|Tk[φ]| ≤ |α|k((m− 1)k)!Dmk sup
z∈mkZ

|φ(z)e−az|

with constant D = CMη independent of a, for φ ∈ La, mk = (m− 1)k + 1,
−a− b > η.

3. Gevrey class of solutions. Let J = {Jk}k∈N be a sequence of real
numbers, and ω ∈ Rn.

Definition 1. We defineGω(J) as the set of formal series
∑∞

k=1 Tk[e
−xz]

with Laplace distributions Tk such that the series
∑∞

k=1
1
Jk
Tk[e−xz] converges

locally uniformly for x > −ω.

Theorem 1. Fix b = (b1, b2) ∈ R2 and η > 0, and let ω = −η − b.
Let Mη =

�
Z e
−ηxdx, and Φ be a function in C∞(R2

+) satisfying (9) for
some constant C < |α|−1/(m−1)M−1

η . Define Laplace distributions Tk by
(10) and (19) for k = 0, 1, . . . , and set uk(x) = Tk[e−xz] for x > −ω. Set
Jk = ((m− 1)k)!. Then the series

∞∑

k=0

uk(x) =
∞∑

k=0

Tk[e−xz](25)

is a formal solution of (2) and it is in the Gevrey class Gω(J).

Proof. The series (25) solves (2) by the construction of Tk. It remains to
prove that it is in the Gevrey class. Since e−xz ∈ La (as a function of z) for
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every a ≥ −x, from Corollary 1 it follows that if x ≥ −a > −ω, then

|uk(x)| = |Tk[e−xz]| ≤ |α|k(CMη)(m−1)k+1Jk sup
z∈mkZ

|e−(a+x)z|.

Hence for x ≥ −a, and in consequence for x > −ω, we have

|uk(x)| ≤ CMηJk(|α|(CMη)m−1)k.

Since |α|(CMη)m−1 < 1 the series
∑∞

k=1 uk(x)/Jk is uniformly convergent
on the set {x > −ω}.

Fix β > 0, and denote by Dk the set

Dk = {y ∈ R2
+ : yz > βk2 for all z ∈ kZ}.(26)

Theorem 2. Assume that the sequence {Dk}k is decreasing , and fix ω ∈
R2. Then, for the formal solution

∑∞
k=1 uk(x) defined by (25), the sequence

βN = sup
x∈DmN−ω

N∑

k=1

|uk(x)|(27)

with mN = (m− 1)N + 1, for N ∈ N, is bounded.

Proof. We first observe that if {Dk} decreases then so does {Dk−ω}. If
x ∈ DmN−ω and r ≤ N then x ∈ DmN−a for some a with x ≥ −a > −ω, so
x ∈ Dmr−a and (x+a)z ≥ βm2

r for z ∈ mrZ. From the proof of Theorem 1
it follows that for such x and k = 1, 2, . . . ,

|uk(x)| ≤ CMη((m− 1)k)!(|α|(CMη)m−1)k sup
z∈mkZ

|e−(a+x)z|.

Thus for all r ≤ N ,

|ur(x)| ≤ CMη((m− 1)r)!(|α|1/(m−1)CMη)(m−1)re−βm
2
r

and ∞∑

r=1

((m− 1)r)!E(m−1)re−βm
2
r ≤

∞∑

p=1

p!Epe−β(p+1)2
<∞

with E = |α|1/(m−1)CMη.

It is worth pointing out that the solution (25) depends strictly on the
choice of the function Φ in the formula (10). But it means in fact the de-
pendence on the choice of the constant b or ω = −b− η, η fixed.

We can now formulate some consequence of the possibility of this choice.

Theorem 3. Fix η > 0. For every r,N ∈ N we can choose ω > 0 and a
formal solution

∑∞
k=0 uk(x) of (2) such that

N∑

k=0

|uk(x)| ≤ CMη

N∑

k=1

((m− 1)k)!E(m−1)ke−βm
2
k(28)

for x ∈ Dr and E = |α|1/(m−1)CMη.
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Proof. If r ≥ mN , then obviously Dr ⊂ DmN ⊂ DmN − ω for every
ω > 0, and (28) follows from Theorem 2. Suppose now that r < mN . Then
mNZ ⊂ rZ, therefore, for x ∈ Dr, xz > βr2 for all z ∈ mNZ. If we choose
ω ∈ DmN then (x+ ω)z = xz + ωz > βr2 + βm2

N > βm2
N for all z ∈ mNZ,

which means that x ∈ DmN − ω, and the solution (25) defined for such ω
satisfies (28).

4. Special case. Suppose now that the set Z can be described by

Z = {(t, s) ∈ R2
+ : s = f(t)} = {z(t) : t ∈ R+},

where z(t) = (t, f(t)), f : R+ → R+, f ∈ C∞, f ′ < 0, f ′′ > 0, f−1 ∈ C∞
and

lim
x→0

f(x) =∞, lim
x→∞

f(x) = 0.

It is evident that the distribution T0 defined by (10) with some constants
η > 0, b = (b1, b2) ∈ R2

+ fixed and a function Φ chosen to satisfy (9), can be
written as an integral over R+:

T0[φ] =
∞

�
0

φ(t, f(t))Ψ(t) dt(29)

for φ ∈ L(ω), ω = −η−b, with Ψ(t) = Φ(t, f(t))
√

1 + (f ′(t))2. It can be seen
that for some constant C ′ < |α|−1/(m−1)M−1

η we have

0 < Ψ(t) ≤ C ′ebz(t) = C ′eb1t+b2f(t).(30)

Lemma 4. For every k ∈ N, k ≥ 2,

kZ = {(x, y) ∈ R2
+ : y ≥ kf(x/k)}(31)

and kZ is convex.

Proof. If (x, y) ∈ kZ, then there exist t1, . . . , tk > 0 such that x =
t1 + . . .+ tk and y = f(t1) + . . .+ f(tk). Hence

y

k
=

1
k
f(t1) + . . .+

1
k
f(tk) ≥ f

(
t1 + . . .+ tk

k

)
= f

(
x

k

)
.

Now fix (x, y) ∈ {y ≥ kf(x/k)}. Writing tj = x/k for j = 3, . . . , k, and
t1 = αx/k, t2 = (2 − α)x/k, for α ∈ (0, 2) we have x = t1 + . . . + tk. Let
F (α) = f(αx/k) + f((2− α)x/k). We see that F (1) = 2f(x/k), F (α)→∞
as α→ 0 or α→ 2. Clearly y−(k−2)f(x/k) ≥ 2f(x/k). Then by continuity
of F , there exists α such that F (α) = y − (k − 2)f(x/k). This proves that
y = f(t1) + . . .+ f(tk), so (x, y) ∈ kZ.

Let now (x, y), (u, v) ∈ kZ, and define (r, s) = λ(x, y) + (1− λ)(u, v) for
0 ≤ λ ≤ 1. We shall show that also (r, s) ∈ kZ. We have r = λx+ (1− λ)u,
s = λy + (1− λ)v, y ≥ kf(x/k) and v ≥ kf(u/k). Therefore
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s

k
=λ

y

k
+(1−λ)

v

k
≥ λf

(
x

k

)
+(1−λ)f

(
u

k

)
≥ f

(
λx+(1−λ)u

k

)
=f

(
r

k

)
.

This proves the convexity of kZ.

Let σ ∈ {1,−1}, Vσ = {(t1, t2) : t1 > 0, t2 > 0, σ(t2 − t1) > 0} and
consider the transformation Ψσ : Vσ → 2Z given by

Ψσ(t1, t2) = (t1 + t2, f(t1) + f(t2))(32)

for t = (t1, t2) ∈ Vσ. The Jacobian JΨσ(t) = |f ′(t2) − f ′(t1)| 6= 0 on Vσ,
hence Ψσ is invertible and the Jacobian JΨ−1

σ (u) is independent of σ. We
use the notation Ψ−1

+ (u) = (t1(u), t2(u)) and Ψ−1
− (u) = (t2(u), t1(u)), and

K(u) =
{
JΨ−1

σ (u) for u ∈ 2Z,
0 for u ∈ R2

+ \ 2Z.
(33)

Define Ẑ = {(x, y) ∈ R2
+ : y > f(x)}, and for v ∈ Ẑ denote by Tv the

open interval (f−1(v2), v1). It follows from the assumptions on Z that if
t ∈ Tv then v1 − t > 0 and v2 − f(t) > 0.

Define

K̂(v) =

{ �
Tv
K(v − z(t)) dt for v ∈ Ẑ,

0 for v ∈ R2
+ \ Ẑ.

(34)

Lemma 5. For every k ∈ N, k ≥ 2 and for φ ∈ L(ω) we have

T ∗k0 [φ] = �
R2

+

φ(z)Φk(z) dz

where

(35)

Φ2(z) :=
{

2Ψ(t1(z))Ψ(t2(z))K(z) for z ∈ 2Z,
0 for z ∈ R2

+ \ 2Z,

Φk(v) :=

{ �
Tv
Φk−1(v − z(t))Ψ(t) dt for v ∈ Ẑ,

0 for v ∈ R2
+ \ Ẑ,

for k ≥ 3. Moreover , Φk ∈ C∞((kZ)◦), suppΦk ⊂ kZ and

Φk ≤ Θk :=
{
Φ∗p2 for k = 2p,
Φ3 ∗ Φ∗p−1

2 for k = 2p+ 1,
(36)

Φ3 ∗ Φ3 ≤ Φ∗32 .(37)

Proof. By definition of convolution of distributions and by formula (29)
we can see that

T ∗20 [φ] =
∞

�
0

∞
�
0

φ(z(t) + z(s))Ψ(t)Ψ(s) ds dt.
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Now we use the elementary fact that
∞

�
0

∞
�
0

=
∞

�
0

t

�
0

+
∞

�
0

∞
�
t

and we change variables using transformations (32). Thus

T ∗20 [φ] = 2 �
2Z

φ(u)Ψ(t1(u))Ψ(t2(u))JΨ−1
σ (u) du = �

R2
+

φ(u)Φ2(u) du.

Obviously suppΦ2 ⊂ 2Z and regularity of Φ2 follows from regularity of Ψ
and Ψ−1

σ .
Similarly, since T ∗30 = T ∗20 ∗ T0, we get

T ∗30 [φ] = �
R2

+

∞
�
0

φ(u+ z(t))Φ2(u)Ψ(t) du dt.

The mapping
χ(u1, u2, t) = (u1 + t, u2 + f(t), t)

is a homeomorphism

χ : (0,∞)3 → {(v1, v2, τ) : v2 > f(v1), τ ∈ Tv}
with Jacobian 1. Indeed, if v1 = u1 + t, v2 = u2 + f(t) for u1 > 0, u2 > 0,
t > 0, then

v2 = u2 + f(v1 − u1) > f(v1 − u1) > f(v1),

because f decreases. Similarly, t = v1−u1 < v1, and since f(t) = v2−u2 we
have t = f−1(v2−u2) > f−1(v2). Thus t ∈ Tv. Suppose now that v2 > f(v1)
and t ∈ Tv. Then u1 := v1 − t > 0 and u2 := v2 − f(t) > 0, so (u1, u2, t)
belongs to the domain of χ. The injectivity and continuity of χ are obvious.
Thus we can use χ to change variables in the last integral to obtain

T ∗30 [φ] = �
Ẑ

φ(v) �
Tv

Φ2(v − z(t))Ψ(t) dt dv = �
R2

+

φ(v)Φ3(v) dv,

where Φ3 is given by (35) for k = 3.
If v ∈ (R2

+ \ (k + 1)Z) ∩ Ẑ then v − z(t) ∈ R2
+ \ kZ for t ∈ Tv, so

suppΦ3 ⊂ 3Z and obviously Φ3 ∈ C∞((3Z)◦). We now proceed by induction.
Since T ∗k+1

0 = T ∗k0 ∗ T0, we have

T ∗k+1
0 [φ] = �

R2
+

∞
�
0

φ(u+ z(t))Φk(u)Ψ(t) dt du

= �
Ẑ

φ(v) �
Tv

Φk(v − z(t))Ψ(t) dt dv = �
R2

+

φ(v)Φk+1(v) dv.
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From (35) it follows that

Φk+1(v) = �
Tv

�
Tv−z(t)

Φk−1(v − z(t)− z(s))Ψ(t)Ψ(s) dt ds

= �
Ψσ(T̂v)

Φk−1(v − y)Φ2(y) dy,

where T̂v = {(t, s) ∈ R2
+ : t ∈ Tv, s < t}.

The estimate (36) is obvious for k = 2 and k = 3. Suppose that it is true
for k = 2p and k = 2p+ 1. Then

Φ2p+2(v) = �
Ψσ(T̂v)

Φ2p(v − y)Φ2(y) dy

≤ �
Ψσ(T̂v)

Φ∗p2 (v − y)Φ2(y) dy ≤ Φ∗(p+1)
2 (v),

and

Φ2p+3(v) = �
Ψσ(T̂v)

Φ2p+1(v − y)Φ2(y) dy

≤ �
Ψσ(T̂v)

Φ3 ∗ Φ∗(p−1)
2 (v − y)Φ2(y) dy ≤ Φ3 ∗ Φ∗p2 (v).

By (35), using the transformations χ and Ψσ we get

Φ3 ∗ Φ3(v) =
v

�
0

Φ3(v − u)Φ3(u) du

=
v

�
0

�
Tv−u

�
Tu

Φ2(v − u− z(t))Φ2(u− z(s))Ψ(t)Ψ(s) dt ds du

=
v

�
0

�
Ty

�
Ty−z(t)

Φ2(v − y)Φ2(y − (z(t) + z(s)))Ψ(t)Ψ(s) dt ds dy

≤
v

�
0

�
Ψσ(T̂y)

Φ2(v − y)Φ2(y − z)Φ2(z) dz dy ≤ Φ∗32 (v).

Corollary 2. The function Θk defined by (36) for k = 2, 3, . . . satis-
fies, for v ∈ R2

+,

Θk(v) ≤ (
√

2C ′)kebvKk(v)

where

Kn(u) =
{
K∗p(u) for n = 2p,
K̂ ∗K∗p−1(u) for n = 2p+ 1.

(38)
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Proof. By the definition of Φ2 it follows immediately that

Φ2(v) ≤ 2C ′2eb(z(t1(v))+z(t2(v)))K(v) = (
√

2C ′)2ebvK(v),

since z(t1(v)) + z(t2(v)) = v. Similarly,

Φ3(v) ≤ 2C ′3 �
Tv

eb(v−z(t))K(v − z(t))ebz(t) dt

= 2C ′3ebv �
Tv

K(v − z(t)) dt < (
√

2C ′)3ebvK̂(v).

Hence, for k = 2p we have

Θk(v) = Φ∗p2 (v) ≤ (
√

2C ′)2pebvK∗p(v)

and for k = 2p+ 1,

Θk(v) = Φ3 ∗ Φ∗p−1
2 (v) ≤ (

√
2C ′)2p+1ebvK̂ ∗K∗p−1(v).

Exactly as in the general case, for T0 defined by (29), we can define Tk
by (19).

Theorem 4. The distribution Tk defined by (19) acts on test functions
as a function Gk ∈ C∞((mkZ)◦) (mk = (m− 1)k+ 1) defined on R2

+ by the
recurrence formula

G1(u) = α
Φm(u)
P (u)

,(39)

Gk(u) =
α

P (u)

m̃∑

r=1

(
m

r

) ∑

k1+...+kr=k−1
ki≥1

Gk1 ∗ . . . ∗Gkr ∗ Φm−r(u)(40)

for k > 1 and m̃ = min{m,k − 1}. Moreover , we have the estimate

|Gk(u)| ≤ |α|k((m− 1)k)!ebu(
√

2C ′)mkKmk(u).(41)

Proof. The functions Gk (k = 1, 2, . . .) are well defined because Φm and
Gk1 ∗ . . . ∗Gkr ∗ Φm−r vanish on some neighbourhoods of Z. By (19),

T1 =
α

P
T ∗m0

and

Tk =
α

P

m̃∑

r=1

(
m

r

) ∑

k1+...+kr=k−1
ki≥1

Tk1 ∗ . . . ∗ Tkr ∗ T ∗m−r0 .

Then for every test function φ we have

T1[φ] = α �
R2

+

φ(u)
Φm(u)
P (u)

du = �
R2

+

φ(u)G1(u) du,
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and if for s < k, Ts[φ] =
�
R2

+
φ(u)Gs(u) du, then for u1, . . . , ur, v ∈ R2

+,

Tk[φ]

= α

m̃∑

r=1

(
m

r

) ∑

k1+...+kr=k−1
ki≥1

�
(R2

+)r+1

φ(
∑r

j=1 uj+v)

P (
∑r

j=1 uj+v)

r∏

j=1

Gkj (uj)Φm−r(v) du dv

= α

m̃∑

r=1

(
m

r

) ∑

k1+...+kr=k−1
ki≥1

�
R2

+

φ(z)
Gk1 ∗ . . . ∗Gkr ∗ Φm−r(z)

P (z)
dz.

Hence we get formula (40) for Gk with k > 1. It remains to prove the
estimate (41). By Corollary 2 it is sufficient to show that

|Gk(u)| ≤ |α|k((m− 1)k)!Θmk(u),(42)

and for this purpose we proceed by induction. Of course, for k = 1, (42)
holds. Assume it holds for s < k. Then for k1 + . . .+ kr = k − 1 we have

|Gk1 ∗ . . . ∗Gkr ∗ Φm−r(u)|
≤ |α|k1+...+kr((m− 1)k1)! . . . ((m− 1)kr)!Θmk1

∗ . . . ∗Θmkr ∗Θm−r(u)

≤ |α|k−1((m− 1)(k − 1))!Θmk(u).

The rest of the reasoning runs as in the proof of Lemma 2.

Now we can state an analogue of Theorem 1.

Theorem 5. Fix b = (b1, b2) ∈ R2 and η > 0 and set ω = −η − b.
Assume that , for some constant Aη > 1,

�
R2

+

e−ηzK(z) dz ≤ Aη, �
R2

+

e−ηzK̂(z)dz ≤ Aη,

where K and K̂ are defined by (33) and (34) respectively. Let Ψ ∈ C∞(R2
+)

satisfy (30) for some constant C ′ < |α|−1/(m−1)(2Aη)−1/2, Gk be given by
(39) and (40) for k = 1, 2, . . . , and let

u0(x) =
∞

�
0

e−xz(t)Ψ(t) dt,(43)

uk(x) = �
R2

+

e−xzGk(z) dz(44)

for k ≥ 1 and x > −ω. Set Jk = ((m− 1)k)! and J = {Jk}. Then the series∑∞
k=0 uk(x) is a formal solution of (2) and is in the Gevrey class Gω(J).

Proof. We note that the function K depends on the curve Z only, there-
fore the constant Aη depends on Z and η only. By assumption, definition of
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Kk and properties of convolution we have, for k = 2p,

�
R2

+

e−ηzKk(z) dz = �
R2

+

e−ηzK∗p(z) dz ≤
( �
R2

+

e−ηzK(z) dz
)p
≤ Apη = Ak/2η ,

and for k = 2p+ 1,

�
R2

+

e−ηzKk(z) dz = �
R2

+

e−ηzK̂ ∗K∗p−1(z) dz

≤ �
R2

+

e−ηzK̂(z) dz
( �
R2

+

e−ηzK(z) dz
)p−1

≤ Apη < Ak/2η .

From Theorem 4 we obtain, for x > −ω,

�
R2

+

e−xzGk(z) dz ≤ |α|k((m− 1)k)!(
√

2C ′)mk �
R2

+

e−(x−b)zKmk(z) dz.

We conclude from the definition of ω that for x > −ω we have x − b >
−ω − b = η, hence

�
R2

+

e−xzGk(z) dz ≤ |α|k((m− 1)k)!(
√

2Aη C ′)(m−1)k+1

=
√

2Aη C ′((m− 1)k)!(|α|(
√

2Aη C ′)m−1)k.

By the assumption on C ′, we have Fη := |α|(
√

2Aη C ′)m−1 < 1, and

uk(x)
((m− 1)k)!

≤
√

2Aη C ′F kη ,

therefore the theorem is proved.

Similarly, we can rephrase Theorem 2 as follows.

Theorem 6. Suppose the sequence {Dk}k decreases and let ω = −η−b ∈
R2 be as in Theorem 5. Then for the formal solution (43) and (44) the
sequence (27) with mN = (m− 1)N + 1, for N ∈ N, is bounded.

Proof. If x ∈ Dmk − ω then we have (x− b)z > ηz + β(mk)2. Hence

uk(x) = �
R2

+

e−xzGk(z) dz ≤ |α|k(
√

2C ′)mk((m− 1)k)! �
R2

+

e−(x−b)zKmk(z) dz

≤
√

2Aη C ′F kη ((m− 1)k)!e−βm
2
k ,

and the rest of the proof runs as in the general case.

5. Example. In this section we show that the assumptions in the present
work are not vacuous, that is, there exists a polynomial P which has the
asserted properties. Suppose that

P (z) = P (z1, z2) = Q(z)(z1z2 − 1),
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where Q is some polynomial with |Q| > 1 on R2
+. Then

CharP ∩ R2
+ = {z : z2 = 1/z1}

and we can choose the curve Z = {(t, 1/t) : t ∈ R+} ⊂ CharP ∩ R2
+. It

is easy to check that kZ = {x ∈ R2
+ : x2 ≥ k2/x1}, therefore conditions

(i)–(iii) hold.
To check (iv), we observe that for ci ≥ η > 0,

�
Z

e−cz dz =
∞

�
0

e−c1t−c21/t
√

1 + 1/t4 dt≤
1

�
0

e−c21/t
√

1+1/t4 dt+
√

2
∞

�
1

e−c1t dt

=
∞

�
1

e−c2s
√

1+1/s4 ds+

√
2 e−c1

c1
≤
√

2
(
e−c2

c2
+
e−c1

c1

)
<2
√

2
e−η

η
.

Clearly, the function f(t) = 1/t for t ∈ R+ satisfies the conditions assumed
at the beginning of Section 5. We show that in this example the set Dk

defined by (26) can be written as

Dk =
{
y ∈ R2

+ : y2 > β2 k2

4y1

}
.(45)

Indeed, fix y = (y1, y2) ∈ Dk. The function

F (z) = F (z1, z2) = yz − βk2 = y1z1 + y2z2 − βk2

defined for z ∈ kZ satisfies F (z) ≥ 0 on kZ. We have ∂F
∂z1

(z) = y1 > 0,
∂F
∂z2

(z) = y2 > 0 for all z ∈ kZ, therefore min{F (z) : z ∈ kZ} ≥ 0 must be
attained on the boundary ∂(kZ) = {z2 = k2/z1}. To calculate this minimal
value we consider the function F on ∂(kZ) as a function of one variable z1,
that is, as the function

h(z1) = F

(
z1,

k2

z1

)
= y1z1 + y2

k2

z1
− βk2.

Since h′(z1) = y1 − y2k
2/z2

1 = 0 for z1 = k
√
y2/y1, we have

min{F (z) : z ∈ kZ} = min{F (z) : z ∈ ∂(kZ)} = h(k
√
y2/y1)

= k(2
√
y1y2 − βk) ≥ 0

for y1y2 ≥ (βk)2/4.
Conversely, if y satisfies the last inequality, then the quadratic function

g(z1) = z1h(z1) = y1z
2
1−βk2z1+y2k

2 has determinant∆ = β2k4−4y1y2k
2 =

k2(β2k2 − 4y1y2) ≤ 0, so h(z1) = g(z1)/z1 ≥ 0 for all z1 > 0. Hence, for all
z ∈ kZ, F (z) ≥ h(z1) ≥ 0 and consequently y ∈ Dk.

Thus the sequence {Dk}k decreases.
The transformation Ψσ has the form

t1 + t2 = u1, 1/t1 + 1/t2 = u2,
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and the inverse transformation Ψ−1
+ is given by the formula

t1(u) =
1
2

(u1 −
√
u1(u1 − 4/u2)), t2(u) =

1
2

(u1 +
√
u1(u1 − 4/u2)).

Hence, we get the Jacobian

K(u) =
u1

u2
2

√
u1(u1 − 4/u2)

=
1

u2
√
u2(u2 − 4/u1)

.

Since
�
2Z =

� ∞
0

� ∞
4/u1

and
� ∞
4/u1

K(u1, u2) du2 = u1/2, for any η > 0 we obtain

�
R2

+

e−ηuK(u) du = �
2Z

e−ηuK(u) du

=
∞

�
0

e−η1u1

[ ∞�
4/u1

e−η2u2K(u1, u2) du2

]
du1 ≤

1
2

∞
�
0

e−η1u1u1 du1 =
1

2η2
1
.

Similar, but slightly more sophisticated calculations show that the func-
tion K̂ in this case also satisfies the assumptions of Theorem 5.
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