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Solutions to some nonlinear PDE’s in the form of
Laplace type integrals

by MARIA E. PLIS (Krakéw)

Abstract. A nonlinear equation P(D)u = au™ in 2 variables is considered. A formal
solution as a series of Laplace integrals is constructed. It is shown that assuming some
properties of Char P, one gets the Gevrey class of such solutions. In some cases convergence
“at infinity” is proved.

1. Introduction. In [P-Z] we have considered a nonlinear equation
[e.9]
(1) P(Dyu=Y_ ¢jul
j=1

with all ¢; constant (complex or real), D = (9/0x1,0/0x2), and we have
found a formal solution of (1) represented at infinity as a formal sum of
Laplace type integrals. In general, solutions of this type are divergent. In
this work we show that in some cases these formal solutions are in some
formal Gevrey class. Similar problems for some nonlinear singular partial
differential equations were studied in [G-T].

This paper is a continuation of [P-Z], but we recall all definitions and
notations. We restrict our attention to the case

(2) P(D)u = au™

for some fixed m € N, m > 2, and « a real or complex number, where
P is a polynomial of two variables. In what follows, for a = (a;,as) and
b = (b1,b2), we write a < b (resp. a < b) whenever a; < b; (resp. a; < b;)
for ¢ = 1,2 and ab is the scalar product. For n € R we write na instead of
nai + nas.

The assumptions on the left-hand side of (2) are given below. Set Char P
= {2z € C?: P(2) = 0}. We assume that there exists an unbounded curve
Z C Char PN Ri such that:

(i) 2Z2nZ =10
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(ii) kZ Cc nZ for 2 < n < k; n,k € N (here kZ = Z + ...+ Z is the
algebraic sum of k summands);

(iii) |P(2)| > 1 for z € 2Z,;

(iv) for every n > 0 there exists a constant M, such that for every
c=(c1,¢2) with ¢; > n, §e”dx < M,.

The integral in (iv) is a line integral over Z.
Following [S-Z], for a € R? we define

Lo ={¢p € C¥([R)?*) : sup |e *(d/0x)"¢(x)| < o0, v € N3}
z€(Ry)?

with convergence defined by the seminorms

[0l = sup |e™*(9/0x)"p()],

z€(Ry)?

and for w € R2 we define

Liw) = lim La,
a<w
/

equipped with the inductive limit topology. The dual space L(w) is called
the space of Laplace distributions on (R )2

2. Construction of solutions. The function e™*# as a function of z

(z fixed) belongs to the space L, for every a > —z, so it belongs to L) for
every w > —z. We look for a solution of (2) in the form

(3) u(z) = Tle™]

for some Laplace distribution 7. Applying P(D) to u of the form (3) we
arrive at the convolution equation

(4) P(2)T = aT*™.

Here T*™ stands for T % ... T with m factors.
We modify slightly this equation by multiplying the right-hand side by
a factor € € (0, 1], so we consider

(5) P(2)T = agT™™,

and we look for T in the form of a formal series
o0

(6) T =Y T
k=0

of Laplace distributions T},.
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Inserting (6) in (5) we obtain

o
ZP Tks =ca
k=0

oo

e Z Thy * ... % Tk,
0  ki+..+tkm=k

o0
= g eFa E Ty, * ... x Ty,
k=1

ki+...+km=k—1

k=

therefore, we get the recurrence system
(7) P(2)To =0,
(8) P2)Ty =« Z T, *...xT, ~ for k> 1.
k1+ootkm=k—1
Fix n > 0, b = (b1,b2) € R? and set w = —n — b = (—n — by, —n — by).
Let M, be the constant in (iv) and @ a function in C*°(R?%) satisfying
(9) 0<®(z) < Ce’™ forallweR2,

for some constant C' < |a|_1/(m_1)Mn_1.
Exactly as in [P-Z] we define a Laplace distribution Ty by the formula

(10) To[¢] = | p(a)®(x) da
Z
for every test function ¢ € L.
One can see immediately that Ty is a solution of (7), Ty € L’(w) and
supp1p C Z.
Definition (10) and properties of convolution imply that for p € N and
¢ € L, with a < w,

(11) T[] < (CM,)P sup |¢(z)e .
zEPZ
Indeed,
TPl = | o(a+... +2)8(21)... B(z)dz ... dz
LX..XZ
= S dz1+ ...+ zp)e_“(z1+"‘+zp)di(z1)eazl o D(2p)e" P dzy .. dzp.
7p
Hence,

* —az az p
T5719]] < sup |o(=)e | ([ o()e dz),
zEpZ 7z
which is due to the fact that 2 + ...+ 2, € pZ for z; € Z. This gives (11)
because {,P(2)e?* dz < C{, elaY* dz < CM,,, since a +b < —n.
LEMMA 1. Let © be a function in C"’O(Ri’“), k > 2, satisfying
0 < O(z) < Heblrt-+2r)
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for some constants H > 0, b = (by,b2) € R?, and for all z = (z1,...,2),
z€RY (i=1,...,k). Let T € L’(w) be a Laplace distribution for w = —b—n
with n > 0, given by
(12) T(g) = | ¢(z1+... + 2)0(21, ..., 2) d21 . .. d2,

Zk
Jor ¢ € L. Then the Laplace distribution S defined by

S o1+ ...+ 2k)
ka<21+"‘+zk)

(13) S[qb] = @(2’1,...,Zk) le...de,

with |P(z)| > 1 for z € 2Z, solves the equation P(2)S =T, and for ¢ € L,
with a < w,

(14) |S[6]] < sup |¢(w)e™"|HM}.
uekZ

Proof. 1t follows from assumption (iii) that formula (13) makes sense. If
¢ € L), then also P¢ € L. Therefore
(PS)[¢] = S[Pg] = | ¢(z1+ ...+ 2)O(21,...,2) dz1 ... dzy, = T,
Zk
and for ¢ € L, with a < w we obtain

1STell < 16(z1 + ... + zp)|emolFrEt20)

Zk
X |O(z1,. .., z) [ F T F) dzy L dzy,

< sup |p(u)e”™|H S ebFra)ztetan) o dzy,
uek”Z

Zk

—au (b+a)z K
< sélkpz |p(u)e \H(;e dz)

and by (iv) we get (14), because —(a + b) > n.
If T is as in Lemma 1, then we denote by %T the distribution S given
by (13).

LEMMA 2. Letm € N, m > 2 and { By }ren be a sequence of real numbers
defined by the recurrence formulas

By =1,

(15) By = Xm: <:’f> S Buw...Bm, fork>1,

r=1 mi+...+mpr=k—1
m;>1

where m = min{m, k — 1}. Then By < ((m — 1)k)!.
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Proof. The proof is by induction on k. Obviously, for every m > 2,
By =1 < (m — 1)l. Suppose that By < ((m — 1)s)! for every s < k. From
(15) it follows that

By < 2 Cf) S (m—Dm)l.. ((m— Lm,)!

mi+...+mr=k—1
m;>1

< i (") n-v-on(* )
~ (-3 (M523

r=1

due to the well known facts that the number of elements of {(mq,...,m,;) :
my+...+mp, =n,m; > 1,i=1,...,7r}is (:f:ll), and that p!...p.! <
(p1 4 ...+ py)!. It is sufficient to show that

T m\ (k-2 ((m —1)k)!
(16) ;<r><r—1>§<<m—1><k—1>!
=((m—-1Dk—(m—-2))(m—1k—(m-=3))...((m—1)k)

We check at once that

i m\ (k—2\ (k+m—2 _mflk‘+l—1
—\r r—1) m—1 N l

and

k+l—-1  [(m—1)—1]k— (12 —1)
==

(m—1k—-(1-1)— l

>0
fori=1,...,m—1and k > 1, and (16) is proved.

Let (k1,...,k,) € Njy be such that k1 +...+k, =k—1, k € N, k; > 1 for
i=1,...,7. Then we define kj; = (m — 1)(k1 + ...+ kj) +jfor j=1,....7,
ky = 0 and my = (m — 1)k + 1. Clearly k], = my — (m — r). For z =
(21, -+ Zm,) We set ug, = (zk;_71+1, e ,zk;_) and s(uy,) = 21t T 2

for j=1,...,r. Then we define Hy : Rim’“ — R by the recurrence formula

D(z1)...P(zm)

17 Hy(21, ... 2m) = :
(17) 1= Zm) Plzi+ ...+ zm)
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(18) Hk(zl,...,zmk)

o (m Hp, (ug,) - - Hy, (ug, )P(21741) - .- P(2m,,)
_;<T> Z P(s(up,) 4.+ s(uk,) + 2pg1 + -+ 2my,)

k4. +kr=k—1
ki>1

LEMMA 3. If Ty is the Laplace distribution given by (10) then the dis-
tribution Ty, defined by

«
(19) Te=+5 Z T, % ... % T,
ki+..+km=k—1
for k > 1 satisfies the following conditions:
(20) T € L'(w) for w=—-b—mn, and Ty solves (8);
(21) supp 1y C miZ,
where my, = (m — 1)k + 1; for every ¢ € L, with a < w,

(22)  Tp[p] = oF S d(z1 4o 4 zm ) Hi (21, -+ 2my, )d21 - . d2m,
Z™Mk

with Hy, given by (17) and (18);

23) | [Hi(z1,. ooz, )€ o) dzy L da, < BR(CM,)™,
Zmk

and

(24) [ Tilg)] < laf*Be(CMy)™ sup_[@(u)le™",

ueEMRZ

where the sequence By, is given by (15).

Proof. The condition (20) follows immediately from the properties of
convolution and from the assumptions on P.

In order to prove (21)—(24) we proceed by induction. For & = 1 we have
Ty = o(1/P)T§™, so supp Ty C mZ. By (17),

T1[¢] = S d(z1+ ...+ z2m)Hi(z1, . 2m) dz1 ... dzp,
Zm

and
D(z1)e" ... D(z, )€™

|P(z1+ ...+ zm)|

’H]- (Zla .. 7Zm)|6a(zl+.‘.+zm) i

Hence by (iii),
S |H1 (21, -, zm)]e“(zl+"'+z”) dzy...dzm < ( S D(z)e dz)m
zm Z
Therefore
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T1[¢]]

= |a|‘ S (214 ... +z)e W FEIE (2 2y e Bt ) do dzy,
zm

< |af sup |¢(u)le”*(CM,)™
uemz

Suppose now that for Ty with s < k, k > 1, (21)-(24) hold. Then for
ki+...+k, =k—1 we have

m m
supp Ty, * ... x Ty, C Zsupkar - karZ =mypZ,
r=1 r=1

because mg, + ...+ my, = my. Here ) is the algebraic sum of sets.
By the properties of convolution, assumption (iii) and by (15) we obtain

a\z TR
klz1, .00, m 1...02m
S |Hi (2 2y )| €T I dy L d iy,
Zmk

m
=3I D SEN
T
r=1 ki+..+kr=k—1 Zk;, Zm—r
ki>1

TT)y [ Hi (g, )| €55 D 2y )€ 5540 L (2, )62
|P(Z]:l ( kij) + Zk’lr-‘rl + ...+ ka)|

§Z<T> D Bu(CMy)™s . By (CMy)™ (CMy)™

r=1 kit...+kp=k—1
ki>1

= By (CM,)"*

dudz

and

:ag(@ S

kit..the=k—1 z™k1  Z™kp Zm—r
ki>1

qb(is(u]) + 2+ ka)
Jj=1

e M Hy, (u)®(21y41) - - - P(2my)
(E: (uj)%—zk;+1—%...+-zn%)

=aF S ¢(u) Hy(u) du.

Z™k

duy ...du, dz
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Moreover

T[] < |of* sup \¢<u>e“”Z<T> >

ueEMpZ

r=1 ki+...+kr=k-1
ki>1
- as(uj) az mer
H S |Hp, (ug)le Jduj<8¢(z)e dz)
J=1 5mk; Z
<la* sup_|o(u)le
ueEMRZ

m
m —
x Z <T’> Z By, ... Dy, (CMn)mkl"F----i‘mkr'f'm r
r=1

kit...+kp=k—1
ki>1

:|04|]’C sup |p(u)le” By (CM,)™*.

uwemyZ
By Lemma 2 we have
COROLLARY 1. The distribution Ty, defined by (19) satisfies the estimate
T[] < lal*((m = DE)ID™ sup [¢(z)e |

zEMERZ
with constant D = C M, independent of a, for ¢ € Lq, mi, = (m — 1)k + 1,
—a—b>n.

3. Gevrey class of solutions. Let J = {Ji}ren be a sequence of real
numbers, and w € R™.

DEFINITION 1. We define G¥(/J) as the set of formal series Y p- | Tj,[e "]
with Laplace distributions T}, such that the series > 2~ Jika [e~®#] converges
locally uniformly for x > —w.

THEOREM 1. Fiz b = (b1,b2) € R? and n > 0, and let w = —n — b.
Let M, = §,e "dx, and & be a function in Cm(Ri) satisfying (9) for
some constant C' < |a|_1/(m_1)Mn—1. Define Laplace distributions Ty, by
(10) and (19) for k = 0,1,..., and set ug(x) = Tile *?] for v > —w. Set
Jr = ((m — 1)k)!. Then the series

(25) S ule) = 3 Tile ]
k=0 k=0

is a formal solution of (2) and it is in the Gevrey class G¥(J).

Proof. The series (25) solves (2) by the construction of T}. It remains to
prove that it is in the Gevrey class. Since e ™* € L, (as a function of z) for
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every a > —x, from Corollary 1 it follows that if x > —a > —w, then

|uk ()] = |Tile ]| < Jaf*(CM,) ™= DFHL, sup_ e~ (@+a)z|
zeEmyg

Hence for x > —a, and in consequence for x > —w, we have
jur ()| < OMyJi(Jal(CM,)™H)E.
Since |a|(CM,)™ ! < 1 the series Y oo, ug(x)/Jx is uniformly convergent
on the set {x > —w}.
Fix 8 > 0, and denote by Dy the set
(26) Dy ={y € R2 :yz > pk* for all z € kZ}.
THEOREM 2. Assume that the sequence { Dy} is decreasing, and fix w €

R2. Then, for the formal solution Y oo | ug(z) defined by (25), the sequence
N

(27) By = s> k()]

TEDm y —w —1

with my = (m —1)N + 1, for N € N, is bounded.

Proof. We first observe that if { Dy} decreases then so does { Dy —w}. If
x € Dy —wand r < N thenz € Dy, —a for some a with x > —a > —w, so
x € Dy, —a and (z+a)z > Bm?2 for 2 € m,Z. From the proof of Theorem 1
it follows that for such z and k =1,2,...,

[u(2)] < CMy((m = Dk)!(al(CM)™)* sup_fem(*+)2),
zEMEZ

Thus for all r < N,
up(z)] < CMy((m — 1)r)!(|aY =D, =1 e=Fm?

and
o0

Z((m - 1)7“)!E(m_1)re_ﬁm’2" < iozplEpe_ﬁ(i”H)2 < 00
r=1 p=1
with E = |a|V/Mm=1CM,,.
It is worth pointing out that the solution (25) depends strictly on the
choice of the function @ in the formula (10). But it means in fact the de-

pendence on the choice of the constant b or w = —b — 7, n fixed.
We can now formulate some consequence of the possibility of this choice.

THEOREM 3. Fixn > 0. For every r, N € N we can choose w > 0 and a
formal solution Y7~ uk(z) of (2) such that

N

(28) > luk(z)| < C’an k)| E(m =Dk g=0my
k=0

forz € D, and E = |a|"/ m_l)C’Mn.
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Proof. It » > my, then obviously D, C D,,, C D, — w for every
w > 0, and (28) follows from Theorem 2. Suppose now that r < mpy. Then
myZ C rZ, therefore, for x € D,., xz > (r? for all z € myZ. If we choose
w € Dy then (z4+w)z = 22 + wz > Br2 + m3%; > BmA for all z € myZ,
which means that z € D,,,, —w, and the solution (25) defined for such w
satisfies (28).

4. Special case. Suppose now that the set Z can be described by
Z={(t;s) € RZ i 5= f(t)} = {=(t) : t € Ry},
where z(t) = (t, f(t)), f: Ry = Ry, f€C®, f <0, f">0,fleC>®
and
lim f(z) =00, lim f(z)=0.

r—0

It is evident that the distribution Tp defined by (10) with some constants
n>0,b=(by,by) € R? fixed and a function @ chosen to satisfy (9), can be
written as an integral over R, :

(29) To] = | ot f(0)2(t) dt

0
for ¢ € L), w = —n—>b, with ¥(t) = &(t, f(t))\/1 4 (f'(t))?. It can be seen
that for some constant C’ < |oz|_1/(m_1)Mn_1 we have

(30) 0 < W(t) < C'eb?0) — Crehittbaf ()
LEMMA 4. For every k € N, k > 2,
(31) kZ ={(z,y) €RY 1y > kf(z/k)}

and kZ 1s convex.

Proof. If (x,y) € kZ, then there exist t1,...,t; > 0 such that z =
t1+...+tyand y = f(t1) + ...+ f(tx). Hence

U LR+ F ) ﬁ(%) =f<%).
Now fix (z,y) € {y > kf(z/k)}. Writing t; = «/k for j = 3,...,k, and
t1 = ax/k, ts = (2 — a)x/k, for a € (0,2) we have © = t1 + ... + tx. Let
F(a) = f(ax/k) + f((2 = a)x/k). We see that F(1) =2f(z/k), F(a) — o
asa — 0or o — 2. Clearly y—(k—2) f(z/k) > 2f(x/k). Then by continuity
of F, there exists o such that F(a) =y — (k — 2) f(z/k). This proves that
y=f(t1)+...+ f(tg), so (z,y) € kZ.

Let now (x,y), (u,v) € kZ, and define (r,s) = A(z,y) + (1 — A)(u,v) for
0 < X < 1. We shall show that also (r,s) € kZ. We have r = Az + (1 — M,
s=Ay+(1—=XNv,y>kf(x/k) and v > kf(u/k). Therefore
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%:)\%Jr(l—/\)% > Af(%)Jr(l—)\)f(%) > %%}?A)“):f(g)

This proves the convexity of kZ.
Let 0 € {1,-1}, V, = {(t1,t2) : t1 > 0,t2 > 0, o(te — t1) > 0} and

consider the transformation ¥, : V, — 27 given by
(32) Uy (tr,t2) = (1 +t2, f(t1) + f(t2))

for t = (t1,t2) € V,. The Jacobian J¥,(t) = |f'(t2) — f'(t1)| # 0 on V,,
hence ¥, is invertible and the Jacobian J¥, !(u) is independent of o. We
use the notation ¥, ' (u) = (t1(u), t2(u)) and ¥~ (u) = (ta(u),t1(u)), and

IS (u) foru €27,
(33) K(u) = {0 for u € R2 \ 27.

Define Z = {(z,y) € R2 :y > f(z)}, and for v € Z denote by T, the
open interval (f~!(v2),v1). It follows from the assumptions on Z that if
t € T, then v1 —t > 0 and ve — f(t) > 0.

Define

(34) K(v) = { (S)T” Fld z Z i ]Ii'i \ Z.

LEMMA 5. For every k € N, k > 2 and for ¢ € L, we have

Ti*) = | ¢(2)Br(2) dz

22
where
By (2) = 20 (t1(2)¥(ta(2))K(2)  for z €2Z,
257 %0 forzeRi\2Z,
(35) ~
By (v) = STvék,l(v —z(1)¥(t)dt forve Z,
k = ~
0 forv e Ri \ Z,
for k > 3. Moreover, @, € C**((kZ)°), supp ®, C kZ and
g fork=2p
36 P <Op:i=9 % ’
(36) b=k {453*@2;;1 fork=2p+1,
(37) D3 x Py < B33

Proof. By definition of convolution of distributions and by formula (29)
we can see that

o0 o0

T3716] = § § 6(=(t) + =)W () 0(s) ds dt.
00
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Now we use the elementary fact that

00 0O oot 00 00

JI=41+0)

00 00 O°t
and we change variables using transformations (32). Thus
T52[¢] = 2 | ¢w)W (1 ()W (t2(w) I, (w) du = | ¢(u)Ps(u) du.
27 RZ
Obviously supp @2 C 27 and regularity of @5 follows from regularity of ¥
and 1.
Similarly, since Tg? = Tg? * Ty, we get
o0
T3¢l = | | o(u+ 2(t)) o (u)¥(t) du dt.
RZ 0
The mapping
x(ur,ug,t) = (ur +t,uz2 + f(t),1)
is a homeomorphism
x:(0,00)3 = {(vi,v9,7) s w9 > f(v1), T € Ty}
with Jacobian 1. Indeed, if v = uy + ¢, vo = ug + f(¢) for u; > 0, ug > 0,
t > 0, then
vy =ug + f(vg —uy) > f(vr —ur) > f(v1),
because f decreases. Similarly, t = v1 —uy < v1, and since f(t) = vo —uz we
have t = f~!(vg —ug) > f~!(ve). Thus t € T,,. Suppose now that vy > f(v1)
and t € T,,. Then u; := vy —t > 0 and ug := vy — f(t) > 0, so (uy,ug,t)
belongs to the domain of y. The injectivity and continuity of x are obvious.
Thus we can use y to change variables in the last integral to obtain

T3¢l = | ¢(v) | Ga(v — 2(0))W(t) dtdv = | p(v)P3(v) dv,
Z T, R
where @3 is given by (35) for k = 3.
If v e (Ri\(l{—i—l)Z)ﬂZthenv—z(t) € RZ\kZ for t € T,, so

supp @3 C 3Z and obviously @3 € C*°((32)°). We now proceed by induction.
Since Tgkﬂ = Tg* + Ty, we have

T ol = | § o(u+ 2(0))Pu(w)¥(t) dt du
RZ 0
= {0 | Sr(v—2()P() dtdo = | 6(0)Prsa(v) do.
Z Ty R2
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From (35) it follows that

()= | | Be1(v—2(t) — 2()T(£)(s) dt ds
Ty Ty 2(p)

= | &a(v—y)Pa(y)dy,
Uy (Ty)

where T, = {(t, s) € R2 1t €T, s <t}
The estimate (36) is obvious for k = 2 and k = 3. Suppose that it is true
for k =2p and k = 2p + 1. Then

@2p+2(v) = S @2],('[} - y)@Q(y> dy

Vo (Ty)
< | &P —y)day)dy < 37 (),
Vo (1)
and
Popt3(v) = S Pop+1(v — y)P2(y) dy
¥ (T,)
< S 3+ 037 (v — y)Dy(y) dy < D3 D (v).
¥ (T,)

By (35), using the transformations y and ¥, we get

b3 % P3(v) D3(v — u)P3(u) du

| § @a(v—u—2()Ba(u — 2(5) 2 (1) ¥ (s) dt ds du

VoV o —y)baly — (2(8) + 2(s))) W (£)¥(5) dt ds dy

Ty—z(t)

O e S Ol @ Ot C O b

IN

| Go(v — )8y — 2)®2(2) dzdy < 857 ().

o (Ty)

COROLLARY 2. The function Oy defined by (36) for k = 2,3,... salis-
fies, for v € R?,

O1(v) < (VIC e Ky (v)
where Kv(u) ; )
* orn = 2p,

(38) Kalu) = {K*K*p L(w) forani—i— 1.
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Proof. By the definition of @, it follows immediately that
By (v) < 207220 K () = (V2 2 K (v),
since z(t1(v)) 4+ z(t2(v)) = v. Similarly,
d3(v) <207 S PCEO K (v — 2(2))e* M) dt
Ty
= 20"3eb S K(v—z(t))dt < (vV2C')?e" K (v).
Ty
Hence, for k = 2p we have
Ok(v) = B3 (v) < (V2C')Pe K*P ()
and for k = 2p + 1,
Ok(v) = B3+ B3P (v) < (V2O P HLMEK « K77 (v).
Exactly as in the general case, for T defined by (29), we can define T}
by (19).

THEOREM 4. The distribution Ty, defined by (19) acts on test functions
as a function Gy € C®((mg2)°) (my = (m—1)k+1) defined on R% by the
recurrence formula

39 Gilu) = @1;”(%’,
(40)  Gplu Z( > > Gry ek Gy Dpr(u)

ki+...+kr=k—1
ki>1

for k> 1 and m = min{m, k — 1}. Moreover, we have the estimate
(41) |Gr(w)| < laf*((m = 1)k)1e™ (V2 ") ™ Ky (w).

Proof. The functions Gy, (k =1,2,...) are well defined because @, and
G, * ... % Gy, * @, vanish on some neighbourhoods of Z. By (19),

«Q *
TIZF Om

%i( ) Z Thy * ook Ty, = TY™T

ki1+...+kr=k—1
ki>1

and

Then for every test function ¢ we have

Ti[¢] = a | ¢(u) @;(S;) du= | $(u)G(u)du,
R3 R%
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and if for s < k, Ts[¢] = SRi ¢(u)Gs(u) du, then for uq, ..., u,,v € Ri,
Ty (9]

T m (> Gy uj+v)
(") ¥ S 116 1)) s
r=1 N kit 4ke=k—1 (R )r+1 P(ZJ 1 U +0)
ki>1

. m G, * ... %G * Py (2)
=« o(2) dz.
; <T> Z S P(2)

kit thr=k—1 B2
ki>1

Hence we get formula (40) for Gy with & > 1. It remains to prove the
estimate (41). By Corollary 2 it is sufficient to show that

(42) |Gr(w)] < laf*((m = 1)k)!Om, (u),

and for this purpose we proceed by induction. Of course, for k = 1, (42)
holds. Assume it holds for s < k. Then for k1 + ...+ k, = k — 1 we have

|Gy * ... % G, % Py (u)]
< JafMFtEr((m = D)k ((m— D)k)! Oy 5% Oy % O (1)

< faf*H((m = 1)(k = 1))10m, (u).
The rest of the reasoning runs as in the proof of Lemma 2.
Now we can state an analogue of Theorem 1.

THEOREM 5. Fiz b = (by,by) € R%2 and n > 0 and set w = —n — b.
Assume that, for some constant A, > 1,

S e PK(z)dz < Ay, S e K (2)dz < Ay,
R2 R3
where K and K are defined by (33) and (34) respectively. Let W € C>(R?)

satisfy (30) for some constant C' < |a|~Y(m=D(24,)71/2 Gy, be given by
(39) and (40) for k=1,2,..., and let

(43) up(x) = Oxoe_“(t)!'/(t) dt,
0

(44) ug(z) = S e *Gy(z)dz
R

fork>1and x> —w. Set J, = ((m—1)k)! and J = {Ji}. Then the series
Y oreouk(x) is a formal solution of (2) and is in the Gevrey class G*(J).

Proof. We note that the function K depends on the curve Z only, there-
fore the constant A, depends on Z and 7 only. By assumption, definition of
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K, and properties of convolution we have, for k& = 2p,
S e PRi(z)dz = S e PK*(z)dz < ( S e K(z) dz)p < AP = Asm,
R% R% R%
and for k =2p+ 1,
S e PKi(2)dz = X e K « K"~ 1(2) dz
R2 R
~ -1
< S e K (z) dz( X e TK(z) dz)p <A< Ag/Q.
R% R%
From Theorem 4 we obtain, for x > —w,
Ve Gr(2) dz < |of*((m — DR)(V2C)y™ | em 02K, (2) dz.
R2 R3
We conclude from the definition of w that for z > —w we have £ — b >
—w — b =mn, hence

| e7™G(2) dz < |aff((m — 1)k)!(y/24, C") (DR

’ — V24, C'((m — 1)k)!(|al (v/24, Oy,

By the assumption on C’, we have F), := |a|(1/24, C")™ ! < 1, and

TR (nf;”’“_(?) 1S /24, C'FE,

therefore the theorem is proved.
Similarly, we can rephrase Theorem 2 as follows.

THEOREM 6. Suppose the sequence { Dy }i decreases and let w = —n—b €
R? be as in Theorem 5. Then for the formal solution (43) and (44) the
sequence (27) with my = (m —1)N + 1, for N € N, is bounded.

Proof. If z € Dy, — w then we have (z — b)z > nz + B(my)?. Hence
up(z) = | e Gr(2)dz < o/ (V2C)™ ((m — k) | e @T03K,,, (2) dz
R2 R2
+ +
< /24, C'FE((m — 1)k)le P,
and the rest of the proof runs as in the general case.

5. Example. In this section we show that the assumptions in the present
work are not vacuous, that is, there exists a polynomial P which has the
asserted properties. Suppose that

P(z) = P(z1,22) = Q(2)(z122 — 1),
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where @ is some polynomial with |Q| > 1 on Ri. Then
Char PNR% = {z: 20 =1/2}

and we can choose the curve Z = {(t,1/t) : t € Ry} C CharPNRZ. It
is easy to check that kZ = {x € R% : zo > k?/x1}, therefore conditions
(i)—(iii) hold.
To check (iv), we observe that for ¢; > n > 0,
1

Se_czd S et CQl/t\/mdt<Xe_021/t\/mdt+\/§ S et dt
0

Z 0

2e—C1 —02
= Se_025x/1+1/s4d3+\/_6 §\/§<e
C1

C Cc
1 2 1

><2\/_

Clearly, the function f(¢) = 1/t for t € R satisfies the conditions assumed
at the beginning of Section 5. We show that in this example the set Dy
defined by (26) can be written as

k2
(45) Dk:{yERi:y2>ﬁ2—}.
4y
Indeed, fix y = (y1,y2) € Dg. The function
F(2) = F(21,22) = yz — Bk* = y121 + yo20 — k>
defined for z € kZ satisfies F(z) > 0 on kZ. We have 9L (2) = y; > 0,

0z1

g—i(z) =y > 0 for all z € kZ, therefore min{F(z) : z € kZ} > 0 must be
attained on the boundary d(kZ) = {22 = k?/z1}. To calculate this minimal
value we consider the function F' on 9(kZ) as a function of one variable 21,

that is, as the function
k2 k2
h(z1) = F<Z17 —> =121 +y2 — — Bk
z1 Z1

Since h/(z1) = y1 — yok?/2? = 0 for 21 = k+/y2/y1, we have
min{F(z) : z € kZ} = min{F(z) : z € d(kZ)} = h(k\/y2/11)
=k(Q2\y1y2 — Bk) > 0

for y1yo > (Bk)? /4.

Conversely, if y satisfies the last inequality, then the quadratic function
g(z1) = z1h(21) = Y122 — k%21 +y2k? has determinant A = B2kt —dyyak? =
k2(3%k% — 4y1y2) < 0, s0 h(z1) = g(z1)/z1 > 0 for all 2; > 0. Hence, for all
z€kZ, F(z) > h(z1) > 0 and consequently y € Dj.

Thus the sequence { Dy} decreases.

The transformation ¥, has the form

t1+t2:U17 1/t1+]—/t2:u27
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and the inverse transformation W;l is given by the formula

b () = %(ul il =), ta(u) = %(ul b (ar = 4Ju)).

Hence, we get the Jacobian

K(u) _ ul _ 1

wy/ur(un —4/uz)  uz/uz(uz —4/u)

Since {,, = Sgo SZ‘;UI and SZ;M K (u1,u2) dug = uq /2, for any n > 0 we obtain

S e ™MK (u)du = S e ™K (u)du

R% 27
T T 15 1
= S e*m“l[ S e "2 K (uy,ug) dug} dup < = S e My duy = —.
2 203
0 4/uq 0

Similar, but slightly more sophisticated calculations show that the func-
tion K in this case also satisfies the assumptions of Theorem 5.
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