Concave domains with trivial biholomorphic invariants

by Witold Jarnicki (Kraków) and Nikolai Nikolov (Sofia)

Abstract

It is proved that if F is a convex closed set in $\mathbb{C}^{n}, n \geq 2$, containing at most one ($n-1$)-dimensional complex hyperplane, then the Kobayashi metric and the Lempert function of $\mathbb{C}^{n} \backslash F$ identically vanish.

Let D be a domain in \mathbb{C}^{n}. Denote by $\mathcal{O}(\mathbb{C}, D)$ and $\mathcal{O}(\Delta, D)$ the spaces of all holomorphic mappings from \mathbb{C} to D and from the unit disc $\Delta \subset \mathbb{C}$ to D, respectively. Let $z, w \in D$ and $X \in \mathbb{C}^{n}$. The Kobayashi metric and Lempert function are defined by (cf. [1])

$$
\begin{aligned}
K_{D}(z, X) & =\inf \left\{|\alpha|^{-1}: \exists f \in \mathcal{O}(\Delta, D), f(0)=z, f^{\prime}(0)=\alpha X\right\}, \\
\ell_{D}(z, w) & =\inf \left\{\tanh ^{-1}|\alpha|: \exists f \in \mathcal{O}(\Delta, D), f(0)=z, f(\alpha)=w\right\} .
\end{aligned}
$$

These invariants can be characterized as the largest metric and function which decrease under holomorphic mappings and coincide with the Poincaré metric and distance on Δ.

It is well known that if D is a bounded domain in \mathbb{C}^{n}, or a plane domain whose complement contains at least two points, then $K_{D}(z, X)>0$ for $X \neq$ 0 and $\ell_{D}(z, w)>0$ for $z \neq w$. On the other hand, the Kobayashi metric and the Lempert function of a plane domain whose complement contains at most one point identically vanish. Note also that there are domains in \mathbb{C}^{n} with bounded connected complements and non-vanishing Kobayashi metrics and Lempert functions. For example, if z_{0} is a strictly pseudoconvex boundary point of a domain D in $\mathbb{C}^{n}, n \geq 2$, then (cf. [2])

$$
\lim _{z \rightarrow z_{0}} \frac{K_{D}(z, X)}{\|X\|}=\infty
$$

uniformly in $X \in \mathbb{C}^{n} \backslash\{0\}$, and

$$
\lim _{z \rightarrow z_{0}} \inf _{w \in D \backslash U} \ell_{D}(z, w)=\infty
$$

for any neighborhood U of z_{0}.

[^0]A set D in \mathbb{C}^{n} is called concave if its complement $\mathbb{C}^{n} \backslash D$ is a convex set. The purpose of this note is to characterize the concave domains in $\mathbb{C}^{n}, n \geq 2$, whose Kobayashi metrics and Lempert functions identically vanish.

Theorem 1. Let D be a concave domain in $\mathbb{C}^{n}, n \geq 2$. Then the following statements are equivalent:
(i) $\mathbb{C}^{n} \backslash D$ contains at most one $(n-1)$-dimensional complex hyperplane;
(ii) for any $z \in D, X \in \mathbb{C}^{n} \backslash\{0\}$ there is an injective $f \in \mathcal{O}(\mathbb{C}, D)$ such that $f(0)=z, f^{\prime}(0)=X$;
(iii) for any $z, w \in D, z \neq w$ there is an injective $f \in \mathcal{O}(\mathbb{C}, D)$ such that $f(0)=z, f(1)=w$;
(iv) $K_{D} \equiv 0$;
(v) $\ell_{D} \equiv 0$.

Proof. The implications (ii) \Rightarrow (iv) and (iii) \Rightarrow (v) are trivial.
The implications (iv) \Rightarrow (i) and (v) \Rightarrow (i) follow from the fact that Δ is the universal covering of $\mathbb{C} \backslash\{0,1\}$.

Now, we prove that $(\mathrm{i}) \Rightarrow$ (ii) and $(\mathrm{i}) \Rightarrow(\mathrm{iii})$.
If $F:=\mathbb{C}^{n} \backslash D$ contains exactly one complex hyperplane, we may assume that $D=(\mathbb{C} \backslash\{0\}) \times \mathbb{C}^{n-1}$ and $z=(1,0, \ldots, 0)$. Let $X=\left(X_{1}, \ldots, X_{n}\right)$, $X \neq 0$, and $w=\left(w_{1}, \ldots, w_{n}\right)$. For any integer $j \in\{2, \ldots, n\}$, set

$$
f_{j}(\eta)= \begin{cases}X_{j} \eta & \text { if } X_{j} \neq 0 \\ \exp \left(X_{1} \eta\right)-1-X_{1} \eta & \text { if } X_{j}=0\end{cases}
$$

and

$$
\tilde{f}_{j}(\eta)= \begin{cases}w_{j} \eta & \text { if } w_{j} \neq 0 \\ w_{1}^{\eta}-1+\left(1-w_{1}\right) \eta & \text { if } w_{j}=0\end{cases}
$$

Then $f(\eta)=\left(\exp \left(X_{1} \eta\right), f_{2}(\eta), \ldots, f_{n}(\eta)\right)$ and $\widetilde{f}(\eta)=\left(w_{1}^{\eta}, \widetilde{f}_{2}(\eta), \ldots, \widetilde{f}_{n}(\eta)\right)$ are injective holomorphic mappings from \mathbb{C} to D such that $f(0)=z, f^{\prime}(0)$ $=X$ and $\widetilde{f}(0)=z, \widetilde{f}(1)=w$.

Assume now that F contains no ($n-1$)-dimensional complex hyperplanes and let $z \in D$. Since F coincides with its hull with respect to the real-valued linear functions on \mathbb{C}^{n}, there are two polynomials $\ell_{1}, \ell_{2}: \mathbb{C}^{n} \rightarrow \mathbb{C}$ of degree 1 such that $\ell_{1}-\ell_{1}(0)$ and $\ell_{2}-\ell_{2}(0)$ are linearly independent and

$$
\operatorname{Re}\left(\ell_{1}(z)\right)>0=\max _{F} \operatorname{Re}\left(\ell_{1}\right)=\max _{F} \operatorname{Re}\left(\ell_{2}\right) .
$$

Replacing ℓ_{2} by $\ell_{1}+\varepsilon \ell_{2}$, where $\varepsilon>0$ is small enough, we may assume that

$$
\operatorname{Re}\left(\ell_{2}(z)\right)>0 \geq \max _{F} \operatorname{Re}\left(\ell_{2}\right)
$$

So, if $D \ni z=\left(z_{1}, \ldots, z_{n}\right)$ and $\mathbb{C}^{n} \backslash\{0\} \ni X=\left(X_{1}, \ldots, X_{n}\right)$, after a translation and a linear change of coordinates, we may assume that $\operatorname{Re}\left(z_{1}\right)$ $>0, \operatorname{Re}\left(z_{2}\right)>0$ and

$$
F \subset G:=\left\{\zeta \in \mathbb{C}^{n}: \operatorname{Re}\left(\zeta_{1}\right) \leq 0, \operatorname{Re}\left(\zeta_{2}\right) \leq 0\right\}
$$

If $X_{1}=X_{2}=0$, then the mapping $f(\eta)=z+\eta X$ has the properties required in (ii). Otherwise, we may assume that $X_{2} \neq 0$ and for $\lambda>0$, set

$$
\begin{aligned}
\varphi(t) & = \begin{cases}\frac{z_{2} X_{1}}{X_{2} \lambda\left(1-\exp \left(z_{2} \lambda\right)\right)} & \text { for } t \in[0, \lambda] \\
\frac{z_{2} X_{1}}{X_{2} \lambda \exp \left(z_{2} \lambda\right)\left(\exp \left(z_{2} \lambda\right)-1\right)} & \text { for } t \in(\lambda, 2 \lambda]\end{cases} \\
f_{j}(\eta) & =z_{j}+\eta X_{j} \quad \text { for } j=2, \ldots, n, \\
f_{1}(\eta) & =z_{1}+\int_{0}^{2 \lambda} \varphi(t) \exp \left(t f_{2}(\eta)\right) d t .
\end{aligned}
$$

Then $f=\left(f_{1}, \ldots, f_{n}\right)$ is an injective holomorphic mapping from \mathbb{C} to \mathbb{C}^{n} and $f(0)=z, f^{\prime}(0)=X$. Note that if $\operatorname{Re}\left(f_{2}(\eta)\right) \leq 0$, then

$$
\left|f_{1}(\eta)-z_{1}\right| \leq \int_{0}^{2 \lambda}|\varphi(t)| d t
$$

Since the last integral tends to 0 as $\lambda \rightarrow \infty$, it follows that $f \in \mathcal{O}(\mathbb{C}, D)$ for any $\lambda \gg 1$, which completes the proof of (i) \Rightarrow (ii).

Let now $z, w \in D$ and $z \neq w$. As above, we may assume that $\operatorname{Re}\left(z_{2}\right)>0$, $\operatorname{Re}\left(w_{1}\right)>0$ and $F \subset G$. If $z_{1}=w_{1}$ or $z_{2}=w_{2}$, then the mapping $f(\eta)=$ $z+\eta(w-z)$ has the properties required in (iii). Otherwise, we may assume that $w_{2} \neq z_{2}$ and, for $m \in \mathbb{N}$, set

$$
\begin{aligned}
& \lambda=\frac{(2 m-1) \pi}{\left|z_{2}-w_{2}\right|}, \\
& \varphi(t)= \begin{cases}\frac{z_{2}\left(z_{1}-w_{1}\right) \exp \left(w_{2} \lambda\right)}{\left(\exp \left(z_{2} \lambda\right)-1\right)\left(\exp \left(w_{2} \lambda\right)-\exp \left(z_{2} \lambda\right)\right)} & \text { for } t \in[0, \lambda], \\
\frac{z_{2}\left(z_{1}-w_{1}\right)}{\left(\exp \left(z_{2} \lambda\right)-1\right)\left(\exp \left(z_{2} \lambda\right)-\exp \left(w_{2} \lambda\right)\right)} & \text { for } t \in(\lambda, 2 \lambda],\end{cases} \\
& f_{j}(\eta)=z_{j}+\eta\left(w_{j}-z_{j}\right) \quad \text { for } j=2, \ldots, n \text {, } \\
& f_{1}(\eta)=w_{1}+\int_{0}^{2 \lambda} \varphi(t) \exp \left(t f_{2}(\eta)\right) d t .
\end{aligned}
$$

It follows as above that for any $\lambda \gg 1, f=\left(f_{1}, \ldots, f_{n}\right)$ is an injective holomorphic mapping from \mathbb{C} to D with $f(0)=z, f(1)=w$. Taking m large enough completes the proof of $(\mathrm{i}) \Rightarrow(\mathrm{iii})$.

Theorem 1 implies the following
Corollary 2. Let F be the Cartesian product of n closed subsets F_{1}, \ldots, F_{n} of $\mathbb{C}(n \geq 2)$. Assume that $F_{1} \neq \mathbb{C}$ and $F_{n} \neq \mathbb{C}$. Then
(i) for any $z \in D:=\mathbb{C}^{n} \backslash F$ and any $X \in \mathbb{C}^{n}$ there is an $f \in \mathcal{O}(\mathbb{C}, D)$ such that $f(0)=z$ and $f^{\prime}(0)=X$;
(ii) for any $z \in D_{1}=\left(\mathbb{C} \backslash F_{1}\right) \times \mathbb{C}^{n-1}$ and any $w \in D_{n}=\mathbb{C}^{n-1} \times\left(\mathbb{C} \backslash F_{n}\right)$ there is a $g \in \mathcal{O}(\mathbb{C}, D)$ such that $g(0)=z$ and $g(1)=w$.

In particular, D is a domain in $\mathbb{C}^{n}, K_{D} \equiv 0$, and $\ell_{D}=0$ on $D_{1} \times D_{n}$.
Proof. Let $\mathbb{C}_{*}=\mathbb{C} \backslash\{0\}, \Delta_{*}=\{\eta \in \mathbb{C}: 0<|\eta|<1\}$ and $H=\{\eta \in \mathbb{C}$: $\operatorname{Re}(\eta) \geq 0\}$. Without loss of generality, we may suppose in (i) that $z_{1} \notin F_{1}$. After a translation and a linear change of coordinates, we may assume that $z \in G_{1}:=\Delta_{*} \times \mathbb{C}^{n-2} \times \mathbb{C}_{*}, w \in G_{n}:=\mathbb{C}_{*} \times \mathbb{C}^{n-2} \times \Delta_{*}$ and $G_{1} \subset D_{1}, G_{n} \subset$ D_{n}. Since $\mathbb{C}^{n} \backslash\left(H \times \mathbb{C}^{n-2} \times H\right)$ is a covering of $G_{1} \cup G_{n}$, Corollary 2 follows from Theorem 1.

Remark. The authors do not know if part (ii) of Corollary 1 still holds for any two different points $z, w \in D$. (Added in proof: Cf. N. Nikolov, Entire curves in complements of cartesian products in \mathbb{C}^{n}, Univ. Iag. Acta Math., to appear.)

References

[1] M. Jarnicki and P. Pflug, Invariant Distances and Metrics in Complex Analysis, de Gruyter, Berlin, 1993.
[2] N. Nikolov, Behavior of invariant metrics near convex boundary points, Czech. Math. J., to appear.

Institute of Mathematics
Jagiellonian University 30-059 Kraków, Poland
E-mail: wmj@im.uj.edu.pl

Institute of Mathematics and Informatics
Bulgarian Academy of Sciences
1113 Sofia, Bulgaria
E-mail: nik@math.bas.bg

[^0]: 2000 Mathematics Subject Classification: Primary 32H15.
 Key words and phrases: Kobayashi metric, Lempert function.

