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Concave domains with
trivial biholomorphic invariants

by Witold Jarnicki (Kraków) and Nikolai Nikolov (Sofia)

Abstract. It is proved that if F is a convex closed set in Cn, n ≥ 2, containing at
most one (n − 1)-dimensional complex hyperplane, then the Kobayashi metric and the
Lempert function of Cn \ F identically vanish.

Let D be a domain in Cn. Denote by O(C,D) and O(∆,D) the spaces
of all holomorphic mappings from C to D and from the unit disc ∆ ⊂ C
to D, respectively. Let z, w ∈ D and X ∈ Cn. The Kobayashi metric and
Lempert function are defined by (cf. [1])

KD(z,X) = inf{|α|−1 : ∃f ∈ O(∆,D), f(0) = z, f ′(0) = αX},
`D(z, w) = inf{tanh−1 |α| : ∃f ∈ O(∆,D), f(0) = z, f(α) = w}.

These invariants can be characterized as the largest metric and function
which decrease under holomorphic mappings and coincide with the Poincaré
metric and distance on ∆.

It is well known that if D is a bounded domain in Cn, or a plane domain
whose complement contains at least two points, then KD(z,X) > 0 for X 6=
0 and `D(z, w) > 0 for z 6= w. On the other hand, the Kobayashi metric and
the Lempert function of a plane domain whose complement contains at most
one point identically vanish. Note also that there are domains in Cn with
bounded connected complements and non-vanishing Kobayashi metrics and
Lempert functions. For example, if z0 is a strictly pseudoconvex boundary
point of a domain D in Cn, n ≥ 2, then (cf. [2])

lim
z→z0

KD(z,X)
‖X‖ =∞

uniformly in X ∈ Cn \ {0}, and
lim
z→z0

inf
w∈D\U

`D(z, w) =∞

for any neighborhood U of z0.
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A set D in Cn is called concave if its complement Cn \D is a convex set.
The purpose of this note is to characterize the concave domains in Cn, n ≥ 2,
whose Kobayashi metrics and Lempert functions identically vanish.

Theorem 1. Let D be a concave domain in Cn, n ≥ 2. Then the fol-
lowing statements are equivalent :

(i) Cn\D contains at most one (n−1)-dimensional complex hyperplane;
(ii) for any z ∈ D, X ∈ Cn \ {0} there is an injective f ∈ O(C,D) such

that f(0) = z, f ′(0) = X;
(iii) for any z, w ∈ D, z 6= w there is an injective f ∈ O(C,D) such that

f(0) = z, f(1) = w;
(iv) KD ≡ 0;
(v) `D ≡ 0.

Proof. The implications (ii)⇒(iv) and (iii)⇒(v) are trivial.
The implications (iv)⇒(i) and (v)⇒(i) follow from the fact that ∆ is the

universal covering of C \ {0, 1}.
Now, we prove that (i)⇒(ii) and (i)⇒(iii).
If F := Cn \D contains exactly one complex hyperplane, we may assume

that D = (C \ {0}) × Cn−1 and z = (1, 0, . . . , 0). Let X = (X1, . . . ,Xn),
X 6= 0, and w = (w1, . . . , wn). For any integer j ∈ {2, . . . , n}, set

fj(η) =
{
Xjη if Xj 6= 0,
exp(X1η)− 1−X1η if Xj = 0,

and

f̃j(η) =
{
wjη if wj 6= 0,
wη1 − 1 + (1− w1)η if wj = 0.

Then f(η) = (exp(X1η), f2(η), . . . , fn(η)) and f̃(η) = (wη1 , f̃2(η), . . . , f̃n(η))
are injective holomorphic mappings from C to D such that f(0) = z, f ′(0)
= X and f̃(0) = z, f̃(1) = w.

Assume now that F contains no (n−1)-dimensional complex hyperplanes
and let z ∈ D. Since F coincides with its hull with respect to the real-valued
linear functions on Cn, there are two polynomials `1, `2 : Cn → C of degree 1
such that `1 − `1(0) and `2 − `2(0) are linearly independent and

Re(`1(z)) > 0 = max
F

Re(`1) = max
F

Re(`2).

Replacing `2 by `1 + ε`2, where ε > 0 is small enough, we may assume that

Re(`2(z)) > 0 ≥ max
F

Re(`2).

So, if D 3 z = (z1, . . . , zn) and Cn \ {0} 3 X = (X1, . . . ,Xn), after a
translation and a linear change of coordinates, we may assume that Re(z1)
> 0, Re(z2) > 0 and

F ⊂ G := {ζ ∈ Cn : Re(ζ1) ≤ 0, Re(ζ2) ≤ 0}.
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If X1 = X2 = 0, then the mapping f(η) = z+ηX has the properties required
in (ii). Otherwise, we may assume that X2 6= 0 and for λ > 0, set

ϕ(t) =





z2X1

X2λ(1− exp(z2λ))
for t ∈ [0, λ],

z2X1

X2λ exp(z2λ)(exp(z2λ)− 1)
for t ∈ (λ, 2λ],

fj(η) = zj + ηXj for j = 2, . . . , n,

f1(η) = z1 +
2λ�

0

ϕ(t) exp(tf2(η)) dt.

Then f = (f1, . . . , fn) is an injective holomorphic mapping from C to Cn
and f(0) = z, f ′(0) = X. Note that if Re(f2(η)) ≤ 0, then

|f1(η)− z1| ≤
2λ�

0

|ϕ(t)| dt.

Since the last integral tends to 0 as λ→∞, it follows that f ∈ O(C,D) for
any λ� 1, which completes the proof of (i)⇒(ii).

Let now z, w ∈ D and z 6= w. As above, we may assume that Re(z2) > 0,
Re(w1) > 0 and F ⊂ G. If z1 = w1 or z2 = w2, then the mapping f(η) =
z+ η(w− z) has the properties required in (iii). Otherwise, we may assume
that w2 6= z2 and, for m ∈ N, set

λ =
(2m− 1)π
|z2 − w2|

,

ϕ(t) =





z2(z1 − w1) exp(w2λ)
(exp(z2λ)− 1)(exp(w2λ)− exp(z2λ))

for t ∈ [0, λ],

z2(z1 − w1)
(exp(z2λ)− 1)(exp(z2λ)− exp(w2λ))

for t ∈ (λ, 2λ],

fj(η) = zj + η(wj − zj) for j = 2, . . . , n,

f1(η) = w1 +
2λ�

0

ϕ(t) exp(tf2(η)) dt.

It follows as above that for any λ � 1, f = (f1, . . . , fn) is an injective
holomorphic mapping from C to D with f(0) = z, f(1) = w. Taking m
large enough completes the proof of (i)⇒(iii).

Theorem 1 implies the following

Corollary 2. Let F be the Cartesian product of n closed subsets
F1, . . . , Fn of C (n ≥ 2). Assume that F1 6= C and Fn 6= C. Then
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(i) for any z ∈ D := Cn \ F and any X ∈ Cn there is an f ∈ O(C,D)
such that f(0) = z and f ′(0) = X;

(ii) for any z ∈ D1 = (C\F1)×Cn−1 and any w ∈ Dn = Cn−1×(C\Fn)
there is a g ∈ O(C,D) such that g(0) = z and g(1) = w.

In particular , D is a domain in Cn, KD ≡ 0, and `D = 0 on D1 ×Dn.

Proof. Let C∗ = C \ {0}, ∆∗ = {η ∈ C : 0 < |η| < 1} and H = {η ∈ C :
Re(η) ≥ 0}. Without loss of generality, we may suppose in (i) that z1 6∈ F1.
After a translation and a linear change of coordinates, we may assume that
z ∈ G1 := ∆∗×Cn−2×C∗, w ∈ Gn := C∗×Cn−2×∆∗ and G1 ⊂ D1, Gn ⊂
Dn. Since Cn \ (H×Cn−2×H) is a covering of G1∪Gn, Corollary 2 follows
from Theorem 1.

Remark. The authors do not know if part (ii) of Corollary 1 still holds
for any two different points z, w ∈ D. (Added in proof : Cf. N. Nikolov, Entire
curves in complements of cartesian products in Cn, Univ. Iag. Acta Math.,
to appear.)
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