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On the class of functions defined in a halfplane
and starlike with respect to the boundary point

by ADAM LECKO (Rzeszéw)

Abstract. The purpose of this paper is to study the class S& (H) of univalent analytic
functions defined in the right halfplane H and starlike w.r.t. the boundary point at infinity.
An analytic characterization of functions in S, (H) is presented.

1. Introduction. The aim of this paper is to study the class S (H)
of univalent analytic functions defined in the right halfplane H and starlike
w.r.t. the boundary point at infinity.

The geometric definition of functions in 8 (H) is clear: together with ev-
ery point w € f(H), the radial halfline with endpoint at w lies in f(H). This
property was considered in [4, 6] where properties of functions in S%_ (H) with
the additional (so called) hydrodynamic normalization and a generalization
were examined.

In this paper, developing another method based on the Julia Lemma
reformulated in H, we are able to improve the results of [6] considerably.
The main results are presented in Theorems 3.1-3.3. Instead of the class P
used in [6] of functions having positive real part in H and hydrodynamically
normalized we introduce the class P(a;H) of functions also having positive
real part in H but with the boundary property which follows from the Julia
Lemma. It is shown that P(«;H) is essentially larger than P. The key ge-
ometric property of functions in S (H) is preserving starlikeness in every
halfplane contained in Hj this is proved in Theorem 3.1. Having this inner
geometric behaviour we are able to find an analytic characterization of the
class 8% (H) in terms of the corresponding class P(«; H); this is the subject
of Theorems 3.2 and 3.3.

Examples of functions show usefulness of these results.
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2. The Julia Lemmas. Let C=CU {oo}, D= {2z € C: |z] < 1} and
T = 0D. For each k > 0, we define the oricycle

1- 2
Or = D: —— <k;.
’ {Ze T =

It is a disk in D whose boundary circle 90y, is tangent to T at z = 1. The
center of Oy, is at (1/(1 + k),0) and its radius is k/(k + 1).

For £ € D define the M6bius transformation

z—¢ -

S seC\(/A)
For every ¢ € D the function ¢¢ is an analytic automorphism of ID. The set
of all analytic automorphisms of D will be denoted by Aut(D). It is well
known that f € Aut(D) iff there exist £ € D and A € T such that f(z) =
Ape(z),z € D, i.e. every analytic automorphism of D is the composition of
a rotation and a Md&bius transformation.

The set of all analytic functions w in D such that |w(z)| < 1 for z € D
will be denoted by B.

The following lemma ([3]; see also [1, p. 56]) is the basis for our consid-
erations.

pe(2)

LEMMA 2.1 (Julia). Let w € B. Assume that there exists a sequence (zy,)
of points in D such that

(2.1) lim z, =1, lim w(z,) =1,
1—
(2.2) im0
i T [z
Then

1 - w(z)]? 1 -2
<« ,
I—jw(z)* = 1—|z?

and hence, for every k > 0,

(2.3) z €D,

w(@k) C Ou-
Equality in (2.3) for some z € D can occur only for w € Aut(D), i.e., for

w(z) = Ape(z), z € D, where § € 00,4 and X = (1 - §)/(1 = &). In
particular, equality holds for € = (o« —1)/(a+1) and X = 1.
REMARK 2.1. Since
1 |w(z)] o 1= [wO)]
L=zl ~ 1+ (O
for every w € B, the constant a defined in (2.2) is positive (see [1, p. 43]).

z €D,

The Julia Lemma can be easily reformulated for the right halfplane.
First we introduce some notations. Let H, = {z € C: Rez > ¢}, ¢ > 0, and
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H = Hy. Let A(H) denote the set of all analytic functions in H and let
P(H) ={q € A(H) : Req(w) > 0, w € H}.

LEMMA 2.2. Let ¢ € P(H). Assume that there exists a sequence (wy) of
points in H such that

(2.4) lim w, = oo, lim q(w,) = oo,
on) g () st )
n—oo [wn, + 1| = |w, — 1 lq(wy) + 1]
Then
1
(2.6) Regq(w) > —Rew, w € H,
o

and hence, for every ¢ > 0,
q(HC) C Hc/a.

The result is sharp. Equality in (2.6) can occur only for
1

(2.7) g(w)=—w+it, weH, tekR.
o

In particular, equality holds for

Proof. Define

(2.8) w(z) = q(ii) -

—_— T’ Z E D-
z
q( ) +1
1-=2
For the sequence (w,,) of points in H let
n— 1
Zn = v , mneN,
wp + 1

be the corresponding sequence of points in ID. Since lim,, . w, = 0o, we
have lim,, ,~ 2, = 1. From (2.4) it follows that

n) — 1
lim w(z,) = lim g(wn) = 1 =1
n— oo n—oo Q(wn) —+ 1

0 (2.1) holds. In view of (2.5) and (2.8) we see that
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L= w(za)l qg(wn) +1
(29)  Hm ——7== = lim “Jwa 1
wy, + 1
n 1] — n) — 1 n+1
_ lim{‘q(w)+ | —lg(wn) = 1] |wn +1] }:a<oo_
n—oo | |wp +1] = fwn = 1] g(wn) +1
Hence (2.2) holds. On the other hand, by (2.8) we have
14+ w(z)
2.10 = —F=
where w = (14 2)/(1 —2), z €D, so
1 — |w(z)|? 1— |2
R = TN Rew=r 17
)= apE TR

Hence (2.3) yields the assertion.
Suppose now that q(woy) € OH,/, for some wy € OH. and ¢ > 0. Then
20 = (wo—1)/(wo+1) € D lies on the oricycle 0, /. and w(zp) € 00, /.. By
the Julia Lemma this holds only for w(z) = Ape¢(2), z € D, where £ € 90, /,
and A = (1 —¢&)/(1 — €). Using (2.10) we find that
L+ Ape(z)  [1=¢P . 2Im¢E 1

q(w) = = W—1——05 = —Ww+1it,
T ) TP T TR " a

where t € R.

In particular, ¢ = 0 for £ = (o — 1)/(av+ 1) and A = 1, which yields
q(w) =w/a.

REMARK 2.2. By Remark 2.1 and (2.9), a defined in (2.5) is positive.

Suppose now that the sequence (w,,) consists of only positive real num-
bers. Then we can formulate the following corollary.

COROLLARY 2.1. Let ¢ € P(H). Assume that there exists a sequence
(xn) of positive real numbers such that

(2.11) lim z,, = oo, lim q(z,) = oo,
n—oo n—oo
T, + 1
2.12 lim q(xn) + 1| — |g(z,) — 1 7}:2a<oo.
@12 tim {oCen) 41~ latea) - 1) 2

Then q(H.) C H./o for every ¢ > 0. The result is sharp and (2.7) is the
extremal function.

If also the sequence (q(z,)) consists of only positive real numbers then
we have

COROLLARY 2.2. Let ¢ € P(H). Assume that there exists a sequence
(zn) of positive real numbers such that q(x,) is a positive real number for
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every n € N, lim,, . x,, = 00 and

(2.13) tim 4@ _ L

n—oo Ty o

Then q(H.) C H¢/q for every ¢ > 0. The result is sharp and (2.7) is the
extremal function.

Since (x,) tends to infinity, by (2.13) the same holds for (¢(z,)). By
Remark 2.2, a > 0.

It is possible to consider stronger assumptions instead of (2.4). We can
set

lim q(wn) =4,
n—oo Wy

with the sequence (w,,) tending to infinity, which implies that lim,,_, q(wy,)
= 00. Then we have

COROLLARY 2.3. Let ¢ € P(H). Assume that there exists a sequence
(wy,) of points in H such that

lim w,, = oo, lim a(wn) =06#0,
n— 00 n—oo  Wp

1 |Q(wn) + 1‘ — |q(wn) B 1| }
1 =a < o0.
18] nﬁw{ lwn + 1] = wy, — 1

Then q(H.) C H./o for every ¢ > 0. The result is sharp and (2.7) is the
extremal function.

Suppose again that the sequence (w,,) consists of only positive real num-
bers. Then we have

COROLLARY 2.4. Let ¢ € P(H). Assume that there exists a sequence
(zn) of positive real numbers such that

lim z, =00, lim q(xx") =peC\{0}
and
(2.14) lim {]q(mn) + 1] — |g(zn) — 1|} = 2a < .

\ﬁ\

Then q(H.) C He/o for every ¢ > 0. The result is sharp and (2.7) is the
extremal function.

A special case of Lemma 2.2 was proved in [6]. Let us recall this result.
THEOREM 2.1 ([6]). Let g € P(H). If the following limit exists:
(2.15) lim (¢(w) —w) = a # oo,

w— 00

then q(H,) C H. for every ¢ > 0.



72 A. Lecko

REMARK 2.3. The normalization (2.15) generalizes the so called hydro-
dynamic normalization (a = 0). Notice that Rea > 0. The method of proof
of Theorem 2.1 was based on the maximum principle for harmonic functions.

Now we show that Theorem 2.1 is a special case of Lemma 2.2. In fact we
will prove that Theorem 2.1 is a consequence of Corollary 2.1. From (2.15)
it follows that

(2.16) lim ¢(w) = o0,
(2.17) lim Re(q(w) —w) = Rea, lim Im(¢(w) — w) = Ima.

Since by (2.15),

lim (g(w) — w) = lim w(M —1) .

w— 00 w— 00 w

we have

(2.18) lim 4

w—oo W

=1.

By (2.15) there exists a sequence (x,,) of positive real numbers such that
lim,, 00 &, = 00 and lim, ., (q(x,) — ) = a. By (2.16), lim, o q(zy)
= 00 so (2.11) is satisfied. Writing ¢(z,,) = wu, + iv,, by (2.17) we have
lim,, oo (un, — ) = Rea and consequently,

(2.19) lim wu, = oco.

Also

(2.20) lim v, =Ima
n—oo

from (2.17). Since by (2.19) and (2.20),
2

2 2
lim |1+ 1 — lim (un +1)" + vy,
n—oo | q(xy)|  moeewd 4R
1 2 ) 2
() ()
- nh—>H;o = v 2 = = 1’
1+ <—”>
Up,
(2.18) yields
(1+2)
Tr —
n 1 n
. m —2n T i —1.
(2.21) 1
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Using (2.19) and (2.20) we obtain
(222 lim {Jq(@a) + 1|~ lo(an) — 11}
= lim {/(up + 1) + 02 = /(un — 1)2 + 02

n— oo

= lim { A }
=2 Ly (un + 17 407+ (un — 12 + 07

4
= lim =2.

e ) @) L) ()

This result together with (2.21) yields (2.12) for & = 1. Hence the conclusion
of the theorem follows.

ExAMPLES. 1. In fact, the conditions (2.4) and (2.5) are more general
than (2.15). As an example, take

q(w) =ilogw+w+n/2, weH.

It is easy to verify that Re ¢(w) > 0 for w € H.
Let (z,,) be a sequence of positive real numbers such that lim,, o z, =00.
Then

lim ¢(z,) = lim {z, +7/2+ilogx,} = cc

so (2.11) is true.

Repeating exactly calculations (2.21) and (2.22) with w,, = =, + 7/2,
v, = logx,, and using the elementary fact that lim,,_,(logx,)/z, = 0 we
infer that the limit (2.12) exists with a = 1.

On the other hand
lim (¢(w) —w) = lim (ilogw + 7/2) = 00

w— 00

so (2.15) does not hold.
2. Every function ¢ € P(H) of the form
(2.23) q(w) = pw+o(w), weH,
with 3 > 0 satisfies the assumptions of Corollary 2.4. Let (x,,) be a sequence

of positive real numbers such that lim,,_, . x,, = co. Then

lim M:ﬁ+ lim M:ﬁ.

n—oo  Tp n—oo X,
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Let o(zy,) = sp + v, and q(x,) = Sz, + s, + iv, for n € N. Since
lim 280) _ gy (S” + —) —0
n—oo ,fL'n n— oo l‘n l‘n

Sn Un,
lim — =0, lim — =0.
n—oo Iy n—00 Ty,

we have

Repeating the calculations in (2.21) and (2.22) with u,, = Bz, + s, and v,

we obtain
z, + 1 - 1

lim ———— = —
n—oo |q(xn) +1| B
and

Jim {lg(zn) +1] = |g(zn) — 11}

= lim 2 - =9
n—oo
\/(1+ BI7L1+57L) stlsn + \/ ﬂﬂ7n+8n + (ﬂx::—sn)

since

Un . Un/Tn,
lim —— = lim —— =0.
e By + Sn o B+ Sn/Tn
Hence (2.12) holds with a = 1/4.
The class of functions of the form (2.23) is essentially larger than this
normalized by (2.15). The function ¢(w) = fw + w*, w € H, for > 0 and
w € [0,1) is of the form (2.23).

3. Starlike functions defined in a halfplane. Classical geometric
properties like starlikeness and convexity of analytic functions in the right
halfplane were studied in [2, 6].

For v € C, let [T[v] = {sv : s € [1,+00)} be the radial halfline with
endpoint at v.

Let us start with the following definitions.

DEFINITION 3.1. A simply connected domain {2 C C, 2 # C, with
oo € 012 is called starlike with respect to the boundary point at infinity if
the halfline [*[v] is contained in {2 for every v € (2. The set of all such
domains will be denoted by ZZ,.

REMARK 3.1. Observe that the origin lies outside every domain in Z7_.
Indeed, assume that 0 € {2 for some {2 € Z7 . Since {2 # C, there exists a
finite point vy € 92 such that [0,v9) C £2. Hence [T [v] does not lie in {2 for
any point v of the segment [0, vg).
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DEFINITION 3.2. Let SX (H) denote the class of all univalent analytic
functions f in H such that f(H) € Z% . Functions belonging to S (H) will
be called starlike w.r.t. the boundary point at infinity.

It is obvious that for every f € S (H) there is some point on the bound-
ary of H which “corresponds” to infinity on the boundary of f(H). In what
follows we will use a kind of boundary normalization for every f € S (H)
by saying that co € OH corresponds to oo € Jf(H). Since, in general, we
cannot extend a function f to OH, in order to be precise, we will apply the
notion of prime ends to formulate this normalization. Below we construct a
prime end ps (£2) for every 2 € Z% and next using the Prime End Theorem
we associate oo € OH with po (£2).

Construction of a prime end for a domain starlike w.r.t. the boundary
point at infinity. For an arbitrary domain in Z7 we introduce a special null
chain (C,,).

Let us recall that a crosscut of a domain G C C is an open Jordan arc
C in G such that C = C U {a, b}, where a,b € 0G.

Let 2 € Z%,. Since {2 # C, there exists a finite boundary point vy of {2
such that {*[vg] \ {vo} lies in 2. For each ¢t € (0,00) set C(t) = {v € C:
|v —vg| = tlve|}. Tt is clear that 2 N C(t) # ( for every ¢t € (0,00). By
[5, Proposition 2.13, p. 28], for every fixed ¢ € (0,00) there are countably
many crosscuts Ci(t) C C(t), k € N, of 2. We denote by (2(t) C {2 the
component of 2\ C(t) containing the halfline I*[(1 + t)vo] \ {(1 + ¢)vo},
and by Q(t) € Uyen Cr(t) the crosscut containing the point (1 4 #)vg. So
Q(t) C 082(t). Let now (t,) be a strictly increasing sequence of points
in (0,00) such that lim, . t, = oo and let (Q(t¢,)) be the corresponding
sequence of crosscuts of 2. It is easy to observe that

(a) Q(tn) N Q(ty+1) = 0 for every n € N.

(b) 20(tn41) C 20(ty,) for every n € N.

(¢) diam™ Q(t,) — 0asn — oo, where diam™ B is the spherical diameter
of the set B C C.

Therefore (C,) = (Q(t)) forms a null chain of {2. Notice also that the
null chain (C),) is independent of the choice of the sequence (t,). The equiv-
alence class of the null chain (C),) defines the prime end denoted by po (£2).

We can also derive that infinity is a unique principal point of the prime
end poo (£2). Therefore, the following proposition holds ([5, p. 39]).

PROPOSITION 3.1. For every {2 € Z* the prime end poo(§2) is of the
first or of the second kind.

Let g be an analytic univalent mapping of ID onto §2. Then there exists a
bijective mapping g of T onto the set p(£2) of all prime ends of §2 ([5, p. 30]).
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If h(w) = (w—1)/(w+1), w e H, then f =G o h is a bijective mapping of
the closed imaginary axis OHU {oco} onto p(£2). Thus there there is a unique
wo € OH U {oo} such that peo(£2) = f(wp).

By using Proposition 3.1 and [5, Corollary 2.17, p. 35], we get

PROPOSITION 3.2. Every function f € SX (H) such that po(f(H)) =
f(o0) has a radial limit
li = 00.
im, )= oc
To present an analytic characterization of the class S* (H) we will need
the following theorem.

THEOREM 3.1. Let f € A(H) be univalent in H. Then f e S (H) and

~

Poo(H) = f(00) if and only if f(H,.) € Z% for every ¢ > 0.

Proof. Assume that f € SX (H) and wg = oo corresponds to the prime
end poo(f(H)). For each t > 1 define

g(w) = fH{tf(w)), weH.

Since f(H) is a domain starlike w.r.t. infinity, we have tf(w) € f(H) for
every t > 1 and w € H. The univalence of f shows that the function ¢; is
well defined for each ¢ > 1.

Now fix ¢ > 1 and let vy € 9f(H) be such that [T [vo] \ {ve} C f(H).
Consider the sequence (v,,) = (t"vg) of points in {*[vg] and the correspond-
ing sequence (w,) = (f~!(v,)) of points in H. Using the same notations as
before let C(t,) = {v € C: |[v —vg| = (t" — 1)|vp|} and let Q(t,,) C C(tn)
denote the crosscut of f(H) containing the point v,,. Therefore (Q(t,)) is a
null chain representing the prime end poo(f(H)). By the Prime End Theo-
rem [5, p. 30], (f~1(Q(t,))) is a null chain in H that separates v and infinity
for large n. Since w, = f~'(v,) € £~ (Q(tn)) and diam® f~1(Q(t,)) — 0

as n — 0o, we conclude that lim,, ., w, = co. Observe that

qt(wn) = fﬁl(tvn) = Wn+1-

Let now
n ]- - n _1 n 1
L R VA e (N L (.
’wn+1‘_|wn_1| |qt(wn)+1|
Hence
w1 = g = 1w+ 1)
" |wy, + 1] — |w, — 1] |wp41 + 1]

for all n € N. Consequently,
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n 1| — |w, -1 1
lim (ayas...a,) = li {]w +1+ 1 = |wngr — 1] Jwp +1 }
n— 00 n— o0 |w1+1|—|w1—1| ’wn+1+1|
1
i + 1 ‘1—
w n
= lim | +1’1 | 1 1— w1+1 0.
n— o0 _ _
w1 w1 ‘1+
Wn+1

Hence infinitely many a,, must satisfy 0 < a,, < 1, so there exists a conver-
gent subsequence (a,, ) such that

0< klim an, = a(t) <1,
which means that
lim {’%(wnk)'i_l‘_Mt(wnk)_” . ‘wnk_'_l‘ } — (t) <1
|wny, + 1] = |wn, — 1 |q¢(wn,.) + 1]
for every fixed t > 1. In fact, in view of Remark 2.2, a(t) > 0 for every t > 1.

Hence ¢; satisfies the assumptions of Lemma 2.2, and since «a(t) < 1 for
every t > 1, we derive that

k—o0

Qt(HC) C Hc/a(t) C Hc

for every ¢ > 0. This yields ¢f(H.) C f(H,) for every ¢ > 1. Therefore
f(H.) € 2% for every ¢ > 0. Conversely, assume that f(H.) € Z% for every
¢ > 0. Since co € Jf(H,) for every ¢ > 0 and

fE) = | fH),
c>0

it follows that co € Of(H) and f(H) € Z% . Observe also that there exists
a prime end po (f(H)) which corresponds to a point wg € OH U {oo}. We
need to show that wg = oo.

To this end, fix ¢ > 0 and suppose that wg # co. Let vy € f(H) be such
that [T [vg] \ {vo} C f(H).

Let C(t) = {v € C: |[v—vg| = t|vo|}, t > 0. Repeating the construction of
a null chain for the domain f(H) and using the same notation let Q(t), t > 0,
denote the crosscut of f(H) containing the point (1+¢)vg. Choosing a strictly
increasing sequence (t,,) of points in (1,00) such that lim,,_,~ t, = co let
(Q(tn)) be the corresponding sequence of crosscuts of f(H) which represents
the prime end poo (f(H)) corresponding in a unique way to wy € OHU {oo}.
By the Prime End Theorem, (f~1(Q(t,))) is a null chain that separates in H
the points wy and v for large n. Since vy # co and diam™ f~(Q(t,)) — 0
as n — oo we see that

(3.1) F7HQ(tn)) NHe = 0

for large n.
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On the other hand, f(H,) is in 2%, which implies that Q(¢,)N f(H.) # 0
for large n € N. This contradicts (3.1) and finally proves that wy = oo, so
Poo (f(H)) = f(00). The proof of the theorem is finished.

In the proof of the next theorem we need the lemma below.

LeEmMmA 3.1. If f € A(H) is univalent in H and f(w) # 0 for w € H,
then

(3.2)

‘f '(x)
f(z)
Proof. Since f € A(H) is univalent in H, the function

g<z>=f(}fj) — f(w), €D,

where w = (1 + z)/(1 — 2), is analytic univalent in D and maps it onto the
domain 2 = f(H). Hence

2
<—, x>0
x

@l 4
dist(g(z),9g(D)) ~ 1 — |2
for z € D (see [5, p. 92]). For any v ¢ 2, the above shows that
9'(2) 4
g(z) —v| 7 1—[2

for z € D. Hence
f'(w) 8
'f(w) —o| T w12 —fw -1
for w € H. Therefore for v =0 and w = = > 0 we obtain (3.2).

To present an analytic characterization of the class S (H) it is useful to
define the following class of functions.

DEFINITION 3.3. For o > 0 let P(a; H) be the subclass of all functions
q € P(H) satisfying (2.4) and (2.5).

~

THEOREM 3.2. If f € Sk (H) and ps(f(H)) = f(oc0), then there exists
a € (0,1] and a function q € P(a;H) such that

rw 2
fw) ~qw)y  “ET
Proof. Define
S
aw) =250y vl

Since f/(w) # 0 in H, ¢ is analytic in H.
We will prove that ¢ is in P(«a; H) for some a € (0, 1].
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1. First we show that Reg(w) > 0 for w € H, i.e.
!/
Re{f(w)}>0, w € H.
f(w)
Remark 3.1 yields 0 ¢ f(H). Therefore the function

Ye = OH. > w argf<w)
is well defined on the analytic arc .. We use the following parametrization:
(3.3) Ye:w=7(y)=c+iy, yeR

From Theorem 3.1 it follows that f(H.) € Z% for every ¢ > 0. This means
geometrically that the function

(3.4) R >y arg f(v(y))

is monotonic on the analytic arc v, for every ¢ > 0. Since f is a conformal
mapping, it preserves the orientation of v.. We have

33) g f0) = 4 Imlos () = { /() T

F(v(y))
 Re f'(v(y))
‘R{fw@»}zo

for y € R. By the above

(3.6) Re { J;I((Z})) } >0

for w € H.

Assume now that equality holds in (3.6) for some wy € H. By the max-
imum principle for harmonic functions it holds in the whole halfplane H,
which implies that there exists b € R\ {0} so that

f'(w)
fw)

=b, weHl

But the solution
f(w) = fo(w) = aexp(ibw), weH, acC\{0},

of the last equation is not univalent in H. So fo ¢ S (H) and hence the
strict inequality holds in (3.6).

2. Now we prove that the function ¢ satisfies the conditions (2.11) and
(2.12) of Corollary 2.1. Let (x,) be an arbitrary sequence of positive real
numbers such that lim,,_, o, x, = co. Since, by Remark 3.1, 0 ¢ f(H), ap-
plying Lemma 3.1 we have

|Q(xn)| = 2‘ > Tn,
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which implies that lim,,_, g(z,) = 0o. Moreover Lemma 3.1 yields

In _ _ Tn f'(xn)
lg(zn)l 2| f(2n)

for n € N. Take a convergent subsequence (z,, ) such that

<1

. x
lim —* — = ap < 1.

k—oo [q(Tn,,)|
1
T, (1 + . )
Nk

1
q(ny)

Hence

Ty, +1 .
1 —_— = hm

= Qq.
1+

lq(n,)]

It is easy to check that for z > 0,
() + 1] = [q(2) — 1] < 2.

In particular, the last inequality holds for z = z,,, so there exists a subse-
quence (zy,, ) such that

Jim {Ja(n,) + 1] = la(en,,) — 1} = 20 <2,

Consequently,

———— ) =200 = 20,
lg(zn,,) + 1

where a € [0,1]. By Remark 2.2, a € (0,1]. In this way the function ¢
satisfies the assumptions of Corollary 2.1.

This ends the proof of the theorem.

THEOREM 3.3. Let f € A(H). Assume that there exists an « € (0,1]
and a function q € P(H) with lim,_ . q(w) = 0o such that

tim { (o€, )+ 11 laCon, ) = 1)

@ dim B2 =2
If

rw 2
&9 fw) "oy

then f € 8%, (H) and poo(f(H)) = f(o0).

Proof. Notice that from (3.8) it follows that f is locally univalent in H.
Also f(w) # 0 for w € H.

Now we prove that f is univalent in H.

Consider again the function (3.3) defined on the analytic arcs v, = 0H,
for each ¢ > 0, parametrized by (3.4). Repeating the calculations (3.5) we
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see that the condition (3.8) implies

d
.28 f() >0, yeR,
y

i.e. the function (3.3) is strictly increasing on each 7y.. By monotonicity the
limits
Ye= lim arg f(y(y), pc= lim argf(y(y))

yYy—-+o00

(possibly infinite) both exist and 1. — ¢, > 0 (see [4, Theorem 1, p. 17]).
We will prove that ¥, — ¢. < 27 for every ¢ > 0.
For every ¢ > 0 and R > c consider two arcs in H:

Yer ={c+iy:y € [-VR2— 2 VR — 2]},
oer={weC:|w =R}NH.

We will use the following parametrization:
Oer:w=0c(t)=Re" tec[-t(c,R),t(c,R)],

where t(c, R) = arctan(v R? — ¢2/c). The arc 7. g will be parametrized by
(3.3) where y € [-VR? — 2, VR? — %]}

(a) Assume first that o € (0,1). Fix ¢ > 0. Then by (3.7) there exists
Ry > ¢ such that |w/q(w)| < o < 1 for w € H\ D(0, Ry). Take R > R;.
Hence H\ D(0,R) C H\ D(0, Ry).

Since v.,r U 0¢ R is a closed curve lying in H, we have

(3.9) arg f(y(VR? —c?)) —arg f(y(=V R? — c?)) = A,  arg f(w)

! 2 2
:ImS dezlmg ——dw =1Im S —— dw
Ye,R f(w) <, R q(w) Oc,R q(w)
t(C,R) . ; t(C>R)
2iRe't R
v(p 1B iy |2(EE)]

<Adt(c, R)a < 2max < 2.
If now R — oo, then ¢(c, R) — /2, which implies
0 <te— e
Jim (arg F(VRZ = ¢2) —arg f(—V/R2 — 2)) < 2m.
This means that f(H.) C V., where V. is the sector with vertex at the
origin and with opening angle 1. — ¢.. Since f(H,.,) C f(H,,) for 0 < ¢; <

c2, we have Vo, C V.. Hence V = |J,., Ve is a sector with vertex at the
origin and with opening angle ¥ — ¢ = sup{¢. — ¢, : ¢ > 0}. Obviously,
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0<ty—p<2m As
fEy)y = rm)c|ve=v

c>0 c>0
there exists ¢y € R such that

(3.10) o < arg f(w) = Imlog f(w) = Im g(w)
<300+¢_S0§§00+2777 UIEH,
where g(w) = log f(w), w € H, is well defined in H. But (3.8) yields

/
Re { J;((;U)) } =Re{¢'(w)} >0, weH
Now [5, Proposition 1.10, p. 16] yields the univalence of ¢ in H. Since f(w) =
exp(g(w)), w € H, using (3.10) we deduce finally that f is univalent in H.

(b) Let now a« = 1. Fix ¢ > 0. For n € N there exists R1(n) > ¢
such that |w/q(w)] < 1+ 1/n for w € H \ D(0,R;i(n)). For each n €
N take R(n) > Ri(n) in such a way that lim, .. R(n) = oo. Clearly,
H\ D(0,R(n)) € H\ D(0,Ri(n)). Let v¢ r(n) and o¢ gy be defined as
in part (a). Since v. r(n) U 0¢ r(n) 18 a closed curve lying in H, we have, as
n (3.9), for each n € N,

t(c,R(n))

A'Yc,R(n) arg f(w) S 2 S
—t(c,R(n))

< 4(1 + %)t(c, R(n))a < 2(1 + %>w

and we complete the proof as before.

R(n)et

\W «

ExaMpPLES. Now we present some examples of functions. The first two
examples are geometrically obvious. The first function maps univalently H
onto a slit plane, the second one maps H onto a wedge. The third example
does not exhibit an evident geometrical property. Therefore Theorem 3.3
offers a useful analytical method to check if the function is an element
of 8 (H).

1. f(w) =vVw?+a? weH, a>0.Then

flw) w? + a? a?
=9 =92 =9 — ], € H.
q(w) () ” w ~+ ” w
Consequently, ¢ € A(H), Reg(w) > 0 for w € H, and lim, . g(w)/w = 2
so (3.7) is satisfied with o = 1/2. By Theorem 3.3, f € SX (H).
2. f(w) =w, weH, ue(0,2]. Then

2
¢(w)=—w, weH.
i
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Consequently, ¢ € A(H), Re g(w) > 0 for w € H, and lim,,_ g(w)/w =2/
so (3.7) is satisfied with @ = p/2. By Theorem 3.3, f € S% (H) for each
w e (0,2].

3. flw) = (w+1)? exp (i—g), w € H, § > 0. Then

2
q(w) = M7
Bw+ 3 —2
For 3 € (0,2) the function ¢ has a pole at w = (2 — 3)/8 so ¢ & A(H).
For 8 > 2, g € A(H). Moreover, for w € H, i.e. for w = z + iy with
x > 0, we have

w € H.

(x+1)*(Bz+F—-2)+ (24 Bz +1))y?
(B(z +1) = 2)% + §2y?

Since limy, o0 q¢(w)/w = 2/, we conclude that (3.7) is satisfied only for

B =2, ie. for « = 1. By Theorem 3.3, f € 8% (H) for 5 = 2.

> 0.

Req(w) =2
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