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Asymptotics for quasilinear elliptic
non-positone problems

by Zuodong Yang and Qishao Lu (Beijing)

Abstract. In the recent years, many results have been established on positive solu-
tions for boundary value problems of the form

− div(|∇u(x)|p−2∇u(x)) = λf(u(x)) in Ω,

u(x) = 0 on ∂Ω,

where λ > 0, Ω is a bounded smooth domain and f(s) ≥ 0 for s ≥ 0. In this paper, a
priori estimates of positive radial solutions are presented when N > p > 1, Ω is an N -ball
or an annulus and f ∈ C1(0,∞) ∪ C0([0,∞)) with f(0) < 0 (non-positone).

1. Introduction. In this paper, we consider the set of positive radial
solutions to the following boundary value problem for a quasilinear elliptic
P.D.E.:

div(|∇u|p−2∇u) + λf(u) = 0 in Ω,(1.1)

u = 0 on ∂Ω,(1.2)

where Ω denotes an annulus or a ball in RN (N > p > 1), and λ > 0.
The problem (1.1)–(1.2) arises in the theory of quasiregular and quasi-

conformal mappings or in the study of non-Newtonian fluids. In the latter
case, the quantity p is a characteristic of the medium. Media with p > 2
are called dilatant fluids and those with p < 2 are called pseudoplastics (see
[1–2]). When p 6= 2, the problem becomes more complicated since certain
nice properties inherent to the case p = 2 seem to be invalid or at least diffi-
cult to verify. The main differences between p = 2 and p 6= 2 are discussed in
[6, 8]. The existence and uniqueness of positive solutions of (1.1)–(1.2) have
been studied by many authors, for example, [4–10, 13–21] and the references
therein.
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By a positive solution u of (1.1)–(1.2), we mean a function u ∈ C1
0 (Ω)

with u > 0 in Ω which satisfies
�

Ω

|∇u|p−2∇u∇v = λ
�

Ω

f(u)v

for any v ∈ C∞0 (Ω). Thus, these solutions are considered in a weak sense.
By a small solution uλ of (1.1)–(1.2), we mean that limλ→0+ ‖uλ‖∞ = 0 (or
limλ→∞ ‖uλ‖∞ = 0). By a large positive solution uλ of (1.1)–(1.2), we mean
that limλ→0+ ‖uλ‖∞ =∞ (or limλ→∞ ‖uλ‖∞ =∞).

When f is strictly increasing on R+, f(0) = 0, lims→0+ f(s)/sp−1 = 0
and f(s) ≤ α1 + α2s

µ, where 0 < µ < p − 1 and α1, α2 > 0, it has been
shown in [6] that there exist at least two positive solutions for (1.1)–(1.2)
when λ is sufficiently large. If lim infs→0+ f(s)/sp−1 > 0, f(0) = 0 and the
monotonicity hypothesis (f(s)/sp−1)′ < 0 holds for all s > 0, it has been
proved in [8] that the problem (1.1)–(1.2) has a unique positive solution when
λ is sufficiently large. If f(s) > 0 for s ≥ 0 and lim sups→0+(f(s)/sp−2)′ < 0,
it has been proved in [9] that the problem (1.1)–(1.2) has a unique small
solution when λ is sufficiently small. It also has been proved that there exists
at least one large positive radial solution of (1.1)–(1.2) for Ω being an N -ball
or an annulus when λ is sufficiently small. If f(0) < 0, related results have
been obtained in [7, 20].

A natural question is to determine how λ and d = maxΩ u(·, λ) =
‖u(·, λ)‖∞ are related. When p = 2, f(0) < 0 or f(0) = 0 and Ω is a
unit ball in RN , the related results have been obtained by [11, 12]. In [21],
the author studied this problem for the case where Ω is a unit ball in RN
and f(0) < 0, p > 1. In this paper, we further study this problem for Ω
being an N -ball (N > p > 1) or an annulus and f(0) < 0 (non-positone).
This extends and complements previous results in the literature [11, 12, 21].

Consider a positive radial solution u of (1.1)–(1.2); thus u = u(r, λ)
satisfies

(1.3) (rN−1|u′|p−2u′)′ + λrN−1f(u) = 0.

If Ω is an annulus 0 < r1 ≤ r ≤ r2, we introduce the transformation of
variables

(1.4) s = r(p−N)/(p−1), u(r) = v(s).

Thus (1.3) becomes

(1.5) (|v′(s)|p−2v′(s))′ + λ((p− 1)/(N − p))ps−p(N−1)/(N−p)f(v(s)) = 0

and the boundary conditions become

(1.6) v(s1) = 0, v(s2) = 0.
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If Ω = B1(0), the boundary condition (1.2) becomes

u′(0) = 0, u(1) = 0.

2. A priori estimates for Ω being an annulus. In this section, we
consider the set of radially symmetric positive solutions to the equation

(2.1)
{
−div(|∇u|p−2∇u) = λf(u) in Ω,
u = 0 on ∂Ω,

where Ω denotes an annulus in RN (N > p > 1) and λ > 0. Here f :
[0,∞)→ R satisfies the following assumptions:

(A) f ∈ C1(0,∞) ∩ C([0,∞)), f(0) < 0, and there exists α > 0 such
that f(s) < 0 for 0 < s < α, f(α) = 0, f is increasing for s > α and
lims→∞ f(s) =∞.

(B) There are constants L0 > 0 and p− 1 < q < ((p− 1)N + p)/(N − p)
such that limu→∞ f(u)/uq = L0.

Theorem 2.1. Suppose that conditions (A) and (B) hold. Then there
exist positive constants K1 and K2 such that for small λ,

K1 < λ‖u(·, λ)‖q−p+1
∞ < K2,

where {u(·, λ) | λ ∈ (0, λ0)} is an arbitrary positive radially symmetric solu-
tion of (1.1)–(1.2). Furthermore, for any sequence {λi} with limi→∞ λi = 0,
there exists a subsequence, still denoted by {λi}, a constant θ, and a positive
function w such that

(1) w is a solution of the problem

−div(|∇u|p−2∇u) = θL0u
q in Ω,

u = 0 on ∂Ω,

(2) {u(·, λi)/‖u(·, λi)‖∞} converges to w in C1(Ω) as i→∞.

To obtain Theorem 2.1, the following lemma is established:

Lemma 2.2. Let f satisfy condition (A) and uλ ∈ C1
0 (Ω) be a radially

symmetric positive solution of (1.1)–(1.2). Then limλ→0+ ‖uλ‖∞ =∞.

Proof. On the contrary, assume that there exist sequences {λn} and
{un} ≡ {uλn} ∈ C1

0 (Ω) such that λn → 0 and ‖un‖ ≤ M , where M > 0 is
independent of n. Then ‖un‖∞ 6→ 0 as n → ∞. Indeed, suppose this does
not hold; by the regularity of −div(|∇ · |p−2∇·) (see [6]), there exists ω ≥ 0
in Ω such that λ−1/(p−1)

n un → ω in C1(Ω) as n→∞. Moreover, ω satisfies
the problem

−div(|∇ω|p−2∇ω) = f(0) < 0 in Ω,

ω = 0 on ∂Ω.
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It follows from the maximum principle that ω < 0 in Ω. This is impos-
sible. Now, since un is uniformly bounded in Ω and λn → 0 as n → ∞,
it follows from the regularity of −div(|∇ · |p−2∇·) again that there exists
ω ∈ C1

0 (Ω) with ω ≥ 0 in Ω such that un → ω in C1(Ω) as n → ∞ and ω
satisfies

−div(|∇ω|p−2∇ω) ≡ 0 in Ω,

ω = 0 on ∂Ω.

Thus, ω ≡ 0 in Ω. This also implies that un → 0 in C1(Ω) as n →∞. But
the above argument implies that this is impossible. Hence, we conclude that
‖un‖∞ →∞ as n→∞.

Lemma 2.3. Let a > 0. Then, for any θ ≤ 0, the equation

(|u′|p−2u′)′ + au(s)µ = 0 in (θ,∞)

has no bounded positive solution u ∈ C1(θ,∞) with u′(0) = 0. Moreover ,
the equation

(|u′|p−2u′)′ + au(s)µ = 0 in (−∞,∞)

has no bounded positive entire solution u ∈ C1(−∞,∞) with u′(0) = 0.

Proof. Suppose that such a solution u(s) exists. Let Φp(y) = |y|p−2y.
Then

(2.2) Φp(u′(s)) = −
s�

0

au(ξ)µ dξ for s ∈ (0,∞).

Thus, Φp(u′(s0)) = −k < 0 for some s0 > 0 where k = a � s00 u(ξ)µ dξ. By
(2.2), Φp(u′(s)) ≤ −k for s > s0, since u(s) > 0 for s > 0. Then

(2.3) u′(s) ≤ Φ−1
p (−k) = −k1/(p−1) for s > s0.

Integrating (2.3) over (s0, s), we obtain u(s)→ −∞ as s→∞, contrary to
the assumption that u(s) is a bounded solution.

Proof of Theorem 2.1. By the standard estimates for elliptic equations
and condition (B), it follows that

‖u(·, λ)‖p−1
∞ ≤ C(Ω)λ‖f(u(·, λ))‖∞

= C(Ω)λ‖L0u(·, λ)q + {f(u(·, λ))− L0u(·, λ)q}‖∞.
That is,

1 ≤ C(Ω)λL0
‖u(·, λ)q‖∞
‖u(·, λ)‖p−1

∞

+ C(Ω)λ
∥∥∥∥
f(u(·, λ))− L0u(·, λ)q

u(·, λ)q + 1

∥∥∥∥
∞

‖u(·, λ)q + 1‖∞
‖u(·, λ)‖p−1

∞
.
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By (B), there exists a positive constant K0 such that

|(f(u)− L0u
q)/(uq + 1)| < K0 for u ∈ R+.

Then

1 ≤ C(Ω)λ‖u(·, λ)‖q−p+1
∞ + C(Ω)λK0

{
‖u(·, λ)‖q−p+1

∞ +
1

‖u(·, λ)‖p−1
∞

}
.

From limλ→0 ‖u(·, λ)‖∞ =∞, it follows that there exists a positive constant
K1 such that, for any λ ∈ (0, λ0), K1 < λ‖u(·, λ)‖q−p+1

∞ .
Thus, the left-hand inequality in Theorem 2.1 is established.
To obtain the other half of Theorem 2.1, we show that T = λ‖u‖q−p+1

∞
is bounded as λ → 0. Let uλ be a positive radial solution of (1.1)–(1.2)
satisfying ‖uλ‖∞ →∞ as λ→ 0+. Then there exists a positive solution vλ
of (1.5)–(1.6) satisfying ‖vλ‖∞ → ∞ as λ → 0+. Let (λn, vn) be a positive
solution of (1.5)–(1.6) with λ = λn satisfying λn → 0+ and ‖vn‖∞ →∞ as
n→∞. Then wn = vn/‖vn‖∞ satisfies

(2.4) −(Φp(w′n(s)))′ = λn‖vn‖q−p+1
(
p− 1
N − p

)p
s−p(N−1)/(N−p) f(vn)

‖vn‖q∞
,

and wn(s1) = wn(s2) = 0, ‖wn‖∞ = 1.
Now, we show that {Tn} = {λn‖vn‖q−p+1

∞ } is bounded. We prove this
by a blowing up argument as in [3]. Suppose that Tn → ∞ as n → ∞. Let
ŝn ∈ (s1, s2) be such that wn(ŝn) = 1, yn = T

1/p
n (s − ŝn) and ŵn(yn) =

wn(s). Then ŵn(0) = 1, ŵ′n(0) = 0 and ŵn(yn) satisfies

−(Φp(ŵ′n))′ =
(
p− 1
N − p

)p
(ynT−1/p

n + ŝn)−p(N−1)/(N−p)(2.5)

× f(‖vn‖∞ŵn(yn))
‖vn‖q∞

.

Since ŝn ∈ [s1, s2] and f(s) ≤ β1 + β2s
q and ‖vn‖∞ → ∞ as n → ∞, the

right-hand side of (2.5) is uniformly bounded. Thus, there exist subsequences
(still denoted by {ŝn}, {ŵn} and {vn}) such that ŵn → ŵ in C1

loc(−∞, θ)
(or C1

loc(−∞,∞) or C1
loc(θ,∞)) as n → ∞. Here θ ≤ 0 is a fixed number

since the limit of ŝn may be s1 or s2 and Tn →∞. If ŝn → s1 as n→∞, we
assume that limn→∞ T

1/p
n (s1− ŝn) = θ ≤ 0 (or θ = −∞). Otherwise, we can

choose a subsequence of {T 1/p
n (s1− ŝn)} whose limit exists (or is −∞). If the

limit of ŝn is s2, and if we set yn = T
1/p
n (ŝn − s2), it follows that ŵn → ŵ

in C1
loc(−∞,∞) (or C1

loc(θ,∞), θ ≤ 0) as n → ∞. Therefore, we assume
that ŵn → ŵ in C1

loc(θ,∞) (or C1
loc(−∞,∞))). Since ŵ ∈ C1(θ,∞) (or

C1(−∞,∞)) satisfies −(Φp(ŵ′))′ ≥ 0 in (θ,∞) (or (−∞,∞)), and ŵ(0) = 1
and ŵ′(0) = 0, the strong maximum principle as in Lemma 2.3 of [6] implies
that ŵ > 0 in (θ,∞) (or (−∞,∞)). Thus, for any interval in (θ,∞) (or
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(−∞,∞)), there exists an ω > 0 such that ŵ(x) > ω in this interval. This
implies that

f(‖vn‖∞ŵn)
‖vn‖q∞

→ L0ŵ
q

in Cloc(θ,∞) (or Cloc(−∞,∞)) as n→∞. Therefore, ŵ satisfies

−(Φp(ŵ′))′ = L0((p− 1)/(N − p))ps−p(N−1)/(N−p)
∗ ŵq

in (θ,∞) (or (−∞,∞)). Here s∗ = limn→∞ ŝn. This contradicts Lemma 2.3.
Thus, {Tn} is bounded. Therefore

K1 < λ‖uλ‖q−p+1
∞ < K2.

Finally, let {λi} be a sequence with limi→∞ λi = 0 and denote the quan-
tity λi‖v(·, λi)‖q−p+1

∞ by θi. Suppose that θ ∈ [K1,K2] is any accumulation
point of {θi}. Thus there exists a subsequence of {θi} (still denoted by
{θi} later) which converges to θ. Let w(x, λ) = v(x, λ)/‖v(·, λ)‖∞. Then
‖w(·, λ)‖∞ = 1 and

−div(|∇w|p−2∇w) = θi
f(v(x, λi))
‖v(·, λi)‖q∞

.

Using the same idea as above for (2.4), we find a function w(·) and a sub-
sequence of {w(·, λi)} (still denoted by {w(·, λi)}) such that {w(·, λi)} con-
verges to w in C1(s1, s2) as i→∞. By condition (B), it follows that

lim
i→∞

f(‖v(·, λi)‖∞w(x, λi))
‖v(·, λi)‖q∞

= L0w
q.

Therefore w(·) is a positive solution of the problem

−div(|∇w|p−2∇w) = θL0w
q in Ω,

w = 0 on ∂Ω,

and ‖w(·)‖∞ = 1.

3. A priori estimates for Ω being a ball. In this section, consider
the set of radially symmetric positive solutions to the equation

−div(|∇u|p−2∇u) = λf(u) for x ∈ Ω,(3.1)

u|∂Ω = 0,(3.2)

where Ω denotes the unit ball in RN (N > 1), centered at the origin, and
λ > 0. Here f : [0,∞)→ R is assumed to satisfy

(3.3) f(0) < 0 (non-positone), f ′(u) ≥ 0, and f(u0) > 0 for some u0 > 0.

Let F be defined as F (t) = � t0 f(s) ds, and let β and θ (β < θ) be the
unique positive zeros of f and F , respectively.

In this section, the following theorem is proved:
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Theorem 3.1. Let u be a radially symmetric positive solution of (3.1)–
(3.2) with u(0) = d and suppose f satisfies (3.3). Then for large λ,

(
p

p− 1

)p−1

(N − 1) ≤ λf(d)
dp−1(3.4)

≤ 2Nf(d)
dp−1

(
p

p− 1

)p−1( d�

θ

ds

f(s)1/(p−1)

)p−1

.

Remark. If f(u) ≤M for all u, or if f(u) = uα−1 where 0 < α < p−1,
then f(d)d−(p−1)( � d

θ
f(s)−1/(p−1) ds)p−1 is finite.

Note that radially symmetric positive solutions of (3.1)–(3.2) are strictly
decreasing in r for r ∈ (0, 1) where r = ‖x‖. Thus, they satisfy

(Φp(u′))′ +
N − 1
r

Φp(u′) + λf(u) = 0 in (0, 1),(3.5)

u(0) = d, u′(0) = 0, u(1) = 0, u′(r) < 0 in (0, 1).(3.6)

where Φp(s) = |s|p−2s, p > 1.
If u is a solution of (3.5)–(3.6), then multiplying (3.5) by rN−1 and

integrating from 0 to t gives

−
t�

0

(rN−1Φp(u′))′ dr =
t�

0

λrN−1f(u) dr.

Since u is decreasing and f is increasing, it follows that

−tN−1Φp(u′) = λ

t�

0

rN−1f(u) dr ≥ λf(u(t))
t�

0

rN−1 dr =
λtN−1f(u)

N
.

Hence

(3.7) (−u′)p−1 ≥ λtf(u)
N

.

Next, multiplying (3.5) by u′ and integrating over [0, 1] yields

(3.8)
p− 1
p
|u′(1)|p +

1�

0

N − 1
r
|u′|p dr = λF (d).

Note that this implies

(3.9) d > θ.

To prove Theorem 3.1, we need the following lemma:

Lemma 3.2 (see [19]). Let u be a radially symmetric positive solution of
(3.1)–(3.2). Then there exists M > 0 such that for large λ,

|u′(1)| > λ1/(p−1)M.
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The proof of Theorem 3.1 is based upon a modification of the method
of Iaia [12].

Proof of Theorem 3.1. First, Hölder’s inequality gives

d = u(0)− u(1) = −
1�

0

u′(t) dt =
1�

0

−u′
t1/p

t1/p dt

≤
( 1�

0

|u′|p
t

dt

)1/p( 1�

0

t1/(p−1) dt
)(p−1)/p

.

Next, it follows from (3.8) that

dp ≤
(
p− 1
p

)p−1 1�

0

|u′|p
t

dt ≤
(
p− 1
p

)p−1
λF (d)
N − 1

.

Thus
λF (d)
dp

≥
(

p

p− 1

)p−1

(N − 1).

Finally, since f ′ ≥ 0,

(3.10) F (d) =
d�

0

f(s)ds = df(d)−
d�

0

sf ′(s)ds ≤ df(d).

This proves the left-hand inequality of (3.4).
In order to establish the right-hand inequality of (3.4), from (3.7) we get

−u′(t) ≥
(
λtf(u)
N

)1/(p−1)

.

Let qλ ∈ (0, 1) be such that u(qλ) = θ. Then u(t) ≥ θ > β on [0, qλ]. Thus
f(u(t)) ≥ f(θ) > f(β) = 0 on [0, qλ]. So, on [0, qλ] we have

qλ�

0

−u′
f(u)1/(p−1)

dt ≥
qλ�

0

(
λt

N

)1/(p−1)

dt =
(
λ

N

)1/(p−1)(
p− 1
p

)
q
p/(p−1)
λ .

Changing variables in the first integral via s = u(t) gives
d�

θ

ds

f(s)1/(p−1)
≥
(
λ

N

)1/(p−1)(
p− 1
p

)
q
p/(p−1)
λ .

Thus,

(3.11)
f(d)1/(p−1)

d

d�

θ

ds

f(s)1/(p−1)
≥ (λf(d))1/(p−1)

N1/(p−1)d

(
p− 1
p

)
q
p/(p−1)
λ .

Therefore, the proof of Theorem 3.1 will be completed once the following
lemma is established.
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Lemma 3.3. limλ→∞ qλ = 1.

From this lemma, for large λ, we have qpλ ≥ 1/2. Substituting this into
(3.11), one can deduce

λf(d)
dp−1 ≤

2Nf(d)
dp−1

(
p− 1
p

)p−1( d�

θ

ds

f(s)1/(p−1)

)p−1

,

which completes the proof of Theorem 3.1.

Proof of Lemma 3.3. Multiplying (3.5) by u′ and integrating from t to 1
gives

1�

t

[
u′(Φp(u′))′ +

N − 1
r
|u′|p

]
dr =

1�

t

(−λf(u)u′) dr.

Thus

p− 1
p

[|u′|p(1)− |u′|p(t)] +
1�

t

N − 1
r
|u′|p dr = −λ[F (u(1))− F (u(t))].

Since F (u(1)) = F (0) = 0, it follows that

p− 1
p

[|u′|p(1)− |u′|p(t)] ≤ λF (u(t)).

Now, for qλ ≤ t ≤ 1, it follows that θ = u(qλ) ≥ u(t) ≥ u(1) = 0, and then
F (u(t)) ≤ 0. Hence,

(3.12) |u′|p(1) ≤ |u′|p(t) for t ∈ [qλ, 1].

Now Lemma 3.2 shows that there exists a c > 0 independent of λ such that

−u′(1) ≥ cλ1/(p−1) for large λ.

Consequently, it follows from (3.12) that

(−u′(t))p ≥ (−u′(1))p ≥ cpλp/(p−1) for t ∈ [qλ, 1].

Integrating on [qλ, 1] gives

θ = u(qλ) = −
1�

qλ

u′(t) dt ≥
1�

qλ

cλ1/(p−1) dt = cλ1/(p−1)(1− qλ).

Thus

0 ≤ 1− qλ ≤
θ

cλ1/(p−1)
.

As λ→∞ the right-hand side of the above expression tends to zero; hence
limλ→∞ qλ = 1 and this completes the proof of the lemma.
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