A uniqueness theorem of Cartan-Gutzmer type for holomorphic mappings in \mathbb{C}^{n}

by Piotr Liczberski and Jerzy Polubiński (Łódź)

Abstract

We continue our previous work on a problem of Janiec connected with a uniqueness theorem, of Cartan-Gutzmer type, for holomorphic mappings in \mathbb{C}^{n}. To solve this problem we apply properties of $(\mathbf{j} ; k)$-symmetrical functions.

1. Introduction. The following two uniqueness theorems are well known.

Theorem (H. Cartan, [1]). Let Ω be a bounded domain in \mathbb{C}^{n} and g : $\Omega \rightarrow \Omega$ be a holomorphic mapping. If there exists a point $b \in \Omega$ such that $g(b)=b, D g(b)=I$, then $g(z)=z$ for every $z \in \Omega$.

Theorem (A. Gutzmer, [3]). Let Δ be the open unit disc in the complex plane \mathbb{C} and $g: \Delta \rightarrow \Delta$ be a holomorphic function of the form

$$
g(\zeta)=\sum_{\nu=0}^{\infty} a_{\nu} \zeta^{\nu}, \quad \zeta \in \Delta
$$

If there exists an integer $j \geq 0$ such that $\left|a_{j}\right|=1$, then $g(\zeta)=a_{j} \zeta^{j}, \zeta \in \Delta$.
We consider a related problem connected with a uniqueness theorem (given by E. Janiec in [4]) for holomorphic mappings in bounded complete Reinhardt domains

$$
\mathbb{B}^{\mathbf{t}}(r)=\left\{z=\left(z_{1}, \ldots, z_{n}\right) \in \mathbb{C}^{n}: \sum_{s=1}^{n}\left|z_{s}\right|^{2 t_{s}}<r\right\}
$$

where $r \in \mathbb{R}_{+}=(0, \infty)$ and $\mathbf{t}=\left(t_{1}, \ldots, t_{n}\right) \in \mathbb{R}_{+}^{n}$. We write $\mathbb{B}^{\mathbf{t}}$ for $\mathbb{B}^{\mathbf{t}}(1)$; if $\mathbf{1}=(1, \ldots, 1)$, then $\mathbb{B}=\mathbb{B}^{\mathbf{1}}$ is the euclidean open unit ball. For $\mathbf{j}=$ $\left(j_{1}, \ldots, j_{n}\right) \in \mathbb{N}^{n}$, where \mathbb{N} is the set of positive integers, we set $\mathbf{t} / \mathbf{j}=$ $\left(t_{1} / j_{1}, \ldots, t_{n} / j_{n}\right) \in \mathbb{R}_{+}^{n}$.

In [4] E. Janiec proved the following result.

[^0]Theorem (E. Janiec, [4]). Let $\mathbf{t} \in \mathbb{R}_{+}^{n}, \mathbf{j} \in \mathbb{N}^{n}$ and $g=\left(g^{1}, \ldots, g^{n}\right)$ be a holomorphic mapping in $\mathbb{B}^{\mathbf{t}}$. If each $g^{s}, s=1, \ldots, n$, has an expansion into a series of homogeneous polynomials of the form

$$
\begin{equation*}
g^{s}(z)=z_{s}^{j_{s}}+\sum_{\nu=j_{s}+1}^{\infty} P^{s, \nu}(z), \quad z=\left(z_{1}, \ldots, z_{n}\right) \in \mathbb{B}^{\mathbf{t}} \tag{1.1}
\end{equation*}
$$

and $g: \mathbb{B}^{\mathbf{t}} \rightarrow \mathbb{B}^{\mathbf{t} / \mathbf{j}}$, then g transforms $\mathbb{B}^{\mathbf{t}}$ onto $\mathbb{B}^{\mathbf{t} / \mathbf{j}}$ and

$$
g(z)=\left(z_{1}^{j_{1}}, \ldots, z_{n}^{j_{n}}\right), \quad z=\left(z_{1}, \ldots, z_{n}\right) \in \mathbb{B}^{\mathbf{t}}
$$

It is clear that when $\mathbf{j}=(1, \ldots, 1)$, the above theorem coincides with the Cartan uniqueness theorem for $\Omega=\mathbb{B}^{\mathbf{t}}$ and $b=0$.
E. Janiec [4] also asked whether it is possible to omit the assumption that

$$
\begin{equation*}
P^{s, 0}=P^{s, 1}=\ldots=P^{s, j_{s}-1}=0, \quad s=1, \ldots, n \tag{1.2}
\end{equation*}
$$

He tried to solve this problem by restricting the set of mappings considered. He obtained an affirmative answer for every $\mathbf{t} \in \mathbb{R}_{+}^{n}$ under the additional assumption that $g: \mathbb{B}^{\mathbf{t}} \rightarrow \mathbb{B}^{\mathbf{t} / \mathbf{j}}$ is holomorphic in $\overline{\mathbb{B}^{\mathbf{t}}}$. Another approach is to reduce the generality of the domains $\mathbb{B}^{\mathbf{t}}$. We have proved in [6] that assumption (1.2) is not necessary when $\mathbf{t}=\mathbf{j}=(j, \ldots, j) \in \mathbb{N}^{n}$. In this paper we generalize this result to the case $\mathbf{t}=\mathbf{j}=\left(j_{1}, \ldots, j_{n}\right) \in \mathbb{N}^{n}$.

The main theorem (Theorem 3) and its proof are given in Section 3. There we apply some properties of $(\mathbf{j} ; k)$-symmetrical functions; these properties are presented in Section 2.

We now introduce some further notations. Let \mathbb{Z} denote the set of all integers. For $\lambda \in \mathbb{C}, z=\left(z_{1}, \ldots, z_{n}\right) \in \mathbb{C}^{n}, \mathbf{j}=\left(j_{1}, \ldots, j_{n}\right) \in \mathbb{Z}^{n}$ and $\mathbf{l}=\left(l_{1}, \ldots, l_{n}\right) \in \mathbb{Z}^{n}$ we write $\lambda \mathbf{j}=\left(\lambda j_{1}, \ldots, \lambda j_{n}\right), \lambda^{\mathbf{j}} z=\left(\lambda^{j_{1}} z_{1}, \ldots, \lambda^{j_{n}} z_{n}\right)$, $\mathbf{j}+\mathbf{l}=\left(j_{1}+l_{1}, \ldots, j_{n}+l_{n}\right), \mathbf{j} \mathbf{l}=\left(j_{1} l_{1}, \ldots, j_{n} l_{n}\right)$ and $|\mathbf{j}|=j_{1}+\ldots+j_{n}$.

For every fixed $k \in \mathbb{N}, k \geq 2$, let $\mathcal{K}=\{0,1, \ldots, k-1\}$ and $\varepsilon=\exp (2 \pi i / k)$. We will use the equality

$$
\sum_{\mathbf{j} \in \mathcal{K}^{n}} \varepsilon^{|\mathbf{j}|}=\left\{\begin{array}{ll}
k^{n} & \text { if } k \mid \mathbf{l}, \tag{1.3}\\
0 & \text { if } k \nmid \mathbf{l},
\end{array} \quad \mathbf{l} \in \mathbb{Z}^{n}\right.
$$

where $k \mid \mathbf{l}$ means that there exists an $\mathbf{m} \in \mathbb{Z}^{n}$ such that $\mathbf{l}=k \mathbf{m}$. This formula follows directly from the equalities

$$
\sum_{\mathbf{j} \in \mathcal{K}^{n}} \varepsilon^{|\mathbf{j}| \mid}=\sum_{j_{1}=0, \ldots, j_{n}=0}^{k-1} \prod_{s=1}^{n} \varepsilon^{j_{s} l_{s}}=\prod_{s=1}^{n} \sum_{j_{s}=0}^{k-1} \varepsilon^{j_{s} l_{s}}
$$

and from the well known fact that $\sum_{j=0}^{k-1} \varepsilon^{j l}$ is k if $k \mid l$ and zero otherwise, for $l \in \mathbb{Z}$.
2. ($\mathbf{j} ; k$)-symmetrical functions. Fix $k \in \mathbb{N}, k \geq 2$, and let $\varepsilon=$ $\exp (2 \pi i / k)$. A nonempty subset U of \mathbb{C}^{n} will be called separately k-symmetrical if for any $\left(z_{1}, \ldots, z_{n}\right) \in U$ and $s=1, \ldots, n$ the point $\left(z_{1}, \ldots, z_{s-1}\right.$, $\left.\varepsilon z_{s}, z_{s+1}, \ldots, z_{n}\right)$ is also in U.

Let U be a separately k-symmetrical subset of $\mathbb{C}^{n}, \mathcal{F}(U)$ be the vector space of all functions $F: U \rightarrow \mathbb{C}$, and $\mathcal{L}_{\mathbf{j}}: \mathcal{F}(U) \rightarrow \mathcal{F}(U)$, for $\mathbf{j} \in \mathbb{Z}^{n}$, be a linear operator defined as follows:

$$
\begin{equation*}
\left(\mathcal{L}_{\mathbf{j}} F\right)(z)=F\left(\varepsilon^{\mathbf{j}} z\right), \quad z \in U, F \in \mathcal{F}(U) \tag{2.1}
\end{equation*}
$$

A function $F \in \mathcal{F}(U)$ will be called $(\mathbf{j} ; k)$-symmetrical if for every $\mathbf{l} \in \mathbb{Z}^{n}$,

$$
\begin{equation*}
\mathcal{L}_{\mathbf{l}} F=\varepsilon^{|\mathbf{j}|} F \tag{2.2}
\end{equation*}
$$

It is easy to see that (2.2) is equivalent to

$$
F\left(z_{1}, \ldots, z_{s-1}, \varepsilon z_{s}, z_{s+1}, \ldots, z_{n}\right)=\varepsilon^{j_{s}} F(z)
$$

for every $z=\left(z_{1}, \ldots, z_{n}\right) \in U$ and $s=1, \ldots, n$.
The $(\mathbf{j} ; k)$-symmetrical functions form a complex linear subspace of $\mathcal{F}(U)$, denoted by $\mathcal{F}_{\mathbf{j}}(U)$. From now on, we write $\mathcal{F}_{\mathbf{j}}$ and \mathcal{F} for $\mathcal{F}_{\mathbf{j}}(U)$ and $\mathcal{F}(U)$, respectively.

The analysis of the spaces $\mathcal{F}_{\mathbf{j}}$ can be restricted to the case when $\mathbf{j} \in \mathcal{K}^{n}$, because $\mathcal{L}_{\mathbf{j}+k \mathbf{l}}=\mathcal{L}_{\mathbf{j}}$ and consequently $\mathcal{F}_{\mathbf{j}+k \mathbf{l}}=\mathcal{F}_{\mathbf{j}}$ for $\mathbf{l} \in \mathbb{Z}^{n}$.

Observe that the notion of a $(\mathbf{j} ; k)$-symmetrical function $F: U \rightarrow \mathbb{C}$ on a separately k-symmetrical set $U \subset \mathbb{C}^{n}$ coincides for $n=1$ with the notion of a $(j ; k)$-symmetrical function $F: U \rightarrow \mathbb{C}$ on a k-symmetrical set $U \subset \mathbb{C}$, given in [5].

For $\mathbf{j} \in \mathcal{K}^{n}$, define the following operators $\boldsymbol{\pi}_{\mathbf{j}}$ on \mathcal{F} :

$$
\begin{equation*}
\boldsymbol{\pi}_{\mathbf{j}} F=k^{-n} \sum_{\mathbf{l} \in \mathcal{K}^{n}} \varepsilon^{-|\mathbf{j}|} \mathcal{L}_{\mathbf{l}} F, \quad F \in \mathcal{F} \tag{2.3}
\end{equation*}
$$

Now we give a useful decomposition theorem.
Theorem 1. Let U be a separately k-symmetrical subset of \mathbb{C}^{n} and let $F \in \mathcal{F}$. Then

$$
\begin{gather*}
F=\sum_{\mathbf{j} \in \mathcal{K}^{n}} \boldsymbol{\pi}_{\mathbf{j}} F, \tag{2.4}\\
\boldsymbol{\pi}_{\mathbf{j}} F \in \mathcal{F}_{\mathbf{j}}, \quad \mathbf{j} \in \mathcal{K}^{n} . \tag{2.5}
\end{gather*}
$$

The above decomposition is unique in the following sense: if

$$
\begin{equation*}
F=\sum_{\mathbf{j} \in \mathcal{K}^{n}} F_{\mathbf{j}} \tag{2.6}
\end{equation*}
$$

where $F_{\mathbf{j}} \in \mathcal{F}_{\mathbf{j}}$ for $\mathbf{j} \in \mathcal{K}^{n}$, then $F_{\mathbf{j}}=\boldsymbol{\pi}_{\mathbf{j}} F$.

Proof. (2.4) follows from (2.3), (1.3) and (2.1):

$$
\sum_{\mathbf{j} \in \mathcal{K}^{n}} \boldsymbol{\pi}_{\mathbf{j}} F=\sum_{\mathbf{j} \in \mathcal{K}^{n}} k^{-n} \sum_{\mathbf{1} \in \mathcal{K}^{n}} \varepsilon^{-|\mathbf{j}|} \mathcal{L}_{\mathbf{1}} F=\sum_{\mathbf{l} \in \mathcal{K}^{n}} k^{-n} \mathcal{L}_{\mathbf{l}} F \sum_{\mathbf{j} \in \mathcal{K}^{n}} \varepsilon^{-|\mathbf{j}| \mid}=\mathcal{L}_{\mathbf{0}} F=F .
$$

Now let $\mathbf{m} \in \mathcal{K}^{n}$. Since (2.3) and (2.1) give

$$
\begin{aligned}
\mathcal{L}_{\mathbf{m}}\left(\boldsymbol{\pi}_{\mathbf{j}} F\right) & =\mathcal{L}_{\mathbf{m}}\left(k^{-n} \sum_{\mathbf{l} \in \mathcal{K}^{n}} \varepsilon^{-|\mathbf{j}|} \mathcal{L}_{\mathbf{l}} F\right)=k^{-n} \sum_{\mathbf{l} \in \mathcal{K}^{n}} \varepsilon^{-|\mathbf{j}|} \mathcal{L}_{\mathbf{m}} \mathcal{L}_{\mathbf{l}} F \\
= & \varepsilon^{|\mathbf{j m}|} k^{-n} \sum_{\mathbf{l} \in \mathcal{K}^{n}} \varepsilon^{-|\mathbf{j}(\mathbf{l}+\mathbf{m})|} \mathcal{L}_{\mathbf{l}+\mathbf{m}} F=\varepsilon^{|\mathbf{j} \mathbf{m}|} k^{-n} \sum_{\mathbf{s}=\mathbf{m}}^{\mathbf{m}+(k-1, \ldots, k-1)} \varepsilon^{-|\mathbf{j} \mathbf{s}|} \mathcal{L}_{\mathbf{s}} F \\
= & \varepsilon^{|\mathbf{j} \mathbf{m}|} k^{-n} \sum_{\mathbf{s} \in \mathcal{K}^{n}} \varepsilon^{-|\mathbf{j} \mathbf{s}|} \mathcal{L}_{\mathbf{s}} F=\varepsilon^{|\mathbf{j} \mathbf{m}|} \pi_{\mathbf{j}} F
\end{aligned}
$$

we see that $\boldsymbol{\pi}_{\mathbf{j}} F$ satisfies condition (2.2), and consequently (2.5) holds.
To prove the uniqueness, suppose that (2.6) holds and $F_{\mathbf{j}} \in \mathcal{F}_{\mathbf{j}}$ for $\mathbf{j} \in \mathcal{K}^{n}$. Then, in view of (2.3), (2.5), (2.2) and (1.3), for every $\mathbf{m} \in \mathcal{K}^{n}$ we obtain

$$
\begin{aligned}
\boldsymbol{\pi}_{\mathbf{m}} F & =\boldsymbol{\pi}_{\mathbf{m}}\left(\sum_{\mathbf{j} \in \mathcal{K}^{n}} F_{\mathbf{j}}\right)=\sum_{\mathbf{j} \in \mathcal{K}^{n}} \boldsymbol{\pi}_{\mathbf{m}} F_{\mathbf{j}}=\sum_{\mathbf{j} \in \mathcal{K}^{n}} k^{-n} \sum_{\mathbf{l} \in \mathcal{K}^{n}} \varepsilon^{-|\mathbf{l m}|} \mathcal{L}_{\mathbf{l}} F_{\mathbf{j}} \\
& =\sum_{\mathbf{j} \in \mathcal{K}^{n}} k^{-n} \sum_{\mathbf{l} \in \mathcal{K}^{n}} \varepsilon^{-|\mathbf{l m}|} \varepsilon^{|\mathbf{j}|} F_{\mathbf{j}}=\sum_{\mathbf{j} \in \mathcal{K}^{n}} k^{-n} F_{\mathbf{j}} \sum_{\mathbf{l} \in \mathcal{K}^{n}} \varepsilon^{|\mathbf{l}(\mathbf{j}-\mathbf{m})|}=F_{\mathbf{m}}
\end{aligned}
$$

The functions $F_{\mathbf{j}}=\pi_{\mathbf{j}} F$ will be called the $(\mathbf{j} ; k)$-symmetrical parts of F.
Theorem 1 can also be proved by the methods of the representation theory of finite groups (see for instance [2]). Another proof of Theorem 1, in the case of $n=2$, has been given in [7] by a reduction to the case $n=1$, considered in [5].

Now we give two corollaries of Theorem 1.
Corollary 1. Let $U \subset \mathbb{C}^{n}$ be separately k-symmetrical, $F \in \mathcal{F}$ and $F_{\mathbf{j}}$ be its $(\mathbf{j} ; k)$-symmetrical parts, $\mathbf{j}=\left(j_{1}, \ldots, j_{n}\right) \in \mathcal{K}^{n}$. Then

$$
\sum_{\mathbf{l} \in \mathcal{K}^{n}}\left|F\left(\varepsilon^{\mathbf{1}} z\right)\right|^{2}=k^{n} \sum_{\mathbf{j} \in \mathcal{K}^{n}}\left|F_{\mathbf{j}}(z)\right|^{2}, \quad z \in U
$$

Proof. Since $F_{\mathbf{j}}=\boldsymbol{\pi}_{\mathbf{j}} F$, we have

$$
k^{2 n} \sum_{\mathbf{j} \in \mathcal{K}^{n}}\left|F_{\mathbf{j}}(z)\right|^{2}=\sum_{\mathbf{j} \in \mathcal{K}^{n}}\left(\sum_{\mathbf{l} \in \mathcal{K}^{n}} \varepsilon^{-|\mathbf{j}|} F\left(\varepsilon^{1} z\right)\right)\left(\sum_{\mathbf{m} \in \mathcal{K}^{n}} \varepsilon^{|\mathbf{j m}|} \overline{F\left(\varepsilon^{\mathbf{m}} z\right)}\right) .
$$

Now change the order of summation and use (1.3).
Let $\mathbb{N}_{0}=\mathbb{N} \cup\{0\}$ and for $\mathbf{m}=\left(m_{1}, \ldots, m_{n}\right) \in \mathbb{N}_{0}^{n}, z=\left(z_{1}, \ldots, z_{n}\right) \in \mathbb{C}^{n}$, let $a_{\mathbf{m}} z^{\mathbf{m}}=a_{\mathbf{m}} z_{1}^{m_{1}} \cdot \ldots \cdot z_{n}^{m_{n}}$.

Corollary 2. Let $U \subset \mathbb{C}^{n}$ be a bounded complete Reinhardt domain with centre at the origin, and let $F \in \mathcal{F}$ be a holomorphic function of the
form

$$
F(z)=\sum_{\mathbf{m} \in \mathbb{N}_{0}^{n}} a_{\mathbf{m}} z^{\mathbf{m}}, \quad z=\left(z_{1}, \ldots, z_{n}\right) \in U
$$

Then, for any fixed $k \in \mathbb{N}, k \geq 2$, and $\mathbf{j} \in \mathcal{K}^{n}$,

$$
\begin{equation*}
F_{\mathbf{j}}(z)=\sum_{\mathbf{d} \in \mathbb{N}_{0}^{n}} a_{\mathbf{j}+k \mathbf{d}} z^{\mathbf{j}+k \mathbf{d}}, \quad z \in U \tag{2.7}
\end{equation*}
$$

Proof. As U is a separately k-symmetrical domain for every $k \geq 2$ and F is the sum of an absolutely convergent power series, we can change the order of summation after using formula (2.3). Now apply (1.3).

For $s \in\{1, \ldots, n\}$ and $\mathbf{j}=\left(j_{1}, \ldots, j_{n}\right) \in \mathbb{N}^{n}$ let $\mathbf{j}^{s}=\left(0, \ldots, 0, j_{s}, 0, \ldots, 0\right)$.
Now we prove a uniqueness theorem for $(\mathbf{j} ; k)$-symmetrical functions.
Theorem 2. Let $\mathbf{j}=\left(j_{1}, \ldots, j_{n}\right) \in \mathbb{N}^{n} \cap \mathcal{K}^{n}$. If $f=\left(f^{1}, \ldots, f^{n}\right): \mathbb{B}^{\mathbf{j}} \rightarrow$ \mathbb{B} is holomorphic and the $\left(\mathbf{j}^{s} ; k\right)$-symmetrical part $f_{\mathbf{j}^{s}}^{s}, s=1, \ldots, n$, of f^{s} has the form

$$
\begin{equation*}
f_{\mathbf{j}^{s}}^{s}(z)=z_{s}^{j_{s}}, \quad z=\left(z_{1}, \ldots, z_{n}\right) \in \mathbb{B}^{\mathbf{j}} \tag{2.8}
\end{equation*}
$$

then

$$
f(z)=\left(z_{1}^{j_{1}}, \ldots, z_{n}^{j_{n}}\right), \quad z=\left(z_{1}, \ldots, z_{n}\right) \in \mathbb{B}^{\mathbf{j}} .
$$

Proof. In view of the uniqueness of the decomposition (2.6) it is sufficient to show that the $(\mathbf{l} ; k)$-symmetrical part f_{1}^{q} of $f^{q}, q=1, \ldots, n$, vanishes in $\mathbb{B}^{\mathbf{j}}$ if $\mathbf{l} \in \mathcal{K}^{n}$ and $\mathbf{l} \neq \mathbf{j}^{q}$. Observe that applying Corollary 1 to $f^{s}, s=1, \ldots, n$, we obtain

$$
\begin{equation*}
k^{-n} \sum_{s=1}^{n} \sum_{\mathbf{m} \in \mathcal{K}^{n}}\left|f^{s}\left(\varepsilon^{\mathbf{m}} z\right)\right|^{2}=\sum_{s=1}^{n}\left|f_{\mathbf{j}^{s}}^{s}(z)\right|^{2}+\sum_{s=1}^{n} \sum_{\mathbf{j}^{s} \neq \mathbf{l} \in \mathcal{K}^{n}}\left|f_{\mathbf{l}}^{s}(z)\right|^{2} \tag{2.9}
\end{equation*}
$$

Now change the order of summation on the left-hand side of this equality and use the assumption

$$
\sum_{s=1}^{n}\left|f^{s}\left(\varepsilon^{\mathbf{m}} z\right)\right|^{2}<1, \quad z \in \mathbb{B}^{\mathbf{j}}, \mathbf{m} \in \mathcal{K}^{n}
$$

Simultaneously, apply (2.8) to the first sum on the right-hand side of (2.9). Then, for every component $\left|f_{1}^{q}(z)\right|^{2}, q=1, \ldots, n$ and $\mathbf{l} \neq \mathbf{j}^{q}$, of the multiple sum on the right-hand side of (2.9), we obtain

$$
\left|f_{\mathbf{1}}^{q}(z)\right|^{2}<1-\sum_{s=1}^{n}\left|z_{s}\right|^{2 j_{s}}, \quad z=\left(z_{1}, \ldots, z_{n}\right) \in \mathbb{B}^{\mathbf{j}}
$$

Thus for $q=1, \ldots, n$ and $\mathbf{l} \neq \mathbf{j}^{q}$,

$$
\max _{\partial B^{\mathbf{j}}(r)}\left|f_{\mathbf{l}}^{q}(z)\right|^{2} \leq 1-r, \quad r \in(0,1)
$$

Hence, by the maximum principle,

$$
0 \leq \frac{\max }{B^{\mathrm{j}}(r)}\left|f_{1}^{q}(z)\right| \leq \sqrt{1-r}, \quad r \in(0,1) .
$$

Now, observe that the maximum above is a nondecreasing function of $r \in(0,1)$, while the right-hand side decreases in $(0,1)$ and $\lim _{r \rightarrow 1^{-}} \sqrt{1-r}$ $=0$. Therefore, $\max _{\overline{B^{\mathbf{j}}(r)}}\left|f_{\mathbf{1}}^{q}(z)\right|=0$, for $r \in(0,1)$ and $\mathbf{l} \neq \mathbf{j}^{q}$. Consequently, $f_{\mathbf{l}}^{q}(z)=0$ for $\mathbf{l} \neq \mathbf{j}^{q}, q=1, \ldots, n$ and $z \in \mathbb{B}^{\mathbf{j}}$, because $\mathbb{B}^{\mathbf{j}}=\bigcup_{r \in(0,1)} \overline{B^{\mathbf{j}}(r)} .$.

3. Main result

Theorem 3. Let $\mathbf{j}=\left(j_{1}, \ldots, j_{n}\right) \in \mathbb{N}^{n}$ and assume that $f=\left(f^{1}, \ldots, f^{n}\right)$: $\mathbb{B}^{\mathbf{j}} \rightarrow \mathbb{B}$ is holomorphic. If, for every $s \in\{1, \ldots, n\}$,

$$
f^{s}(z)=\sum_{\nu=0}^{\infty} P^{s, \nu}(z), \quad z \in \mathbb{B}^{\mathbf{j}},
$$

is an expansion of f^{s} into a series of homogeneous polynomials and

$$
\begin{equation*}
P^{s, j_{s}}(z)=z_{s}^{j_{s}}, \quad z=\left(z_{1}, \ldots, z_{n}\right) \in \mathbb{B}^{\mathbf{j}}, \tag{3.1}
\end{equation*}
$$

then

$$
f(z)=\left(z_{1}^{j_{1}}, \ldots, z_{n}^{j_{n}}\right), \quad z=\left(z_{1}, \ldots, z_{n}\right) \in \mathbb{B}^{\mathbf{j}} .
$$

Proof. Set $k=1+\max \left(j_{1}, \ldots, j_{n}\right)$ and let $g=\left(g^{1}, \ldots, g^{n}\right)$ where $g^{s}=f_{\mathbf{j}^{s}}^{s}$ for $\mathbf{j}^{s}=\left(0, \ldots, 0, j_{s}, 0, \ldots, 0\right)$ and $s=1, \ldots, n$. Since f is holomorphic in $\mathbb{B}^{\mathbf{j}}, g$ is holomorphic in $\mathbb{B}^{\mathbf{j}}$. We will show that g satisfies the assumptions of the Janiec theorem with $\mathbf{t}=\mathbf{j}$.

Observe first that g maps $\mathbb{B}^{\mathbf{j}}$ into \mathbb{B}. Indeed, from the definition of g^{s}, in view of Corollary 1 and by the assumption that $f\left(\mathbb{B}^{\mathbf{j}}\right) \subset \mathbb{B}$, we have, for $z \in \mathbb{B}^{\mathbf{j}}$,

$$
\begin{aligned}
\sum_{s=1}^{n}\left|g^{s}(z)\right|^{2} & =\sum_{s=1}^{n}\left|f_{\mathbf{j}^{s}}^{s}(z)\right|^{2} \leq k^{-n} \sum_{s=1}^{n} \sum_{1 \in \mathcal{K}^{n}}\left|f^{s}\left(\varepsilon^{1} z\right)\right|^{2} \\
& =k^{-n} \sum_{1 \in \mathcal{K}^{n}} \sum_{s=1}^{n}\left|f^{s}\left(\varepsilon^{1} z\right)\right|^{2}<k^{-n} \sum_{\mathbf{l} \in \mathcal{K}^{n}} 1=1 .
\end{aligned}
$$

Now we show that

$$
\begin{equation*}
g^{s}(z)=z_{s}^{j_{s}}+\sum_{\nu>j_{s}}^{\infty} \widetilde{P^{s, \nu}}(z), \quad z=\left(z_{1}, \ldots, z_{n}\right) \in \mathbb{B}^{\mathbf{j}} \tag{3.2}
\end{equation*}
$$

where $\widetilde{P^{s, \nu}}$ are homogeneous polynomials of order ν.
Indeed, as f^{s} is holomorphic, from (3.1) we have

$$
f^{s}(z)=\sum_{\mathbf{m} \in \mathbb{N}_{0}^{n}} a_{\mathbf{m}} z^{\mathbf{m}}, \quad z=\left(z_{1}, \ldots, z_{n}\right) \in \mathbb{B}^{\mathbf{j}}
$$

where $a_{\mathbf{m}}=1$ for $\mathbf{m}=\mathbf{j}^{s}$ and $a_{\mathbf{m}}=0$ for the remaining \mathbf{m} such that $|\mathbf{m}|=j_{s}$. Therefore, by Corollary 2 ,

$$
g^{s}(z)=f_{\mathbf{j}^{s}}^{s}(z)=z_{s}^{j_{s}}+\sum_{\mathbf{0} \neq \mathbf{d} \in \mathbb{N}_{0}^{n}} a_{\mathbf{j}^{s}+k \mathbf{d}} z^{\mathbf{j}^{s}+k \mathbf{d}}
$$

This implies (3.2).
From the Janiec uniqueness theorem we infer that, for $s=1, \ldots, n$,

$$
g^{s}(z)=z_{s}^{j_{s}}, \quad z=\left(z_{1}, \ldots, z_{n}\right) \in \mathbb{B}^{\mathbf{j}}
$$

Since $g^{s}=f_{\mathbf{j}^{s}}^{s}$, this means that for every $s=1, \ldots, n$ the $\left(\mathbf{j}^{s} ; k\right)$-symmetrical part $f_{\mathbf{j}^{s}}^{s}$ of f^{s} satisfies (2.8). Theorem 2 also shows that

$$
f(z)=\left(z_{1}^{j_{1}}, \ldots, z_{n}^{j_{n}}\right), z=\left(z_{1}, \ldots, z_{n}\right) \in \mathbb{B}^{\mathbf{j}}
$$

Remark 1. Putting $\mathbf{j}=\mathbf{1}=(1, \ldots, 1)$ in Theorem 3 , we see that the assumption $g(0)=0$ is not necessary in the Cartan theorem with $\Omega=\mathbb{B}$ and $b=0$.

Remark 2. If we put $n=1$ in Theorem 3, we obtain Gutzmer's uniqueness theorem.

References

[1] H. Cartan, Les fonctions de deux variables complexes et la problème de la représentation analytique, J. Math. Pures Appl. 96 (1931), 1-114.
[2] W. Fulton and J. Harris, Representation Theory, Grad. Texts in Math. 129, Springer, 1991.
[3] A. Gutzmer, Ein Satz über Potenzreihen, Math. Ann. 32 (1888), 596-600.
[4] E. Janiec, Some uniqueness theorems concerning holomorphic mappings, Demonstratio Math. 23 (1990), 879-892.
[5] P. Liczberski and J. Połubiński, On (j, k)-symmetrical functions, Math. Bohem. 120 (1995), 13-28.
[6] -, 一, Some remarks on Janiec uniqueness theorem for holomorphic mappings in C^{n}, Ann. Univ. Mariae Curie-Skłodowska 53 (1999), 115-119.
[7] J. Połubiński, Symmetrical functions of several variables and their applications to solving some functional equations, Math. Bohem. (2002), to appear.

Institute of Mathematics
Technical University of Łódź
Al. Politechniki 11
90-924 Łódź, Poland
E-mail: piliczb@ck-sg.p.lodz.pl

[^0]: 2000 Mathematics Subject Classification: 32A10, 32A30, 30C80.
 Key words and phrases: holomorphic mappings, uniqueness theorem, ($\mathbf{j} ; k$)-symmetrical functions.

