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Linear differential polynomials
sharing the same 1-points with weight two

by Indrajit Lahiri (Kalyani)

Abstract. We prove a uniqueness theorem for meromorphic functions involving dif-
ferential polynomials which improves some previous results and provides a better answer
to a question of C. C. Yang.

1. Introduction and definitions. Let f and g be two nonconstant
meromorphic functions defined in the open complex plane C. If for a ∈ C ∪
{∞}, f−a and g−a have the same set of zeros with the same multiplicities,
we say that f and g share the value a CM (counting multiplicities) and if
we do not consider the multiplicities, f and g are said to share the value a
IM (ignoring multiplicities). We do not explain the standard notations and
definitions of the value distribution theory as those are available in [2].

In [9] C. C. Yang asked: What can be said if two nonconstant entire
functions f, g share the value 0 CM and their first derivatives share the
value 1 CM?

A number of authors have worked on this question of Yang (e.g. [3, 6,
7, 10, 11]). To answer the question of Yang, K. Shibazaki [7] proved the
following result.

Theorem A. Let f and g be two entire functions of finite order. If f ′

and g′ share the value 1 CM with δ(0; f) > 0 and 0 being lacunary for g
then either f ≡ g or f ′g′ ≡ 1.

Improving Theorem A, H. X. Yi [12] obtained the following theorem.

Theorem B. Let f , g be two entire functions such that f (n) and g(n)

share the value 1 CM. If δ(0; f) + δ(0; g) > 1 then either f ≡ g or
f (n)g(n) ≡ 1.

For meromorphic functions H. X. Yi and C. C. Yang [13] proved the
following result.
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Theorem C. Let f and g be two meromorphic functions such that
Θ(∞; f) = Θ(∞; g) = 1. If f (n) and g(n) share the value 1 CM with
δ(0; f) + δ(0; g) > 1 then either f ≡ g or f (n)g(n) ≡ 1.

In [3] the following question was asked: What can be said if two linear
differential polynomials generated by two meromorphic functions f and g
share the value 1 CM?

We denote by Ψ(D) a linear differential operator with constant coeffi-
cients of the form

Ψ(D) =
p∑

i=1

αiD
i,

where D = d/dz.
Also we denote byNk(r, a; f) the counting function of a-points of f where

an a-point of multiplicity µ is counted µ times if µ ≤ k and k times if µ > k,
where k is a positive integer. We put

δk(a; f) = 1− lim sup
r→∞

Nk(r, a; f)
T (r, f)

.

Clearly δ(a; f) ≤ δk(a; f) ≤ δk−1(a; f) ≤ . . . ≤ δ1(a; f) = Θ(a; f).
In [3] the following two theorems were proved.

Theorem D. Let f and g be two meromorphic functions such that

(i) Ψ(D)f , Ψ(D)g are nonconstant and share 1 CM , and

(ii)

∑
a6=∞ δ(a; f)

1 + p(1−Θ(∞; f))
+

∑
a6=∞ δ(a; g)

1 + p(1−Θ(∞; g))

> 1 +
4(1−Θ(∞; f))∑

a6=∞ δp(a; f)
+

4(1−Θ(∞; g))∑
a6=∞ δp(a; g)

,

where
∑

a6=∞δp(a; f)>0 and
∑

a6=∞δp(a; g)>0. Then either [Ψ(D)f ][Ψ(D)g]
≡ 1 or f − g ≡ s where s = s(z) is a solution of the differential equation
Ψ(D)w = 0.

Theorem E. If f and g are of finite order then Theorem D still holds if
condition (ii) is replaced by the following weaker one:

∑
a6=∞ δ(a; f)

1 + p(1−Θ(∞; f))
+

∑
a6=∞ δ(a; g)

1 + p(1−Θ(∞; g))

> 1 +
2(1−Θ(∞; f))∑

a6=∞ δp(a; f)
+

2(1−Θ(∞; g))∑
a6=∞ δp(a; g)

,

where
∑

a6=∞ δp(a; f) > 0 and
∑

a6=∞ δp(a; g) > 0.

H. X. Yi [10] also answered the question of Yang and proved the following
result.
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Theorem F. Let f and g be two nonconstant entire functions. Assume
that f , g share 0 CM and f (n), g(n) share 1 CM , where n is a nonnegative
integer. If δ(0; f) > 1/2 then either f ≡ g or f (n)g(n) ≡ 1.

As an application of Theorem D, in [3] the following answer to the ques-
tion of Yang was given.

Theorem G. Let f and g be two nonconstant meromorphic functions
with Θ(∞; f) = Θ(∞; g) = 1. Suppose that f (n), g(n) (n ≥ 1) share 1 CM
and f , g share a value b (6= ∞) IM. If

∑
a6=∞ δ(a; f) +

∑
a6=∞ δ(a; g) > 1

then either f ≡ g or f (n)g(n) ≡ 1.

The following example shows that in Theorems D and E sharing the
value 1 cannot be relaxed from CM to IM.

Example 1. Let f = −iez, g = 2−pe2z − 2iez and Ψ(D) = Dp. Then
Ψ(D)f , Ψ(D)g share the value 1 IM and

∑
a6=∞ δ(a; f)+

∑
a6=∞ δ(a; g) = 3/2

but neither f ≡ g +Q nor [Ψ(D)f ][Ψ(D)g] ≡ 1 where Q is a polynomial of
degree at most p− 1.

Now one may ask the following question: Is it possible in any way to
relax the nature of sharing the value 1 in Theorems D and E?

The purpose of the paper is to study this problem. We shall not only
relax the nature of sharing the value 1 but also weaken the condition on
deficiencies. To this end we consider a gradation of sharing of values which
measures how close a shared value is to being shared IM or being shared
CM and is called weighted sharing of values as introduced in [4, 5].

Definition 1. Let k be a nonnegative integer or infinity. For a ∈ C ∪
{∞} we denote by Ek(a; f) the set of all a-points of f where an a-point of
multiplicity m is counted m times if m ≤ k and k + 1 times if m > k.

If Ek(a; f) = Ek(a; g), we say that f , g share the value a with weight k.

The definition implies that if f , g share a value a with weight k then z0
is a zero of f − a with multiplicity m (≤ k) if and only if z0 is a zero of
g − a with multiplicity m (≤ k), and z0 is a zero of f − a with multiplicity
m (> k) if and only if z0 is a zero of g − a with multiplicity n (> k) where
m is not necessarily equal to n.

We write “f , g share (a, k)” to mean that f , g share the value a with
weight k. Clearly if f , g share (a, k) then f , g share (a, p) for any integer p,
0 ≤ p < k. Also we note that f , g share a value a IM or CM if and only if
f , g share (a, 0) or (a,∞) respectively.

Definition 2. We denote by N(r, a; f |=1) the counting function of
simple a-points of f .
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Definition 3. If s is a positive integer, we denote by N(r, a; f | ≥s) the
counting function of those a-points of f whose multiplicities are greater than
or equal to s, where each a-point is counted only once.

Definition 4. Let f , g share a value a IM. We denote by N ∗(r, a; f, g)
the counting function of those a-points of f whose multiplicities are not
equal to multiplicities of the corresponding a-points of g, where each a-point
is counted only once.

Clearly N∗(r, a; f, g) ≡ N∗(r, a; g, f).

Definition 5 (cf. [1]). For a meromorphic function f we put

T0(r, f) =
r�

1

T (t, f)
t

dt, N0(r, a; f) =
r�

1

N(t, a; f)
t

dt,

N0
k (r, a; f) =

r�

1

Nk(t, a; f)
t

dt, m0(r, f) =
r�

1

m(t, f)
t

dt,

S0(r, f) =
r�

1

S(t, f)
t

dt.

Definition 6. If f is a meromorphic function, we put, for a ∈ C ∪{∞},

δ0(a; f) = 1− lim sup
r→∞

N0(r, a; f)
T0(r, f)

,

Θ0(a; f) = 1− lim sup
r→∞

N0(r, a; f)
T0(r, f)

,

δ0
k(a; f) = 1− lim sup

r→∞

N0
k (r, a; f)
T0(r, f)

.

2. Lemmas. In this section we present some lemmas which will be
needed in what follows. Let f , g be two nonconstant meromorphic functions
and we put

h =
(
f ′′

f ′
− 2f ′

f − 1

)
−
(
g′′

g′
− 2g′

g − 1

)
.

Lemma 1. If f , g share (1, 1) and h 6≡ 0 then

(i) N(r, 1; f |=1) ≤ N(r, h) + S(r, f) + S(r, g),
(ii) N(r, 1; g |=1) ≤ N(r, h) + S(r, f) + S(r, g).

Proof. Since f , g share (1, 1), it follows that a simple 1-point of f is a
simple 1-point of g and conversely. Let z0 be a simple 1-point of f and g.
Then by a simple calculation we see that in some neighbourhood of z0,

h = (z − z0)φ(z),

where φ is analytic at z0.
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Hence by the first fundamental theorem and the Milloux theorem [2,
p. 47] we get

N(r, 1; f |=1) ≤ N(r, 0;h) ≤ N(r, h) + S(r, f) + S(r, g),

which is (i).
Now (ii) follows from (i) because N(r, 1; f |=1) ≡ N(r, 1; g |=1). This

proves the lemma.

Lemma 2. Let f , g share (1, 0) and h 6≡ 0. Then for any number b
(6= 0, 1,∞),

N(r, h) ≤ N(r,∞; f | ≥2) +N(r, 0; f | ≥2) +N(r, b; f | ≥2)

+N(r,∞; g | ≥2) +N(r, 0; g | ≥2) +N ∗(r, 1; f, g)

+N⊕(r, 0; f ′) +N⊗(r, 0; g′),

where N⊕(r, 0; f ′) is the reduced counting function of those zeros of f ′ which
are not zeros of f(f − 1)(f − b), and N⊗(r, 0; g′) is the reduced counting
function of those zeros of g′ which are not zeros of g(g − 1).

Proof. We can easily verify that possible poles of h occur at (i) multiple
zeros of f , g; (ii) multiple poles of f , g; (iii) zeros of f − 1, g − 1; (iv) mul-
tiple zeros of f − b; (v) zeros of f ′ which are not zeros of f(f − 1)(f − b);
(vi) zeros of g′ which are not zeros of g(g − 1).

Let z0 be a zero of f − 1 with multiplicity m (≥ 1) and of g − 1 with
multiplicity n (≥ 1). Then in some neighbourhood of z0 we get

h =
(n−m)ψ
z − z0

+ φ,

where φ, ψ are analytic at z0 and ψ(z0) 6= 0.
This shows that if m = n then z0 is not a pole of h and if m 6= n then

z0 is a simple pole of h. Since all the poles of h are simple, the lemma is
proved.

Lemma 3. If f , g share (1, 2) then

N⊗(r, 0; g′) +N(r, 1; g | ≥2) +N∗(r, 1; f, g)

≤ N(r,∞; g) +N(r, 0; g) + S(r, g),

where N⊗(r, 0; g′) is the counting function of those zeros of g′ which are not
zeros of g(g − 1).

Proof. Since f , g share (1, 2), it follows that N ∗(r, 1; f, g) ≤ N(r, 1;
g | ≥3). So remembering the definition of N⊗(r, 0; g′) we get



162 I. Lahiri

(1) N⊗(r, 0; g′) +N(r, 1; g | ≥2) +N∗(r, 1; f, g)

+N(r, 0; g)−N(r, 0; g)

≤ N⊗(r, 0; g′) +N(r, 1; g | ≥2) +N(r, 1; g | ≥3)

+N(r, 0; g)−N(r, 0; g)

≤ N(r, 0; g′).

By the first fundamental theorem and the Milloux theorem [2, p. 55] we get

N(r, 0; g′) ≤ N(r, 0; g′/g) +N(r, 0; g)−N(r, 0; g)(2)

≤ N(r, g′/g) +N(r, 0; g)−N(r, 0; g) + S(r, g)

= N(r,∞; g) +N(r, 0; g) +N(r, 0; g)−N(r, 0; g) + S(r, g)

= N(r,∞; g) +N(r, 0; g) + S(r, g).

Now the lemma follows from (1) and (2).

Lemma 4 (see [1]). limr→∞ S0(r, f)/T0(r, f) = 0 through all values of r.

Lemma 5 (see [3]). For a ∈ C ∪ {∞}, δ(a; f) ≤ δ0(a; f), Θ(a; f) ≤
Θ0(a; f) and δk(a; f) ≤ δ0

k(a; f).

Lemma 6 (see [3]).

(i) lim inf
r→∞

T0(r, Ψ(D)f)
T0(r, f)

≥
∑

a6=∞
δ0
p(a; f),

(ii) δ0(0;Ψ(D)f) ≥
∑

a6=∞ δ0(a; f)

1 + p(1−Θ0(∞; f))
.

Lemma 7 (see [3]). If
∑

a6=∞ δ
0
p(a; f) > 0 then

Θ0(∞;Ψ(D)f) ≥ 1− 1−Θ0(∞; f)∑
a6=∞ δ

0
p(a; f)

.

Lemma 8 (see [8]). If f is transcendental then limr→∞ T0(r, f)/(log r)2

=∞ through all values of r.

3. The main result. In this section we discuss the main result of the
paper.

Theorem 1. Let f , g be two meromorphic functions such that

(i) Ψ(D)f , Ψ(D)g are transcendental and share (1, 2) and
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(ii)

∑
a6=∞ δ(a; f)

1 + p(1−Θ(∞; f))
+

∑
a6=∞ δ(a; g)

1 + p(1−Θ(∞; g))

+ min{δ2(b;Ψ(D)f), δ2(b;Ψ(D)g)}

> 1 +
2(1−Θ(∞; f))∑

a6=∞ δp(a; f)
+

2(1−Θ(∞; g))∑
a6=∞ δp(a; g)

for some b 6=0, 1,∞, 1/2, 2,−ω,−ω2, with
∑

a6=∞δp(a; f)>0,
∑

a6=∞δp(a; g)
> 0 and ω being the imaginary cube root of unity.

Then either [Ψ(D)f ][Ψ(D)g] ≡ 1 or f − g ≡ s, where s = s(z) is a
solution of the differential equation Ψ(D)w = 0.

The following example shows that Theorem 1 is sharp.

Example 2. Let f = 1
2e
z(ez − 1), g = 1

2e
−z(1

2 − 1
5e
−z) and Ψ(D) =

D2−3D. Then Ψ(D)f = ez(1−ez), Ψ(D)g = e−z(1−e−z), ∑a6=∞ δ(a; f) =∑
a6=∞ δ(a; g) = 1/2, Θ(∞; f) = Θ(∞; g) = 1, δ2(b;Ψ(D)f) = δ2(b;Ψ(D)g)

= 0 for b 6= 0,∞ and Ψ(D)f , Ψ(D)g share (1, 2). It is easily seen that neither
[Ψ(D)f ][Ψ(D)g] ≡ 1 nor f − g ≡ c1 − c2e

3z for any constants c1 and c2.

Proof of Theorem 1. Let F = Ψ(D)f and G = Ψ(D)g. Then in view of
Lemmas 5–7 condition (ii) implies

(3) δ0(0;F ) + δ0(0;G) + 2Θ0(∞;F ) + 2Θ0(∞;G)

+ min{δ0
2(b;F ), δ0

2(b;G)} > 5.

We put

H =
(
F ′′

F ′
− 2F ′

F − 1

)
−
(
G′′

G′
− 2G′

G− 1

)
.

Suppose H 6≡ 0. Then by Lemmas 1–3 we get

N(r, 1;F |=1) ≤ N(r,∞;F | ≥2) +N(r, 0;F | ≥2) +N(r, b;F | ≥2)(4)

+N(r,∞;G | ≥2) +N(r, 0;G | ≥2) +N⊕(r, 0;F ′)

+N(r,∞;G) +N(r, 0;G)−N(r, 1;G | ≥2)

+ S(r, F ) + S(r,G).

By the second fundamental theorem we get

2T (r, F ) ≤ N(r,∞;F ) +N(r, 1;F ) +N(r, b;F )(5)

+N(r, 0;F )−N⊕(r, 0;F ′) + S(r, F ),

where N⊕(r, 0;F ′) is the counting function of those zeros of F ′ which are
not zeros of F (F − 1)(F − b).

Since F , G share (1, 2), we see that

N(r, 1;F ) = N(r, 1;F |=1) +N(r, 1;F | ≥2)(6)

= N(r, 1;F |=1) +N(r, 1;G | ≥ 2).
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Since N2(r,∞;F ) ≤ 2N(r,∞;F ) and N2(r,∞;G) ≤ 2N(r,∞;G), we get
from (4)–(6) on integration

2T0(r, F ) ≤ N0
2 (r, 0;F ) +N0

2 (r, b;F ) +N0
2 (r, 0;G) + 2N0(r,∞;F )(7)

+ 2N0(r,∞;G) + S0(r, F ) + S0(r,G).
Similarly we obtain

2T0(r,G) ≤ N0
2 (r, 0;F ) +N0

2 (r, b;G) +N0
2 (r, 0;G) + 2N0(r,∞;F )(8)

+ 2N0(r,∞;G) + S0(r, F ) + S0(r,G).

From (7) and (8) we get

2T0(r) ≤ N0
2 (r, 0;F ) +N0

2 (r, 0;G) +N0
2 (r, b) + 2N0(r,∞;F )(9)

+ 2N0(r,∞;G) + S0(r, F ) + S0(r,G),

where T0(r) = max{T0(r, F ), T0(r,G)} and N0
2 (r, b) = max{N0

2 (r, b;F ),
N0

2 (r, b;G)}.
Since (9) contradicts (3), it follows that H ≡ 0. Then

F =
AG+B

CG+D
,(10)

where A, B, C, D are complex numbers such that AD −BC 6= 0.
In view of (10) we get

T0(r, F ) = T0(r,G) +O(log r).(11)

Now we consider the following cases.

Case 1: AC 6= 0. Then

F − A

C
=
B − AD

C

CG+D
.(12)

Subcase 1.1: A/C 6= b. Then by the second fundamental theorem we
get on integration

2T0(r, F )

≤ N0(r,∞;F ) +N0(r, 0;F ) +N0(r,A/C;F ) +N0(r, b;F ) + S0(r, F )

= N0(r,∞;F ) +N0(r, 0;F ) +N0(r, b;F ) +N0(r,∞;G) + S0(r, F ),

which implies (9) in view of (11) and Lemma 8 and finally contradicts (3).

Subcase 1.2: A/C = b. Also we suppose that BD 6= 0. Then B/D 6= b
because AD − BC 6= 0. So by the second fundamental theorem we get on
integration

2T0(r, F )

≤ N0(r,∞;F ) +N0(r, 0;F ) +N0(r, b;F ) +N0(r,B/D;F ) + S0(r, F )

= N0(r,∞;F ) +N0(r, 0;F ) +N0(r, b;F ) +N0(r, 0;G) + S0(r, F ),
which by (11) and Lemma 8 implies (9) and so contradicts (3).
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Let B = 0. Then D 6= 0 because F is nonconstant. Now from (12) we
get

F − b =
−b

αG+ 1
,(13)

where α = C/D.
Let 1 be a Picard exceptional value (e.v.P.) of F and so of G. Then by

the second fundamental theorem we get on integration

2T0(r, F ) ≤ N0(r,∞;F ) +N0(r, 0;F ) +N0(r, b;F ) + S0(r, F ),

which implies (9) in view of (11) and Lemma 8 and so contradicts (3).
Let 1 be not an e.v.P. of F and G. Then from (13) we get α = 1

b−1 so
that

F =
bG

(b− 1) +G
.

Since b 6= 1/2, by the second fundamental theorem we get on integration

2T0(r,G)

≤ N0(r,∞;G) +N0(r, 0;G) +N0(r, b;G) +N0(r, 1− b;G) + S0(r,G)

= N0(r,∞;G) +N0(r, 0;G) +N0(r, b;G) +N0(r,∞;F ) + S0(r,G),

which by (11) and Lemma 8 implies (9) and so contradicts (3).
Let B 6= 0, D = 0. Then from (12) we obtain

F = b+
β

G
,(14)

where β = B/C.
If 1 is an e.v.P. of F and so of G, by the second fundamental theorem

we get on integration

2T0(r, F ) ≤ N0(r,∞;F ) +N0(r, 0;F ) +N0(r, b;F ) + S0(r, F ),

which implies (9) in view of (11) and Lemma 8 and so contradicts (3).
Suppose 1 is not an e.v.P. of F and G. Then from (14) we get β = 1− b

so that

F = b+
1− b
G

.

Since b 6= −ω,−ω2, by the second fundamental theorem we get on integra-
tion

2T0(r,G)

≤ N0(r,∞;G) +N0(r, 0;G) +N0(r, b;G) +N0(r, 1− 1/b;G) + S0(r,G)

= N0(r,∞;G) +N0(r, 0;G) +N0(r, b;G) +N0(r, 0;F ) + S0(r,G),

which implies (9) in view of (11) and Lemma 8 and so contradicts (3).
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Case 2: AC = 0. Since F is nonconstant, it follows that A and C are
not simultaneously zero.

Subcase 2.1: A = 0 and C 6= 0. Then B 6= 0 and from (10) we get
1
F

= αG+ β,(15)

where α = C/B and β = D/B.
If 1 is an e.v.P. of F and G, by the second fundamental theorem we get

on integration

2T0(r, F ) ≤ N0(r,∞;F ) +N0(r, 0;F ) +N0(r, b;F ) + S0(r, F ),

which by (11) and Lemma 8 implies (9) and so contradicts (3).
Suppose 1 is not an e.v.P. of F and G. Then from (15) we get α+ β = 1

so that
1
F

= αG+ 1− α.
If α 6= 1, 1− 1/b, by the second fundamental theorem we get on integration

2T0(r, F )

≤ N0(r,∞;F ) +N0(r, 0;F ) +N0(r, b;F ) +N0(r, 1/(1− α);F ) + S0(r, F )

= N0(r,∞;F ) +N0(r, 0;F ) +N0(r, b;F ) +N0(r, 0;G) + S0(r, F ),

which implies (9) in view of (11) and Lemma 8 and so contradicts (3).
If α = 1 then FG ≡ 1, i.e. [Ψ(D)f ][Ψ(D)g] ≡ 1.
If α = 1− 1/b then

F =
b

1 + (b− 1)G
.

Since b 6= −ω,−ω2, by the second fundamental theorem we get on integra-
tion

2T0(r,G)

≤ N0(r,∞;G) +N0(r, 0;G) +N0(r, b;G) +N0(r, 1/(1− b);G) + S0(r,G)

= N0(r,∞;G) +N0(r, 0;G) +N0(r, b;G) +N0(r,∞;F ) + S0(r,G),

which by (11) and Lemma 8 implies (9) and so contradicts (3).

Subcase 2.2: A 6= 0 and C = 0. Then D 6= 0 and from (10) we get

F = αG+ β,(16)

where α = A/D, β = B/D.
If 1 is an e.v.P. of F and G, by the second fundamental theorem we get

on integration

2T0(r, F ) ≤ N0(r,∞;F ) +N0(r, 0;F ) +N0(r, b;F ) + S0(r, F ),

which implies (9) by (11) and Lemma 8 and so contradicts (3).
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Suppose 1 is not an e.v.P. of F and G. Then from (16) we get α+ β = 1
and so

F = αG+ 1− α.
If α 6= 1, 1− b, by the second fundamental theorem we get on integration

2T0(r, F )

≤ N0(r,∞;F ) +N0(r, 0;F ) +N0(r, b;F ) +N0(r, 1− α;F ) + S0(r, F )

= N0(r,∞;F ) +N0(r, 0;F ) +N0(r, b;F ) +N0(r, 0;G) + S0(r, F ),

which implies (9) in view of (11) and Lemma 8 and so contradicts (3).
If α = 1 then F ≡ G and so f − g ≡ s, where s = s(z) is a solution of

the differential equation Ψ(D)w = 0.
If α = 1− b then

F = (1− b)G+ b.

Since b 6= 2, by the second fundamental theorem we get on integration

2T0(r,G)

≤ N0(r,∞;G) +N0(r, 0;G) +N0(r, b;G) +N0(r, b/(b− 1);G) + S0(r,G)

= N0(r,∞;G) +N0(r, 0;G) +N0(r, b;G) +N0(r, 0;F ) + S0(r,G),

which by (11) and Lemma 8 implies (9) and so contradicts (3). This proves
the theorem.

4. Applications. In this section we discuss two applications of the main
theorem, the first of which improves a result of Yi and Yang [13] and the
second gives a better answer to the question of Yang [9] mentioned in the
introduction.

Theorem 2. Let f , g be two nonconstant meromorphic functions with
Θ(∞; f) = Θ(∞; g) = 1. If for n ≥ 1 the derivatives f (n), g(n) share (1, 2)
and

(i)
∑

a6=∞
δ(a; f) +

∑

a6=∞
δ(a; g) + min{δ2(b; f (n)), δ2(b; g(n))} > 1

for some b 6= 0, 1,∞, 1/2, 2,−ω,−ω2, and

(ii) Θ(α; f) +Θ(α; g) > 1

for some α 6=∞, then either (I) f (n)g(n) ≡ 1 or (II) f ≡ g.

Proof. From the given condition it follows that f , g are transcendental
and so f (n), g(n) are transcendental. Choosing Ψ(D) = Dn in Theorem 1 we
get either f (n)g(n) ≡ 1 or f − g ≡ Q, where Q is a polynomial of degree at
most n − 1. If possible let Q 6≡ 0. Then by Nevanlinna’s theorem on three
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small functions [2, p. 47] we get

T (r, f) ≤ N(r, α; f) +N(r, α+Q; f) +N(r,∞; f) + S(r, f)

= N(r, α; f) +N(r, α; g) +N(r,∞; f) + S(r, f).

Since f − g ≡ Q, it follows that T (r, f) = T (r, g) + O(log r). So Θ(α; f) +
Θ(α; g) ≤ 1, which is a contradiction. Therefore Q ≡ 0 and so f ≡ g. This
proves the theorem.

The following examples show that the condition Θ(α; f) + Θ(α; g) > 1
is necessary for the validity of case (II).

Example 3. Let f = 1 + ez and g = ez. Then
∑

a6=∞
δ(a; f) +

∑

a6=∞
δ(a; g) + min{δ2(b; f (n)), δ2(b; g(n))} = 2

for any b 6= 0,∞, Θ(∞; f) = Θ(∞; g) = 1, Θ(0; f) + Θ(0; g) = 1, Θ(1; f) +
Θ(1; g) = 1, Θ(α; f) +Θ(α; g) < 1 for α 6= 0, 1,∞ and f (n), g(n) share (1, 2)
but f − g ≡ 1.

Example 4. Let f = 1 + ez and g = (−1)ne−z. Then
∑

a6=∞ δ(a; f) +∑
a6=∞ δ(a; g) + min{δ2(b; f (n)), δ2(b; g(n))} = 2 for any b 6= 0,∞, Θ(∞; f) =

Θ(∞; g) = 1, Θ(0; f) +Θ(0; g) = 1, Θ(1; f) +Θ(1; g) = 1, Θ(α; f) +Θ(α; g)
< 1 for α 6= 0, 1,∞ and f (n), g(n) share (1, 2) but f (n)g(n) ≡ 1.

Remark 1. Theorem 2 improves Theorem C, a result of Yi and Yang
[13] and also a recent result of Lahiri [3].

In the following theorem we provide a better answer to a question of
Yang [9] than those given in Theorems F and G.

Theorem 3. Let f and g be two meromorphic functions such that f (n),
g(n) (n ≥ 1) share (1, 2), f , g share (α, 0) for some α 6=∞ and
∑

a6=∞ δ(a; f)

1 + p(1−Θ(∞; f))
+

∑
a6=∞ δ(a; g)

1 + p(1−Θ(∞; g))
+ min{δ2(b; f (n)), δ2(b; g(n))}

> 1 +
2(1−Θ(∞; f))∑

a6=∞ δp(a; f)
+

2(1−Θ(∞; g))∑
a6=∞ δp(a; g)

for some b 6=0, 1,∞, 1/2, 2,−ω,−ω2, with
∑

a6=∞δp(a; f) > 0,
∑

a6=∞δp(a; g)
> 0 and ω being the imaginary cube root of unity. Then either f (n)g(n) ≡ 1
or f ≡ g.

Proof. From the assumption it follows that f and g are transcendental
and so f (n) and g(n) are transcendental. Choosing Ψ(D) = Dn we see from
Theorem 1 that either f−g ≡ Q or f (n)g(n) ≡ 1, where Q is a polynomial of
degree at most n− 1. If possible, let Q 6≡ 0. Since f, g share (α, 0), it follows
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that N(r, α; f) = N(r, α; g) ≤ N(r, 0;Q) = O(log r). Now by Nevanlinna’s
theorem on three small functions [2, p. 47] we get

T (r, f) ≤ N(r, α; f) +N(r, α+Q; f) +N(r,∞; f) + S(r, f)

= N(r, α; f) +N(r, α; g) +N(r,∞; f) + S(r, f)

= N(r,∞; f) +O(log r) + S(r, f),

which implies that Θ(∞; f) = 0. Similarly we see that Θ(∞; g) = 0. Since
this contradicts the assumption, it follows that Q ≡ 0 and so f ≡ g. This
proves the theorem.

The following example shows that Theorem 3 is sharp.

Example 5. Let f = −2−ne2z+(−1)n+12−nez and g = (−1)n+12−ne−2z

− 2−ne−z. Then f (n), g(n) share (1, 2), f, g share (0, 0), Θ(∞; f) = Θ(∞; g)
= 1 and

∑
a6=∞ δ(a; f) +

∑
a6=∞ δ(a; g) + min{δ2(b; f (n)), δ2(b; b(n))} = 1 for

any b 6= 0,∞ but neither f ≡ g nor f (n)g(n) ≡ 1.

Concluding Remark. Since Example 1 shows that in Theorem 1 shar-
ing (1, 2) cannot be relaxed to sharing (1, 0), we conclude the paper with
the following question: Is it possible in Theorem 1 to relax sharing (1, 2) to
sharing (1, 1)?
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