Linear differential polynomials sharing the same 1-points with weight two

by Indrajit Lahiri (Kalyani)

Abstract. We prove a uniqueness theorem for meromorphic functions involving differential polynomials which improves some previous results and provides a better answer to a question of C. C. Yang.

1. Introduction and definitions. Let f and g be two nonconstant meromorphic functions defined in the open complex plane \mathbb{C} . If for $a \in \mathbb{C} \cup \{\infty\}$, f-a and g-a have the same set of zeros with the same multiplicities, we say that f and g share the value a CM (counting multiplicities) and if we do not consider the multiplicities, f and g are said to share the value a IM (ignoring multiplicities). We do not explain the standard notations and definitions of the value distribution theory as those are available in [2].

In [9] C. C. Yang asked: What can be said if two nonconstant entire functions f, g share the value 0 CM and their first derivatives share the value 1 CM?

A number of authors have worked on this question of Yang (e.g. [3, 6, 7, 10, 11]). To answer the question of Yang, K. Shibazaki [7] proved the following result.

THEOREM A. Let f and g be two entire functions of finite order. If f' and g' share the value 1 CM with $\delta(0; f) > 0$ and 0 being lacunary for g then either $f \equiv g$ or $f'g' \equiv 1$.

Improving Theorem A, H. X. Yi [12] obtained the following theorem.

THEOREM B. Let f, g be two entire functions such that $f^{(n)}$ and $g^{(n)}$ share the value 1 CM. If $\delta(0; f) + \delta(0; g) > 1$ then either $f \equiv g$ or $f^{(n)}g^{(n)} \equiv 1$.

For meromorphic functions H. X. Yi and C. C. Yang [13] proved the following result.

²⁰⁰⁰ Mathematics Subject Classification: Primary 30D35.

Key words and phrases: uniqueness, weighted sharing, differential polynomial.

THEOREM C. Let f and g be two meromorphic functions such that $\Theta(\infty; f) = \Theta(\infty; g) = 1$. If $f^{(n)}$ and $g^{(n)}$ share the value 1 CM with $\delta(0; f) + \delta(0; g) > 1$ then either $f \equiv g$ or $f^{(n)}g^{(n)} \equiv 1$.

In [3] the following question was asked: What can be said if two linear differential polynomials generated by two meromorphic functions f and g share the value 1 CM?

We denote by $\Psi(D)$ a linear differential operator with constant coefficients of the form

$$\Psi(D) = \sum_{i=1}^{p} \alpha_i D^i,$$

where D = d/dz.

Also we denote by $N_k(r, a; f)$ the counting function of *a*-points of *f* where an *a*-point of multiplicity μ is counted μ times if $\mu \leq k$ and *k* times if $\mu > k$, where *k* is a positive integer. We put

$$\delta_k(a; f) = 1 - \limsup_{r \to \infty} \frac{N_k(r, a; f)}{T(r, f)}.$$

Clearly $\delta(a; f) \leq \delta_k(a; f) \leq \delta_{k-1}(a; f) \leq \ldots \leq \delta_1(a; f) = \Theta(a; f)$. In [3] the following two theorems were proved.

THEOREM D. Let f and g be two meromorphic functions such that

(i) $\Psi(D)f, \Psi(D)g$ are nonconstant and share 1 CM, and

(ii)
$$\frac{\sum_{a \neq \infty} \delta(a; f)}{1 + p(1 - \Theta(\infty; f))} + \frac{\sum_{a \neq \infty} \delta(a; g)}{1 + p(1 - \Theta(\infty; g))}$$
$$> 1 + \frac{4(1 - \Theta(\infty; f))}{\sum_{a \neq \infty} \delta_p(a; f)} + \frac{4(1 - \Theta(\infty; g))}{\sum_{a \neq \infty} \delta_p(a; g)},$$

where $\sum_{a\neq\infty} \delta_p(a; f) > 0$ and $\sum_{a\neq\infty} \delta_p(a; g) > 0$. Then either $[\Psi(D)f][\Psi(D)g] \equiv 1$ or $f - g \equiv s$ where s = s(z) is a solution of the differential equation $\Psi(D)w = 0$.

THEOREM E. If f and g are of finite order then Theorem D still holds if condition (ii) is replaced by the following weaker one:

$$\frac{\sum_{a \neq \infty} \delta(a; f)}{1 + p(1 - \Theta(\infty; f))} + \frac{\sum_{a \neq \infty} \delta(a; g)}{1 + p(1 - \Theta(\infty; g))} > 1 + \frac{2(1 - \Theta(\infty; f))}{\sum_{a \neq \infty} \delta_p(a; f)} + \frac{2(1 - \Theta(\infty; g))}{\sum_{a \neq \infty} \delta_p(a; g)},$$

where $\sum_{a \neq \infty} \delta_p(a; f) > 0$ and $\sum_{a \neq \infty} \delta_p(a; g) > 0$.

H. X. Yi [10] also answered the question of Yang and proved the following result.

THEOREM F. Let f and g be two nonconstant entire functions. Assume that f, g share 0 CM and $f^{(n)}$, $g^{(n)}$ share 1 CM, where n is a nonnegative integer. If $\delta(0; f) > 1/2$ then either $f \equiv g$ or $f^{(n)}g^{(n)} \equiv 1$.

As an application of Theorem D, in [3] the following answer to the question of Yang was given.

THEOREM G. Let f and g be two nonconstant meromorphic functions with $\Theta(\infty; f) = \Theta(\infty; g) = 1$. Suppose that $f^{(n)}, g^{(n)}$ $(n \ge 1)$ share 1 CM and f, g share a value $b \ (\neq \infty)$ IM. If $\sum_{a \ne \infty} \delta(a; f) + \sum_{a \ne \infty} \delta(a; g) > 1$ then either $f \equiv g$ or $f^{(n)}g^{(n)} \equiv 1$.

The following example shows that in Theorems D and E sharing the value 1 cannot be relaxed from CM to IM.

EXAMPLE 1. Let $f = -ie^z$, $g = 2^{-p}e^{2z} - 2ie^z$ and $\Psi(D) = D^p$. Then $\Psi(D)f$, $\Psi(D)g$ share the value 1 IM and $\sum_{a\neq\infty} \delta(a;f) + \sum_{a\neq\infty} \delta(a;g) = 3/2$ but neither $f \equiv g + Q$ nor $[\Psi(D)f][\Psi(D)g] \equiv 1$ where Q is a polynomial of degree at most p - 1.

Now one may ask the following question: Is it possible in any way to relax the nature of sharing the value 1 in Theorems D and E?

The purpose of the paper is to study this problem. We shall not only relax the nature of sharing the value 1 but also weaken the condition on deficiencies. To this end we consider a gradation of sharing of values which measures how close a shared value is to being shared IM or being shared CM and is called weighted sharing of values as introduced in [4, 5].

DEFINITION 1. Let k be a nonnegative integer or infinity. For $a \in \mathbb{C} \cup \{\infty\}$ we denote by $E_k(a; f)$ the set of all a-points of f where an a-point of multiplicity m is counted m times if $m \leq k$ and k + 1 times if m > k.

If $E_k(a; f) = E_k(a; g)$, we say that f, g share the value a with weight k.

The definition implies that if f, g share a value a with weight k then z_0 is a zero of f - a with multiplicity $m (\leq k)$ if and only if z_0 is a zero of g - a with multiplicity $m (\leq k)$, and z_0 is a zero of f - a with multiplicity m (> k) if and only if z_0 is a zero of g - a with multiplicity n (> k) where m is not necessarily equal to n.

We write "f, g share (a, k)" to mean that f, g share the value a with weight k. Clearly if f, g share (a, k) then f, g share (a, p) for any integer p, $0 \le p < k$. Also we note that f, g share a value a IM or CM if and only if f, g share (a, 0) or (a, ∞) respectively.

DEFINITION 2. We denote by $N(r, a; f \mid =1)$ the counting function of simple *a*-points of *f*.

DEFINITION 3. If s is a positive integer, we denote by $\overline{N}(r, a; f \mid \ge s)$ the counting function of those a-points of f whose multiplicities are greater than or equal to s, where each a-point is counted only once.

DEFINITION 4. Let f, g share a value a IM. We denote by $\overline{N}_*(r, a; f, g)$ the counting function of those a-points of f whose multiplicities are not equal to multiplicities of the corresponding a-points of g, where each a-point is counted only once.

Clearly $\overline{N}_*(r,a;f,g) \equiv \overline{N}_*(r,a;g,f).$

DEFINITION 5 (cf. [1]). For a meromorphic function f we put

$$T_0(r,f) = \int_1^r \frac{T(t,f)}{t} dt, \qquad N_0(r,a;f) = \int_1^r \frac{N(t,a;f)}{t} dt,$$
$$N_k^0(r,a;f) = \int_1^r \frac{N_k(t,a;f)}{t} dt, \qquad m_0(r,f) = \int_1^r \frac{m(t,f)}{t} dt,$$
$$S_0(r,f) = \int_1^r \frac{S(t,f)}{t} dt.$$

DEFINITION 6. If f is a meromorphic function, we put, for $a \in \mathbb{C} \cup \{\infty\}$,

$$\delta_0(a;f) = 1 - \limsup_{r \to \infty} \frac{N_0(r,a;f)}{T_0(r,f)},$$

$$\Theta_0(a;f) = 1 - \limsup_{r \to \infty} \frac{\overline{N}_0(r,a;f)}{T_0(r,f)},$$

$$\delta_k^0(a;f) = 1 - \limsup_{r \to \infty} \frac{N_k^0(r,a;f)}{T_0(r,f)}.$$

2. Lemmas. In this section we present some lemmas which will be needed in what follows. Let f, g be two nonconstant meromorphic functions and we put

$$h = \left(\frac{f''}{f'} - \frac{2f'}{f-1}\right) - \left(\frac{g''}{g'} - \frac{2g'}{g-1}\right).$$

LEMMA 1. If f, g share (1,1) and $h \neq 0$ then

- (i) $N(r, 1; f \mid =1) \le N(r, h) + S(r, f) + S(r, g),$
- (ii) $N(r, 1; g \mid =1) \le N(r, h) + S(r, f) + S(r, g).$

Proof. Since f, g share (1, 1), it follows that a simple 1-point of f is a simple 1-point of g and conversely. Let z_0 be a simple 1-point of f and g. Then by a simple calculation we see that in some neighbourhood of z_0 ,

$$h = (z - z_0)\phi(z),$$

where ϕ is analytic at z_0 .

Hence by the first fundamental theorem and the Milloux theorem [2, p. 47] we get

$$N(r, 1; f \mid =1) \le N(r, 0; h) \le N(r, h) + S(r, f) + S(r, g),$$

which is (i).

Now (ii) follows from (i) because $N(r, 1; f \mid = 1) \equiv N(r, 1; g \mid = 1)$. This proves the lemma.

LEMMA 2. Let f, g share (1,0) and $h \neq 0$. Then for any number b $(\neq 0, 1, \infty)$,

$$\begin{split} N(r,h) &\leq \overline{N}(r,\infty;f \mid \geq 2) + \overline{N}(r,0;f \mid \geq 2) + \overline{N}(r,b;f \mid \geq 2) \\ &+ \overline{N}(r,\infty;g \mid \geq 2) + \overline{N}(r,0;g \mid \geq 2) + \overline{N}_*(r,1;f,g) \\ &+ \overline{N}_{\oplus}(r,0;f') + \overline{N}_{\otimes}(r,0;g'), \end{split}$$

where $\overline{N}_{\oplus}(r,0;f')$ is the reduced counting function of those zeros of f' which are not zeros of f(f-1)(f-b), and $\overline{N}_{\otimes}(r,0;g')$ is the reduced counting function of those zeros of g' which are not zeros of g(g-1).

Proof. We can easily verify that possible poles of h occur at (i) multiple zeros of f, g; (ii) multiple poles of f, g; (iii) zeros of f - 1, g - 1; (iv) multiple zeros of f - b; (v) zeros of f' which are not zeros of f(f - 1)(f - b); (vi) zeros of g' which are not zeros of g(g - 1).

Let z_0 be a zero of f - 1 with multiplicity $m \ (\geq 1)$ and of g - 1 with multiplicity $n \ (\geq 1)$. Then in some neighbourhood of z_0 we get

$$h = \frac{(n-m)\psi}{z-z_0} + \phi,$$

where ϕ, ψ are analytic at z_0 and $\psi(z_0) \neq 0$.

This shows that if m = n then z_0 is not a pole of h and if $m \neq n$ then z_0 is a simple pole of h. Since all the poles of h are simple, the lemma is proved.

LEMMA 3. If
$$f, g$$
 share $(1, 2)$ then
 $N_{\otimes}(r, 0; g') + \overline{N}(r, 1; g \mid \geq 2) + \overline{N}_{*}(r, 1; f, g)$
 $\leq \overline{N}(r, \infty; g) + \overline{N}(r, 0; g) + S(r, g),$

where $N_{\otimes}(r, 0; g')$ is the counting function of those zeros of g' which are not zeros of g(g-1).

Proof. Since f, g share (1,2), it follows that $\overline{N}_*(r,1;f,g) \leq \overline{N}(r,1;g) \leq \overline{N}(r,1;g) \geq 3$. So remembering the definition of $N_{\otimes}(r,0;g')$ we get

(1)
$$N_{\otimes}(r,0;g') + \overline{N}(r,1;g|\geq 2) + \overline{N}_{*}(r,1;f,g)$$

 $+ N(r,0;g) - \overline{N}(r,0;g)$
 $\leq N_{\otimes}(r,0;g') + \overline{N}(r,1;g|\geq 2) + \overline{N}(r,1;g|\geq 3)$
 $+ N(r,0;g) - \overline{N}(r,0;g)$
 $\leq N(r,0;g').$

By the first fundamental theorem and the Milloux theorem [2, p. 55] we get

(2)
$$N(r,0;g') \leq N(r,0;g'/g) + N(r,0;g) - \overline{N}(r,0;g) \\ \leq N(r,g'/g) + N(r,0;g) - \overline{N}(r,0;g) + S(r,g) \\ = \overline{N}(r,\infty;g) + \overline{N}(r,0;g) + N(r,0;g) - \overline{N}(r,0;g) + S(r,g) \\ = \overline{N}(r,\infty;g) + N(r,0;g) + S(r,g).$$

Now the lemma follows from (1) and (2).

LEMMA 4 (see [1]). $\lim_{r\to\infty} S_0(r,f)/T_0(r,f) = 0$ through all values of r.

LEMMA 5 (see [3]). For $a \in \mathbb{C} \cup \{\infty\}$, $\delta(a; f) \leq \delta_0(a; f)$, $\Theta(a; f) \leq \Theta_0(a; f)$ and $\delta_k(a; f) \leq \delta_k^0(a; f)$.

LEMMA 6 (see [3]).

(i)
$$\liminf_{r \to \infty} \frac{T_0(r, \Psi(D)f)}{T_0(r, f)} \ge \sum_{a \neq \infty} \delta_p^0(a; f),$$

(ii)
$$\delta_0(0; \Psi(D)f) \ge \frac{\sum_{a \neq \infty} \delta_0(a; f)}{1 + p(1 - \Theta_0(\infty; f))}.$$

Lemma 7 (see [3]). If $\sum_{a \neq \infty} \delta_p^0(a; f) > 0$ then

$$\Theta_0(\infty; \Psi(D)f) \ge 1 - \frac{1 - \Theta_0(\infty; f)}{\sum_{a \neq \infty} \delta_p^0(a; f)}.$$

LEMMA 8 (see [8]). If f is transcendental then $\lim_{r\to\infty} T_0(r, f)/(\log r)^2 = \infty$ through all values of r.

3. The main result. In this section we discuss the main result of the paper.

THEOREM 1. Let f, g be two meromorphic functions such that

(i) $\Psi(D)f$, $\Psi(D)g$ are transcendental and share (1,2) and

162

(ii)
$$\frac{\sum_{a \neq \infty} \delta(a; f)}{1 + p(1 - \Theta(\infty; f))} + \frac{\sum_{a \neq \infty} \delta(a; g)}{1 + p(1 - \Theta(\infty; g))} + \min\{\delta_2(b; \Psi(D)f), \delta_2(b; \Psi(D)g)\}$$
$$> 1 + \frac{2(1 - \Theta(\infty; f))}{\sum_{a \neq \infty} \delta_p(a; f)} + \frac{2(1 - \Theta(\infty; g))}{\sum_{a \neq \infty} \delta_p(a; g)}$$

for some $b \neq 0, 1, \infty, 1/2, 2, -\omega, -\omega^2$, with $\sum_{a \neq \infty} \delta_p(a; f) > 0$, $\sum_{a \neq \infty} \delta_p(a; g) > 0$ and ω being the imaginary cube root of unity.

Then either $[\Psi(D)f][\Psi(D)g] \equiv 1$ or $f - g \equiv s$, where s = s(z) is a solution of the differential equation $\Psi(D)w = 0$.

The following example shows that Theorem 1 is sharp.

EXAMPLE 2. Let $f = \frac{1}{2}e^{z}(e^{z}-1), g = \frac{1}{2}e^{-z}\left(\frac{1}{2}-\frac{1}{5}e^{-z}\right)$ and $\Psi(D) = D^{2}-3D$. Then $\Psi(D)f = e^{z}(1-e^{z}), \Psi(D)g = e^{-z}(1-e^{-z}), \sum_{a\neq\infty}\delta(a;f) = \sum_{a\neq\infty}\delta(a;g) = 1/2, \ \Theta(\infty;f) = \Theta(\infty;g) = 1, \ \delta_{2}(b;\Psi(D)f) = \delta_{2}(b;\Psi(D)g) = 0$ for $b\neq 0,\infty$ and $\Psi(D)f, \Psi(D)g$ share (1, 2). It is easily seen that neither $[\Psi(D)f][\Psi(D)g] \equiv 1$ nor $f-g \equiv c_{1}-c_{2}e^{3z}$ for any constants c_{1} and c_{2} .

Proof of Theorem 1. Let $F = \Psi(D)f$ and $G = \Psi(D)g$. Then in view of Lemmas 5–7 condition (ii) implies

(3)
$$\delta_0(0;F) + \delta_0(0;G) + 2\Theta_0(\infty;F) + 2\Theta_0(\infty;G) + \min\{\delta_2^0(b;F), \delta_2^0(b;G)\} > 5.$$

We put

$$H = \left(\frac{F''}{F'} - \frac{2F'}{F-1}\right) - \left(\frac{G''}{G'} - \frac{2G'}{G-1}\right).$$

Suppose $H \not\equiv 0$. Then by Lemmas 1–3 we get

$$(4) \qquad N(r,1;F|=1) \leq \overline{N}(r,\infty;F|\geq 2) + \overline{N}(r,0;F|\geq 2) + \overline{N}(r,b;F|\geq 2) + \overline{N}(r,\infty;G|\geq 2) + \overline{N}(r,0;G|\geq 2) + \overline{N}_{\oplus}(r,0;F') + \overline{N}(r,\infty;G) + \overline{N}(r,0;G) - \overline{N}(r,1;G|\geq 2) + S(r,F) + S(r,G).$$

By the second fundamental theorem we get

(5)
$$2T(r,F) \leq \overline{N}(r,\infty;F) + \overline{N}(r,1;F) + \overline{N}(r,b;F) + \overline{N}(r,0;F) - N_{\oplus}(r,0;F') + S(r,F),$$

where $N_{\oplus}(r, 0; F')$ is the counting function of those zeros of F' which are not zeros of F(F-1)(F-b).

Since F, G share (1, 2), we see that

(6)
$$\overline{N}(r,1;F) = \overline{N}(r,1;F|=1) + \overline{N}(r,1;F|\geq 2)$$
$$= \overline{N}(r,1;F|=1) + \overline{N}(r,1;G|\geq 2).$$

Since $N_2(r,\infty;F) \leq 2\overline{N}(r,\infty;F)$ and $N_2(r,\infty;G) \leq 2\overline{N}(r,\infty;G)$, we get from (4)–(6) on integration

(7)
$$2T_0(r,F) \le N_2^0(r,0;F) + N_2^0(r,b;F) + N_2^0(r,0;G) + 2\overline{N}_0(r,\infty;F) + 2\overline{N}_0(r,\infty;G) + S_0(r,F) + S_0(r,G).$$

Similarly we obtain

(8)
$$2T_0(r,G) \le N_2^0(r,0;F) + N_2^0(r,b;G) + N_2^0(r,0;G) + 2\overline{N}_0(r,\infty;F) + 2\overline{N}_0(r,\infty;G) + S_0(r,F) + S_0(r,G).$$

From (7) and (8) we get

(9)
$$2T_0(r) \le N_2^0(r,0;F) + N_2^0(r,0;G) + N_2^0(r,b) + 2\overline{N}_0(r,\infty;F) + 2\overline{N}_0(r,\infty;G) + S_0(r,F) + S_0(r,G),$$

where $T_0(r) = \max\{T_0(r, F), T_0(r, G)\}$ and $N_2^0(r, b) = \max\{N_2^0(r, b; F), N_2^0(r, b; G)\}.$

Since (9) contradicts (3), it follows that $H \equiv 0$. Then

(10)
$$F = \frac{AG+B}{CG+D},$$

where A, B, C, D are complex numbers such that $AD - BC \neq 0$. In view of (10) we get

In view of
$$(10)$$
 we get

(11)
$$T_0(r,F) = T_0(r,G) + O(\log r).$$

Now we consider the following cases.

CASE 1: $AC \neq 0$. Then

(12)
$$F - \frac{A}{C} = \frac{B - \frac{AD}{C}}{CG + D}.$$

SUBCASE 1.1: $A/C \neq b.$ Then by the second fundamental theorem we get on integration

$$2T_0(r,F) \leq \overline{N}_0(r,\infty;F) + \overline{N}_0(r,0;F) + \overline{N}_0(r,A/C;F) + \overline{N}_0(r,b;F) + S_0(r,F) \\ = \overline{N}_0(r,\infty;F) + \overline{N}_0(r,0;F) + \overline{N}_0(r,b;F) + \overline{N}_0(r,\infty;G) + S_0(r,F),$$

which implies (9) in view of (11) and Lemma 8 and finally contradicts (3).

SUBCASE 1.2: A/C = b. Also we suppose that $BD \neq 0$. Then $B/D \neq b$ because $AD - BC \neq 0$. So by the second fundamental theorem we get on integration

$$\begin{aligned} 2T_0(r,F) \\ &\leq \overline{N}_0(r,\infty;F) + \overline{N}_0(r,0;F) + \overline{N}_0(r,b;F) + \overline{N}_0(r,B/D;F) + S_0(r,F) \\ &= \overline{N}_0(r,\infty;F) + \overline{N}_0(r,0;F) + \overline{N}_0(r,b;F) + \overline{N}_0(r,0;G) + S_0(r,F), \\ \end{aligned}$$
which by (11) and Lemma 8 implies (9) and so contradicts (3).

Let B = 0. Then $D \neq 0$ because F is nonconstant. Now from (12) we get

(13)
$$F-b = \frac{-b}{\alpha G+1},$$

where $\alpha = C/D$.

Let 1 be a Picard exceptional value (e.v.P.) of F and so of G. Then by the second fundamental theorem we get on integration

$$2T_0(r,F) \le \overline{N}_0(r,\infty;F) + \overline{N}_0(r,0;F) + \overline{N}_0(r,b;F) + S_0(r,F),$$

which implies (9) in view of (11) and Lemma 8 and so contradicts (3).

Let 1 be not an e.v.P. of F and G. Then from (13) we get $\alpha = \frac{1}{b-1}$ so that

$$F = \frac{bG}{(b-1)+G}.$$

Since $b \neq 1/2$, by the second fundamental theorem we get on integration $2T_0(r, G)$

$$\leq \overline{N}_0(r,\infty;G) + \overline{N}_0(r,0;G) + \overline{N}_0(r,b;G) + \overline{N}_0(r,1-b;G) + S_0(r,G)$$

= $\overline{N}_0(r,\infty;G) + \overline{N}_0(r,0;G) + \overline{N}_0(r,b;G) + \overline{N}_0(r,\infty;F) + S_0(r,G),$

which by (11) and Lemma 8 implies (9) and so contradicts (3).

Let $B \neq 0$, D = 0. Then from (12) we obtain

(14)
$$F = b + \frac{\beta}{G},$$

where $\beta = B/C$.

If 1 is an e.v.P. of F and so of G, by the second fundamental theorem we get on integration

$$2T_0(r,F) \le \overline{N}_0(r,\infty;F) + \overline{N}_0(r,0;F) + \overline{N}_0(r,b;F) + S_0(r,F),$$

which implies (9) in view of (11) and Lemma 8 and so contradicts (3).

Suppose 1 is not an e.v.P. of F and G. Then from (14) we get $\beta = 1 - b$ so that

$$F = b + \frac{1-b}{G}.$$

Since $b \neq -\omega, -\omega^2$, by the second fundamental theorem we get on integration

$$2T_{0}(r,G) \leq \overline{N}_{0}(r,\infty;G) + \overline{N}_{0}(r,0;G) + \overline{N}_{0}(r,b;G) + \overline{N}_{0}(r,1-1/b;G) + S_{0}(r,G) = \overline{N}_{0}(r,\infty;G) + \overline{N}_{0}(r,0;G) + \overline{N}_{0}(r,b;G) + \overline{N}_{0}(r,0;F) + S_{0}(r,G),$$

which implies (9) in view of (11) and Lemma 8 and so contradicts (3).

CASE 2: AC = 0. Since F is nonconstant, it follows that A and C are not simultaneously zero.

SUBCASE 2.1: A = 0 and $C \neq 0$. Then $B \neq 0$ and from (10) we get

(15)
$$\frac{1}{F} = \alpha G + \beta,$$

where $\alpha = C/B$ and $\beta = D/B$.

If 1 is an e.v.P. of F and G, by the second fundamental theorem we get on integration

$$2T_0(r,F) \le \overline{N}_0(r,\infty;F) + \overline{N}_0(r,0;F) + \overline{N}_0(r,b;F) + S_0(r,F),$$

which by (11) and Lemma 8 implies (9) and so contradicts (3).

Suppose 1 is not an e.v.P. of F and G. Then from (15) we get $\alpha + \beta = 1$ so that

$$\frac{1}{F} = \alpha G + 1 - \alpha.$$

If $\alpha \neq 1, 1 - 1/b$, by the second fundamental theorem we get on integration $2T_0(r, F)$

$$\leq \overline{N}_0(r,\infty;F) + \overline{N}_0(r,0;F) + \overline{N}_0(r,b;F) + \overline{N}_0(r,1/(1-\alpha);F) + S_0(r,F) = \overline{N}_0(r,\infty;F) + \overline{N}_0(r,0;F) + \overline{N}_0(r,b;F) + \overline{N}_0(r,0;G) + S_0(r,F),$$

which implies (9) in view of (11) and Lemma 8 and so contradicts (3).

If $\alpha = 1$ then $FG \equiv 1$, i.e. $[\Psi(D)f][\Psi(D)g] \equiv 1$.

If $\alpha = 1 - 1/b$ then

$$F = \frac{b}{1 + (b-1)G}$$

Since $b \neq -\omega, -\omega^2$, by the second fundamental theorem we get on integration

$$\begin{aligned} &2T_0(r,G) \\ &\leq \overline{N}_0(r,\infty;G) + \overline{N}_0(r,0;G) + \overline{N}_0(r,b;G) + \overline{N}_0(r,1/(1-b);G) + S_0(r,G) \\ &= \overline{N}_0(r,\infty;G) + \overline{N}_0(r,0;G) + \overline{N}_0(r,b;G) + \overline{N}_0(r,\infty;F) + S_0(r,G), \end{aligned}$$

which by (11) and Lemma 8 implies (9) and so contradicts (3).

SUBCASE 2.2: $A \neq 0$ and C = 0. Then $D \neq 0$ and from (10) we get (16) $F = \alpha G + \beta$,

where $\alpha = A/D$, $\beta = B/D$.

If 1 is an e.v.P. of F and G, by the second fundamental theorem we get on integration

 $2T_0(r,F) \leq \overline{N}_0(r,\infty;F) + \overline{N}_0(r,0;F) + \overline{N}_0(r,b;F) + S_0(r,F),$ which implies (9) by (11) and Lemma 8 and so contradicts (3). Suppose 1 is not an e.v.P. of F and G. Then from (16) we get $\alpha + \beta = 1$ and so

$$F = \alpha G + 1 - \alpha.$$

If $\alpha \neq 1, 1-b$, by the second fundamental theorem we get on integration $2T_0(r, F)$

$$\leq \overline{N}_0(r,\infty;F) + \overline{N}_0(r,0;F) + \overline{N}_0(r,b;F) + \overline{N}_0(r,1-\alpha;F) + S_0(r,F)$$

= $\overline{N}_0(r,\infty;F) + \overline{N}_0(r,0;F) + \overline{N}_0(r,b;F) + \overline{N}_0(r,0;G) + S_0(r,F),$

which implies (9) in view of (11) and Lemma 8 and so contradicts (3).

If $\alpha = 1$ then $F \equiv G$ and so $f - g \equiv s$, where s = s(z) is a solution of the differential equation $\Psi(D)w = 0$.

If $\alpha = 1 - b$ then

$$F = (1-b)G + b.$$

Since $b \neq 2$, by the second fundamental theorem we get on integration $2T_0(r, G)$

$$\leq \overline{N}_0(r,\infty;G) + \overline{N}_0(r,0;G) + \overline{N}_0(r,b;G) + \overline{N}_0(r,b/(b-1);G) + S_0(r,G) = \overline{N}_0(r,\infty;G) + \overline{N}_0(r,0;G) + \overline{N}_0(r,b;G) + \overline{N}_0(r,0;F) + S_0(r,G),$$

which by (11) and Lemma 8 implies (9) and so contradicts (3). This proves the theorem. \blacksquare

4. Applications. In this section we discuss two applications of the main theorem, the first of which improves a result of Yi and Yang [13] and the second gives a better answer to the question of Yang [9] mentioned in the introduction.

THEOREM 2. Let f, g be two nonconstant meromorphic functions with $\Theta(\infty; f) = \Theta(\infty; g) = 1$. If for $n \ge 1$ the derivatives $f^{(n)}$, $g^{(n)}$ share (1, 2) and

(i)
$$\sum_{a \neq \infty} \delta(a; f) + \sum_{a \neq \infty} \delta(a; g) + \min\{\delta_2(b; f^{(n)}), \delta_2(b; g^{(n)})\} > 1$$

for some $b \neq 0, 1, \infty, 1/2, 2, -\omega, -\omega^2$, and

(ii) $\Theta(\alpha; f) + \Theta(\alpha; g) > 1$

for some $\alpha \neq \infty$, then either (I) $f^{(n)}g^{(n)} \equiv 1$ or (II) $f \equiv g$.

Proof. From the given condition it follows that f, g are transcendental and so $f^{(n)}, g^{(n)}$ are transcendental. Choosing $\Psi(D) = D^n$ in Theorem 1 we get either $f^{(n)}g^{(n)} \equiv 1$ or $f - g \equiv Q$, where Q is a polynomial of degree at most n - 1. If possible let $Q \not\equiv 0$. Then by Nevanlinna's theorem on three small functions [2, p. 47] we get

$$T(r,f) \leq \overline{N}(r,\alpha;f) + \overline{N}(r,\alpha+Q;f) + \overline{N}(r,\infty;f) + S(r,f)$$

= $\overline{N}(r,\alpha;f) + \overline{N}(r,\alpha;g) + \overline{N}(r,\infty;f) + S(r,f).$

Since $f - g \equiv Q$, it follows that $T(r, f) = T(r, g) + O(\log r)$. So $\Theta(\alpha; f) + \Theta(\alpha; g) \leq 1$, which is a contradiction. Therefore $Q \equiv 0$ and so $f \equiv g$. This proves the theorem.

The following examples show that the condition $\Theta(\alpha; f) + \Theta(\alpha; g) > 1$ is necessary for the validity of case (II).

EXAMPLE 3. Let $f = 1 + e^z$ and $g = e^z$. Then

$$\sum_{a \neq \infty} \delta(a; f) + \sum_{a \neq \infty} \delta(a; g) + \min\{\delta_2(b; f^{(n)}), \delta_2(b; g^{(n)})\} = 2$$

for any $b \neq 0, \infty, \Theta(\infty; f) = \Theta(\infty; g) = 1, \Theta(0; f) + \Theta(0; g) = 1, \Theta(1; f) + \Theta(1; g) = 1, \Theta(\alpha; f) + \Theta(\alpha; g) < 1$ for $\alpha \neq 0, 1, \infty$ and $f^{(n)}, g^{(n)}$ share (1, 2) but $f - g \equiv 1$.

EXAMPLE 4. Let $f = 1 + e^z$ and $g = (-1)^n e^{-z}$. Then $\sum_{a \neq \infty} \delta(a; f) + \sum_{a \neq \infty} \delta(a; g) + \min\{\delta_2(b; f^{(n)}), \delta_2(b; g^{(n)})\} = 2$ for any $b \neq 0, \infty, \Theta(\infty; f) = \Theta(\infty; g) = 1, \Theta(0; f) + \Theta(0; g) = 1, \Theta(1; f) + \Theta(1; g) = 1, \Theta(\alpha; f) + \Theta(\alpha; g) < 1$ for $\alpha \neq 0, 1, \infty$ and $f^{(n)}, g^{(n)}$ share (1, 2) but $f^{(n)}g^{(n)} \equiv 1$.

REMARK 1. Theorem 2 improves Theorem C, a result of Yi and Yang [13] and also a recent result of Lahiri [3].

In the following theorem we provide a better answer to a question of Yang [9] than those given in Theorems F and G.

THEOREM 3. Let f and g be two meromorphic functions such that $f^{(n)}$, $g^{(n)}$ $(n \ge 1)$ share (1, 2), f, g share $(\alpha, 0)$ for some $\alpha \ne \infty$ and

$$\frac{\sum_{a \neq \infty} \delta(a; f)}{1 + p(1 - \Theta(\infty; f))} + \frac{\sum_{a \neq \infty} \delta(a; g)}{1 + p(1 - \Theta(\infty; g))} + \min\{\delta_2(b; f^{(n)}), \delta_2(b; g^{(n)})\}$$
$$> 1 + \frac{2(1 - \Theta(\infty; f))}{\sum_{a \neq \infty} \delta_p(a; f)} + \frac{2(1 - \Theta(\infty; g))}{\sum_{a \neq \infty} \delta_p(a; g)}$$

for some $b \neq 0, 1, \infty, 1/2, 2, -\omega, -\omega^2$, with $\sum_{a \neq \infty} \delta_p(a; f) > 0$, $\sum_{a \neq \infty} \delta_p(a; g) > 0$ and ω being the imaginary cube root of unity. Then either $f^{(n)}g^{(n)} \equiv 1$ or $f \equiv g$.

Proof. From the assumption it follows that f and g are transcendental and so $f^{(n)}$ and $g^{(n)}$ are transcendental. Choosing $\Psi(D) = D^n$ we see from Theorem 1 that either $f - g \equiv Q$ or $f^{(n)}g^{(n)} \equiv 1$, where Q is a polynomial of degree at most n - 1. If possible, let $Q \not\equiv 0$. Since f, g share $(\alpha, 0)$, it follows that $\overline{N}(r, \alpha; f) = \overline{N}(r, \alpha; g) \leq \overline{N}(r, 0; Q) = O(\log r)$. Now by Nevanlinna's theorem on three small functions [2, p. 47] we get

$$T(r,f) \leq \overline{N}(r,\alpha;f) + \overline{N}(r,\alpha+Q;f) + \overline{N}(r,\infty;f) + S(r,f)$$

= $\overline{N}(r,\alpha;f) + \overline{N}(r,\alpha;g) + \overline{N}(r,\infty;f) + S(r,f)$
= $\overline{N}(r,\infty;f) + O(\log r) + S(r,f),$

which implies that $\Theta(\infty; f) = 0$. Similarly we see that $\Theta(\infty; g) = 0$. Since this contradicts the assumption, it follows that $Q \equiv 0$ and so $f \equiv g$. This proves the theorem.

The following example shows that Theorem 3 is sharp.

EXAMPLE 5. Let $f = -2^{-n}e^{2z} + (-1)^{n+1}2^{-n}e^{z}$ and $g = (-1)^{n+1}2^{-n}e^{-2z}$ $-2^{-n}e^{-z}$. Then $f^{(n)}$, $g^{(n)}$ share (1,2), f,g share (0,0), $\Theta(\infty;f) = \Theta(\infty;g)$ = 1 and $\sum_{a\neq\infty} \delta(a;f) + \sum_{a\neq\infty} \delta(a;g) + \min\{\delta_2(b;f^{(n)}), \delta_2(b;b^{(n)})\} = 1$ for any $b\neq 0,\infty$ but neither $f \equiv g$ nor $f^{(n)}g^{(n)} \equiv 1$.

CONCLUDING REMARK. Since Example 1 shows that in Theorem 1 sharing (1,2) cannot be relaxed to sharing (1,0), we conclude the paper with the following question: Is it possible in Theorem 1 to relax sharing (1,2) to sharing (1,1)?

Acknowledgements. The author is grateful to the referee for valuable comments.

References

- M. Furuta and N. Toda, On exceptional values of meromorphic functions of divergence class, J. Math. Soc. Japan 25 (1973), 667–679.
- [2] W. K. Hayman, *Meromorphic Functions*, Clarendon Press, Oxford, 1964.
- [3] I. Lahiri, Uniqueness of meromorphic functions when two linear differential polynomials share the same 1-points, Ann. Polon. Math. 71 (1999), 113–128.
- [4] —, Weighted sharing and uniqueness of meromorphic functions, Nagoya Math. J. 161 (2001), 193–206.
- [5] —, Weighted value sharing and uniqueness of meromorphic functions, Complex Variables 46 (2001), 241–253.
- [6] E. Mues and M. Reinders, On a question of C. C. Yang, ibid. 34 (1997), 171–179.
- [7] K. Shibazaki, Unicity theorems for entire functions of finite order, Mem. National Defence Acad. Japan 21 (1981), no. 3, 67–71.
- [8] N. Toda, On a modified deficiency of meromorphic functions, Tôhoku Math. J. 22 (1970), 635–658.
- C. C. Yang, On two entire functions which together with their first derivatives have the same zeros, J. Math. Anal. Appl. 56 (1976), 1–6.
- [10] H. X. Yi, A question of C. C. Yang on the uniqueness of entire functions, Kodai Math. J. 13 (1990), 39–46.
- [11] —, Uniqueness of meromorphic functions and a question of C. C. Yang, Complex Variables 14 (1990), 169–174.

- H. X. Yi, Unicity theorems for entire or meromorphic functions, Acta Math. Sinica (N.S.) 10 (1994), 121–131.
- [13] H. X. Yi and C. C. Yang, A uniqueness theorem for meromorphic functions whose nth derivatives share the same 1-points, J. Anal. Math. 62 (1994), 261–270.

Department of Mathematics University of Kalyani West Bengal 741235, India E-mail: indrajit@cal2.vsnl.net.in

> Reçu par la Rédaction le 5.9.2001 Révisé le 9.3.2002

(1283)

170