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Abstract. A definable subset of a Euclidean space X is called perfectly situated if
it can be represented in some linear system of coordinates as a finite union of (graphs
of) definable C1-maps with bounded derivatives. Two subsets of X are called simply
separated if they satisfy the Łojasiewicz inequality with exponent 1. We show that every
closed definable subset of X of dimension k can be decomposed into a finite family of
closed definable subsets each of which is perfectly situated and such that any two different
sets of the decomposition are simply separated and their intersection is of dimension < k.

Introduction. We will assume that there is given an o-minimal struc-
ture in the ordered field R of real numbers (see [1] for the definition and
fundamental properties of o-minimal structures).

Let M be a C1-submanifold of Rn of dimension l and let V be a linear
subspace of Rn of dimension n − k, where k ≥ l. We will call M perfectly
situated relative to V if the set of the tangents {TaM | a ∈M} is a relatively
compact subset of the set {W ∈ Gl(Rn) | W ∩ V = {0}}, open in the
Grassmann manifold of l-dimensional linear subspaces of Rn. Let A now be
a definable subset of Rn of dimension ≤ k. Then A is a finite union

⋃
iMi

of definable C1-submanifolds. We will call A perfectly situated relative to V
if so is each Mi. (This does not depend on the representation A =

⋃
iMi;

cf. [1, Chap. 7, (3.2)].)

Proposition 0. Let W be a linear complement of V in Rn; i.e. Rn =
W ⊕ V . The following conditions are equivalent :

(1) A is perfectly situated relative to V .
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(2) A is a finite disjoint union
⋃
i ϕ̂i of graphs of definable C1-maps

ϕi : Λi → V defined on C1-submanifolds Λi ⊂ W with bounded derivatives
(here ϕ̂i stands for the graph {w + ϕi(w) | w ∈ Λi} of ϕi).

(3) There is C > 0 such that if a ∈ A, (xν)ν∈N is a sequence of points
of A \ {a} convergent to a and v = limν→∞(xν − a)/|xν − a|, then d(v, V )
≥ C (1).

(4) Every definable subset of A is perfectly situated relative to V .
(5) A is perfectly situated relative to V ′ for all V ′ from a neighbourhood

of V in Gn−k(Rn).
(6) A is perfectly situated relative to any linear subspace of V .

Proof. (1)⇔(2) by [1, Chap. 7, (3.2)]. (1)⇔(3) by curve selection (cf. [1,
Chap. 6, (1.5)] and the fact that a definable curve is C1 at its extremity. The
others are simple consequences.

The notion of a perfectly situated subset was used by the author in [5,
Chap. II].

Let P and Q be any two subsets of Rn. We will say that P and Q are
simply separated if there exists C > 0 such that for each x ∈ P , d(x,Q) ≥
Cd(x, P ∩Q). This condition is symmetric with respect to P and Q. Indeed,
for each y ∈ Q and ε > 0, there is x ∈ P such that d(y, P )+ε > |y−x|; hence
(C+1)|y−x| ≥ d(x, P )+C|y−x| ≥ C(d(x, P ∩Q)+ |y−x|) ≥ Cd(y, P ∩Q);
consequently, d(y, P ) ≥ C

C+1d(y, P ∩Q). In other words, P and Q are simply
separated if they satisfy the (global) Łojasiewicz inequality with exponent
1 (cf. [3, p. 139]).

The main result of the present paper is the following

Theorem 0. Let Σ= {σ | σ⊂{1, . . . , n}, cardσ=n−k}= {σ1, . . . , σm},
where m =

(
n
k

)
. Let Vi =

⊕
ν∈σi Reν (i = 1, . . . ,m), where e1, . . . , en denote

the canonical basis in Rn. Any definable closed subset E of Rn of dimension
k is the union E =

⋃m
i=1 Si of definable closed subsets Si such that for each

i , Si is perfectly situated relative to Vi and for each j 6= i, Si and Sj are
simply separated and dim(Si ∩ Sj) < k.

In the subanalytic case similar results have been formulated and proved
in a different way by Parusiński [4]. We prove Theorem 0 by a construction
based on Lemma 1 below and the Mean Value Theorem.

In the proof of Theorem 0 we will use the following

Lemma 0. Let Vi (i = 1, . . . ,m) be as in Theorem 0. If E is a definable
subset of Rnof constant dimension k (i.e., every nonempty open definable
subset of E is of dimension k), then E =

⋃m
i=1 Ei, where for each i, Ei is

definable of constant dimension k, perfectly situated relative to Vi.

(1) d(x,A) = inf{|x− a| | a ∈ A} if A 6= ∅ and d(x, ∅) = 1.
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Proof. It reduces to the case that E is a C1-submanifold, when it follows
from linear algebra and the fact that the Gauss mapping E 3 x 7→ TxE ∈
Gk(Rn) is definable.

Remark 0. If the set E is of constant dimension l, where l < k, then
again E =

⋃m
i=1 Ei, where for each i, Ei is definable of constant dimension

l, perfectly situated relative to Vi. Indeed, if Wj

(
j = 1, . . . , p, p =

(
n
l

))
are

the corresponding linear subspaces of dimension n − l and E =
⋃p
j=1 E

′
j ,

where for each j, E′j is of constant dimension l perfectly situated relative to
Wj , we put Ei =

⋃{E′j | Vi ⊂Wj}.
Acknowledgements. The author thanks Professor Stanisław Łoja-

siewicz and the anonymous referee for helpful comments and remarks on
the paper. He also thanks Mr. Jerzy Trzeciak for pointing out several lan-
guage mistakes in the original text.

1. Key lemma and consequences. The proof of Theorem 0 is based
on the following elementary

Lemma 1. Let fi : E → R (i = 1, . . . , p) be a finite family of definable
bounded functions on the same definable set E ⊂ Rm and let η > 0. Then E
can be represented as a finite union E =

⋃
µAµ of definable sets Aµ ⊂ Rm

such that for each µ there exists εµ ∈ (0, η) such that for each i, either
|fi| ≤ εµ on Aµ or |fi| ≥ 4εµ on Aµ.

Proof. Let∆ = {δ | δ ⊂ {1, . . . , p}} and for each δ ∈ ∆ and ε ∈ (0, η), let
Ω(δ, ε) = {y = (y1, . . . , yp) ∈ Rp | |yi| < ε if i ∈ δ, |yi| > 4ε if i 6∈ δ}. Then
the sets Ω(δ, ε) form an open covering of Rp. Let f = (f1, . . . , fp) : E → Rp.
Since f(E) is bounded there is a finite family {Ω(δµ, εµ)} covering f(E) and
the lemma follows.

Lemma 2. Let fi : E → R (i = 1, . . . , p) be a finite family of definable
functions on the same set E ⊂ Rm and let K > 0. Then E can be represented
as a finite union E =

⋃
µAµ of definable sets Aµ such that for each µ there

exists Mµ ≥ K such that for each i, either |fi| ≤ Mµ on Aµ or |fi| ≥ 4Mµ

on Aµ.

Proof. Take 1/fi in place of fi in Lemma 1.

Lemma 3. Let π : Rm → Rm−1 denote the projection π(x1, . . . , xm) =
(x1, . . . , xm−1). Let A be any finite family of definable subsets of Rm. Then
there exists a definable cell decomposition C of Rm compatible with A and
such that for each C1, C2 ∈ C, if dimC1 = dimC2 = m − 1 and π(C1) =
π(C2) is open in Rm−1, then there is v ∈ Rm \ {0} such that C1 and C2 are
perfectly situated relative to Rv.
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Proof. We have Ci = {(u, ϕi(u)) | u ∈ Ω}, i = 1, 2, where Ω is open
in Rm−1 and u = (x1, . . . , xm−1). By [1, Chap. 7, (3.2)], we can assume ϕi
are C1 and, by Lemma 2, that there is M ≥ 1 such that, for each i = 1, 2,
j = 1, . . . ,m− 1, |∂ϕi/∂xj | ≤M on Ω or |∂ϕi/∂xj | ≥ 4M on Ω. Moreover,
one can assume that there exist µ, ν ∈ {1, . . . ,m−1} such that |∂ϕ1/∂xµ| ≥
|∂ϕ1/∂xj | and |∂ϕ2/∂xν | ≥ |∂ϕ2/∂xj | on Ω, for each j = 1, . . . ,m− 1, and
each of the functions ∂ϕi/∂xj is of constant sign on Ω.

Case I: |∂ϕ1/∂xµ| ≤M and |∂ϕ2/∂xν | ≤M . We take v = (0, . . . , 0, 1).

Case II: |∂ϕ1/∂xµ| ≥ 4M and |∂ϕ2/∂xν | ≤ M . Put v = (a1, . . . , am),
where aj = 0 for j 6= µ,m, aµ = 1

2M
−1 and am = 1. Then the sine of the

angle α1 between v and the tangent to C1 is

|1− aµ(∂ϕ1/∂xµ)|
|v|
√

1 + |gradϕ1|2
≥

1
4M

−1|∂ϕ1/∂xµ|
|v|√m |∂ϕ1/∂xµ|

=
1

4|v|√mM
.

On the other hand, the sine of the angle α2 between v and the tangent to
C2 is

|1− aµ(∂ϕ2/∂xµ)|
|v|
√

1 + |gradϕ2|2
≥ 1− 1

2M
−1M

|v|√mM
=

1
2|v|√mM

.

Case III: |∂ϕ1/∂xµ| ≥ 4M and |∂ϕ2/∂xν | ≥ 4M , where µ = ν. Take
the same v as in Case II.

Case IV: |∂ϕ1/∂xµ| ≥ 4M , |∂ϕ2/∂xν | ≥ 4M , µ 6= ν and (∂ϕ1/∂xµ) ×
(∂ϕ1/∂xν) ≥ 0 on Ω. Put aµ = 1

3M
−1, aν = 2

3M
−1, am = 1 and aj = 0 if

j 6= µ, ν,m. Then

sinα1 =
|1− aµ(∂ϕ1/∂xµ)− aν(∂ϕ1/∂xν)|

|v|
√

1 + |gradϕ1|2

≥ |aµ(∂ϕ1/∂xµ) + aν(∂ϕ1/∂xν)| − 1

|v|
√

1 + |gradϕ1|2
≥ |aµ(∂ϕ1/∂xµ)| − 1

|v|
√

1 + |gradϕ1|2

≥ |∂ϕ1/∂xµ|(aµ − |∂ϕ1/∂xµ|−1)
|v|√m |∂ϕ1/∂xµ|

≥ 1
12|v|√mM

,

sinα2 ≥
2
3M

−1|∂ϕ2/∂xν | − 1
3M

−1|∂ϕ2/∂xµ| − 1

|v|
√

1 + |gradϕ2|2

≥
2
3M

−1|∂ϕ2/∂xν | − 1
3M

−1|∂ϕ2/∂xν | − 1

|v|
√

1 + |gradϕ2|2

=
1
3M

−1|∂ϕ2/∂xν | − 1

|v|
√

1 + |gradϕ2|2
≥ 1

12|v|√mM
.
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Case V: |∂ϕ1/∂xµ| ≥ 4M , |∂ϕ2/∂xν | ≥ 4M , µ 6= ν and (∂ϕ1/∂xµ) ×
(∂ϕ1/∂xν) ≤ 0 on Ω. One easily modifies Case IV, putting aµ = 1

3M
−1,

aν = − 2
3M

−1, am = 1 and aj = 0 for j 6= µ, ν,m.

Let X be a subset of Rm and let α > 0. As in [6, p. 79], we call X
α-regular if there exists C > 0 such that any two points a, b of X can be
joined in X by a rectifiable arc γ : [0, 1]→ X of length |γ| ≤ C|a− b|α.

Theorem 1 (Kurdyka [2], Parusiński [4]). If Ω is any definable open
subset of Rm, then there exists a finite family (Gi)i of disjoint , definable,
open, 1-regular subsets of Ω such that dim(Ω \⋃iGi) < m.

Proof. Consider the following two assertions:

(Am) For any definable subset Ω of Rm and any nonempty open subset V
of Rm \{0}, there exists a finite family (Gi)i of disjoint , definable,
open, 1-regular subsets of Ω such that dim(Ω\⋃iGi) < m and , for
each i, there is vi ∈ V such that ∂Gi is perfectly situated relative
to Rvi.

(Bm) For any definable open subset D of Rm there exists a finite family
(Hj)j of disjoint , definable open subsets of D such that dim(D \⋃
j Hj) < m and , for each j, there is vj ∈ Rm \ {0} such that ∂Hj

is perfectly situated relative to Rvj .

(Am−1)⇒(Bm). By Lemma 3, we can assume that D is an open cell
D = {(u, xm) | u ∈ Ω, ϕ1(u) < xm < ϕ2(u)} such that C1 = ϕ̂1 and
C2 = ϕ̂2 are perfectly situated relative to a common line Rv (the cases
ϕ1 ≡ −∞ or ϕ2 ≡ +∞ can also occur but they will follow by a modification).
By Proposition 0 and (Am−1), we can assume that π(v) 6= 0 and ∂Ω is
perfectly situated relative to Rπ(v). Then ∂D ⊂ C1 ∪ C2 ∪ (∂Ω × R) is
perfectly situated relative to Rv.

(Am−1&Bm)⇒(Am). Using (Bm), Proposition 0 and a linear change of
coordinates, we reduce to the case Ω = {(u, xm) | u ∈ Q, ϕ1(u) < xm <
ϕ2(u)}, where Q is open in Rm−1, ϕi : Q → R (i = 1, 2) are definable
C1-functions such that ϕ1 < ϕ2 on Q, and |∂ϕi/∂xj | ≤ M on Q for i =
1, 2, j = 1, . . . ,m− 1, for some M ≥ 1 (or ϕ1 ≡ −∞ or ϕ2 ≡ +∞). We can
assume that V = ∆×(α−ε, α+ε), where ∆ is open bounded in Rm−1 \{0},
α, ε ∈ R, ε > 0.

Take L > 0 such that |u| ≤ L for each u ∈ ∆. Dividing Q we can assume
that, for each i, j, there exists θij ∈ R such that |∂ϕi/∂xj − θij | ≤ η on Q,
where 0 < η ≤ ε/(8L

√
m− 1). Moreover, by (Am−1), we can assume that

Q is 1-regular and ∂Q is perfectly situated relative to some u ∈ ∆.
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Put v = (u, am). The sine of the angle between v and the tangent to
Ci = ϕ̂i is

|am − 〈u, gradϕi〉|
|v|
√

1 + |gradϕi|2
≥ |am − 〈u, θi〉 − 〈u, gradϕi − θi〉|

|v|√mM

≥ |am − 〈u, θi〉| − |u| · |gradϕi − θi|
|v|√mM

≥ ε/4− L
√
m− 1 η

|v|√mM
≥ ε

8|v|√mM
,

where θi = (θi1, . . . , θi,m−1) and am ∈ {α− ε/2, α, α+ ε/2} is such that

|am − 〈u, θi〉| ≥ ε/4 (i = 1, 2).

In order to prove that Ω is 1-regular, we first observe that ϕi are Lipschitz
(because Q is 1-regular and all first derivatives of ϕi are bounded; cf. [6,
p. 76]). Taking the image of Ω under the Lipschitz automorphism

Q× R 3 (u, xm) 7→ (u, xm − ϕ1(u)) ∈ Q× R
we can assume that ϕ1 ≡ 0. Since Q is 1-regular and ϕ2 is Lipschitz, ϕ̂2 is
1-regular. Let now a = (u, am) ∈ Ω and b = (w, bm) ∈ Ω, where am ≤ bm.
Take an arc γ : [0, 1]→ Q such that γ(0) = u, γ(1) = w and |γ| ≤ C|u−w|.
Then the arc δ = (γ, am)∪({w}× [am, bm]) joins a and b, lies in Q×(0,+∞)
and |δ| ≤ (C + 1)|a − b|. If δ 6⊆ Ω, let c be the first and d the last point
of δ that lies on ϕ̂2. Take an arc λ joining c and d on ϕ̂2 such that |λ| ≤
C ′|c−d| ≤ C ′|δ| ≤ C ′(C+1)|a−b|. Replacing the part of δ between c and d
by λ, moving the resulting arc slightly downwards and adding suitable small
vertical line segments, we obtain the required arc.

2. Admissible arcs. Let λ = (λ1, . . . , λm) : (α, β) → Rm be C1 on
(α, β), where α, β ∈ R and α < β. We will call λ an admissible arc in Rm if
it satisfies the following conditions:

1) each of the functions λi and each of the derivatives λ′i is of constant
sign;

2) for each i, either |λ′i| ≥ 1 on (α, β) or |λ′i| < 1 on (α, β);
3) for each i and j, either |λ′i| ≤ |λ′j | on (α, β) or |λ′i| ≥ |λ′j | on (α, β).

For any admissible arc λ, we put

ν(λ) = min{i | |λ′i| ≥ |λ′j | on (α, β), j = 1, . . . ,m} and fλ = λν(λ).

For each s, t ∈ (α, β) and each j = 1, . . . ,m,

(∗) |fλ(t)− fλ(s)| ≥ |λj(t)− λj(s)|.
To see this we can assume that f ′λ ≥ 0, replacing perhaps λ by λ(α+β− t).
Then, for any fixed s ∈ (α, β), consider the functions θj(t) = fλ(t)−fλ(s)−
|λj(t)− λj(s)| for t ∈ [s, β). Since θ′j(t) = f ′λ(t)± |λ′j(t)| ≥ 0 and θj(s) = 0,
we have θj ≥ 0 and fλ(t)− fλ(s) ≥ |λj(t)− λj(s)|.
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We will say that λ is an admissible arc of the first kind if |f ′λ| ≥ 1;
otherwise λ is of the second kind . For any admissible arc λ of the first
kind, we put cλ = α if |fλ| is increasing and cλ = β if |fλ| is decreasing.
Since the limit limt→cλ fλ(t) ∈ R exists, it follows from (∗) that the limit
limt→cλ λ(t) ∈ Rm also exists; it will be denoted by λ(cλ).

Lemma 4. Let λ : (α, β) → Rm be an admissible arc of the first kind.
Let λ̃(t) = (t, λ(t)) and T = R × {0} ⊂ R1+m. Then, for each t ∈ (α, β),

d(λ̃(t), T ) ≥ 1√
m+ 1

|λ̃(t)− λ̃(cλ)|.

Proof. Replacing perhaps λ by −λ or by ∓λ(α+β− t), we reduce to the
case fλ > 0 and f ′λ ≥ 1 on (α, β). Then cλ = α. Apart from (∗), we have
|fλ(t)− fλ(s)| ≥ |t− s|; hence,

d(λ̃(t), T ) = |λ(t)| ≥ fλ(t) ≥ fλ(t)− fλ(α) ≥ 1√
m+ 1

|λ̃(t)− λ̃(α)|.

All the above definitions and Lemma 4 extend to arcs λ : (α,∞)→ Rm
(α ∈ R), when cλ = α, and to arcs λ : (−∞, β) → Rm (β ∈ R), when
cλ = β.

3. Simple separation relative to a set. Let P , Q and Z be any
subsets of Rn. We will say that P and Q are simply separated relative to Z
(or simply Z-separated) if there exists C > 0 such that d(x,Q) ≥ Cd(x,Z)
for each x ∈ P .

Proposition 1. The following conditions are equivalent :

(i) P and Q are simply separated relative to Z;
(ii) P ∩Q ⊂ Z and P ∪ Z, Q ∪ Z are simply separated.

Proof. (i)⇒(ii). If z ∈ P ∩ Q, d(z,Q) = 0 ≥ Cd(z, Z) = 0, so z ∈ Z.
Therefore (P ∪ Z) ∩ (Q ∪ Z) = Z. Let x ∈ P . Then either d(x,Q ∪ Z)
= d(x,Q) ≥ Cd(x,Z) ≥ min(C, 1)d(x,Z) or d(x,Q ∪ Z) = d(x,Z) ≥
min(C, 1)d(x,Z).

(ii)⇒(i). If x ∈ P , then d(x,Q ∪ Z) ≥ Cd(x,Z) and either d(x,Q) =
d(x,Q ∪ Z) ≥ min(C, 1)d(x,Z) or d(x,Q) ≥ d(x,Q ∪ Z) = d(x,Z) ≥
min(C, 1)d(x,Z).

We will use the following easy

Proposition 2.

(1) If P,Q are simply Z-separated , P ′ ⊂ P , Q′ ⊂ Q, Z ⊂ Z ′, then P ′, Q′

are simply Z ′-separated.
(2) If Pi, Qi are simply Zi-separated for i = 1, . . . , s, then

⋃
i Pi,

⋃
iQi

are simply
⋃
i Zi-separated.
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(3) If P,Q are simply S-separated and S,Q are simply T -separated , then
P,Q are simply T -separated.

(4) If Q′ ⊂ Q, d(x,Q) = d(x,Q′) for each x ∈ P , and P,Q′ are simply
Z-separated , then P,Q are simply Z-separated.

Proof. It is left to the reader.

Lemma 5. Let C = {x = (u, xk) | u = (x1, . . . , xk−1) ∈ D, α(u) < xk <
β(u)} be an open definable cell in Rk, possibly with α ≡ −∞ or β ≡ +∞ but
not both at the same time. Let ϕ = (ϕ1, . . . , ϕm), ψ = (ψ1, . . . , ψm) : C →
Rm be C1 definable mappings and ϕ be Lipschitz. Assume that there is M ≥ 1
such that |∂ϕi/∂xk| ≤ M for each i ∈ {1, . . . ,m} and |∂ψj/∂xk| ≥ 2M for
some j ∈ {1, . . . ,m}. Assume that , for each u ∈ D,

(α(u), β(u)) 3 xk 7→ ψ(u, xk)− ϕ(u, xk) ∈ Rm

is an admissible arc (of the first kind necessarily). Then (the graphs (2) of )
ϕ and ψ are simply separated relative to ψ \ ψ.

Proof. Let x = (u, xk) ∈ C. By Lemma 4 we have

d((x, ψ(x)− ϕ(x)), C × {0})

≥ 1√
m+ 1

|(x, ψ(x)− ϕ(x))− (u, cu, ψ(u, cu)− ϕ(u, cu))|,

where cu ∈ {α(u), β(u)}. Now, it is enough to apply to this inequality the
Lipschitz automorphism

C × Rm 3 (x, y) 7→ (x, y + ϕ(x)) ∈ C × Rm.
Lemma 6. Let ϕ : Ω → Rm be a Lipschitz mapping on an open subset

Ω of Rk. Then ϕ and Rk+m \ (Ω×Rm) are simply separated (i.e., they are
simply (ϕ \ ϕ)-separated).

Proof. Let a ∈ Ω and b ∈ ∂Ω be such that |a− b| = d(a, ∂Ω). Then

d((a, ϕ(a)),Rk+m \ (Ω × Rm)) = |a− b| ≥ L−1|ϕ(a)− ϕ(b)|,
hence

d((a, ϕ(a)),Rk+m \ (Ω × Rm)) ≥ 1
L+ 1

|(a, ϕ(a))− (b, ϕ(b))|.

Corollary. If S is any subset of Rk+m \ (Ω×Rm), then ϕ and S are
simply (ϕ \ ϕ)-separated.

Lemma 7. Let (Ωµ)µ be a finite family of open definable disjoint subsets
of Rk. For every µ, let ϕµν : Ωµ → Rm (ν ∈ Jµ) be a finite family of C1

definable disjoint (as graphs) mappings such that there exists Mµ ≥ 1 such

(2) Here and in what follows we will identify a mapping with its graph.
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that for each ν ∈ Jµ, i ∈ {1, . . . ,m}, j ∈ {1, . . . , k}, either |∂ϕµνi/∂xj | ≤
Mµ or |∂ϕµνi/∂xj | ≥ 2Mµ on Ωµ. Put

A =
⋃
{ϕµν | ∀i, j : |∂ϕµνi/∂xj | ≤Mµ},

B =
⋃
{ϕµν | ∃i, j : |∂ϕµνi/∂xj | ≥ 2Mµ}.

Then there exists M > 0 such that for each pair of definable sets A′ ⊂ A
and B′ ⊂ B and any set S ⊂ (Rk \ ⋃µΩµ) × Rm there exists a definable

set Z ⊂ A′ ∪ B′ of dimension < k such that B′ ∪ S and A′ are simply
Z-separated with constant M , i.e., for each a ∈ B′∪S, d(a,A′) ≥Md(a, Z).

Proof. Special case: A′ = A and B′ = B. Let

Γ = {(µ, ν) | ∀i, j : |∂ϕµνi/∂xj | ≤Mµ},
∆j = {(µ, ν) | ∃i : |∂ϕµνi/∂xj | ≥ 2Mµ} (j = 1, . . . , k).

Then B =
⋃
j Bj , where Bj =

⋃{ϕµν | (µ, ν) ∈ ∆j}.
It suffices to prove the lemma for each Bj in place of B; then we will take

Z =
⋃
j Zj , where Zj corresponds to Bj . Of course, it is enough to consider

the case j = k. Consequently, we will assume that B = Bk. By Theorem 1,
we can assume that each Ωµ is 1-regular; thus, all (ϕµν) ((µ, ν) ∈ Γ ) are
Lipschitz with a common constant L.

By a suitable cell decomposition compatible with all Ωµ, we can assume
that each Ωµ is an open definable cell C = {x = (u, xk) | u ∈ D, α(u) <
xk < β(u) }, and for each u ∈ D, (µ, ν) ∈ Γ and (µ, σ) ∈ ∆k,

(α(u), β(u)) 3 xk 7→ ϕµσ(u, xk)− ϕµν(u, xk) ∈ Rm

is an admissible arc. Now, by Lemma 5 and Corollary to Lemma 6, we obtain
the required conclusion with Z =

⋃
µ,ν(ϕµ,ν \ ϕµν) and M depending only

on L,Mµ,m and k.

General case. This reduces to the special case by taking a cell decom-
position C of Rk compatible with all sets Ωµ, π(ϕµν ∩A′) and π(ϕµν ∩B′),
where π : Rk+m → Rk is the projection π(x1, . . . , xk+m) = (x1, . . . , xk),
and considering the family ϕµν |C, where C ∈ C open is contained in Ωµ.
Then ϕµν |C ((µ, ν) ∈ Γ ) are Lipschitz with the same constant L as in the
special case and the argument of the special case follows.

4. Decompositions

Proposition 3. Let E be a definable subset of Rn = Rk × Rn−k of
dimension l ≤ k. Let C be a definable subset of E of constant dimension
l perfectly situated relative to Rn−k. Then E = A ∪ B, where A and B are
definable, A is of constant dimension l perfectly situated relative to Rn−k,
C ⊂ A and there is M > 0 such that for each pair of definable sets A′ ⊂ A
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and B′ ⊂ B, there is a definable set Z ⊂ A′∪B′ of dimension < l such that
A′, B′ are simply Z-separated with constant M.

Proof. Case I: l = k. By a cell decomposition, Proposition 0 and Lem-
ma 1, E can be represented in the form

E =
⋃

µ,ν

ϕµν ∪ S,

where ϕµν and S are as in Lemma 7 (where m = n− k) and
⋃{ϕµν | ϕµν ⊂

C, (µ, ν) ∈ Γ} is dense in C. Lemma 7 concludes the proof.

Case II: l < k. By Proposition 0 and Lemma 0, C = C1∪. . .∪Cs, where
each Ci is definable of constant dimension l and there exists a permutation
of variables αi : Rk → Rk such that C̃i = (αi × id|Rn−k)(Ci) is perfectly
situated relative to Rn−l.

If now (αi × id|Rn−k)(E) = Ai ∪ Bi are appropriate decompositions
following from Case I, it is enough to put

A =
s⋃

i=1

(α−1
i × id|Rn−k)(Ai) and B =

s⋂

i=1

(α−1
i × id|Rn−k)(Bi).

Now we will modify the set Z; in particular, we will be able to have Z
perfectly situated relative to Rn−k.

Lemma 8. Let A,B,A∗, B∗, Z, Z∗, C, S and T be subsets of Rn such
that A,B are simply Z-separated , Z ⊂ S ∪ T and C ⊂ A is such that
d(y,A) = d(y, C) for each y ∈ T . Assume that T ∪ C = A∗ ∪ B∗, where
A∗, B∗ are simply Z∗-separated. Then:

(1) if C ⊂ A∗, then A,B are simply S ∪ (A∗ ∩ T ) ∪ Z∗-separated ;
(2) if T ⊂ A∗, then A,B are simply S ∪ (A∗ ∩ C) ∪ Z∗-separated.

Proof. (1) Let x ∈ A. There exists y ∈ Z such that d(x,B) ≥ 2Md(x,Z)
≥ M |x − y|. Suppose y 6∈ S ∪ (A∗ ∩ T ). Then y ∈ B∗ ∩ T ; hence, |x − y|
≥ d(x,A) = d(x,C) ≥ d(y,A∗) ≥M |y − z|, where z ∈ Z∗. Consequently,

|x− z| ≤ |x− y|+ |y − z| ≤ (1 + 1/M)|x− y|
≤ (1/M)(1 + 1/M)d(x,B).

(2) Let x ∈ A. There is y ∈ Z such that d(x,B) ≥ M |x − y|. Suppose
y 6∈ S. Then y ∈ T , and so y ∈ A∗. There is z ∈ C such that |x − y| ≥
d(y,A) = d(y, C) ≥ 1

2 |y − z|.
If z ∈ A∗, then z ∈ A∗ ∩ C and |x− z| ≤ |x− y|+ |y − z| ≤ 3

2 |x− y| ≤
3
2M

−1d(x,B).
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Suppose now that z 6∈ A∗. Consequently, z ∈ B∗ and |y−z| ≥ d(z,A∗) ≥
M |z − t|, for some t ∈ Z∗. Then

|x− t| ≤ |x− z|+ |z − t| ≤ |x− z|+M−1|y − z|
≤ |x− y|+ |y − z|+M−1|y − z| ≤ |x− y|+ 2(1 +M−1)|x− y|
= (3 + 2M−1)|x− y| ≤M−1(3 + 2M−1)d(x,B).

Lemma 9. If P ⊂ Q are two definable subsets of Rn, Q is closed of
constant dimension q (q ≥ 1) and dimP < q, then there exists a definable
set P ′ ⊂ Q of constant dimension q − 1 such that P ⊂ P ′.

Proof. Use a triangulation [1, Chap. 8, (2.9)] compatible with P and Q.

Proposition 4. Let A and B be definable subsets of Rn of constant
dimension l ≤ k simply separated relative to a definable set Z ⊂ A ∪ B of
dimension < l. Suppose that A is perfectly situated relative to Rn−k. Then
there exists a definable set Z̃ ⊂ A ∪ B of dimension < l perfectly situated
relative to Rn−k such that A, B are simply separated relative to Z̃.

Proof. Induction on l. By Lemma 9, Z ⊂ S∪T , where S, T are definable
of constant dimension l− 1 such that S ⊂ A and T ⊂ B, and there exists a
definable set C ⊂ A of constant dimension l − 1 such that for each y ∈ T ,
d(y,A) = d(y, C). By Proposition 3, T ∪ C = A∗ ∪ B∗, where A∗, B∗ are
definable of constant dimension l − 1, A∗ is perfectly situated relative to
Rn−k, C ⊂ A∗ and A∗, B∗ are simply separated relative to a definable set
Z∗ ⊂ A∗ ∪ B∗ of dimension < l − 1. By the induction hypothesis we can
assume Z∗ is perfectly situated relative to Rn−k and, by Lemma 8(1), A, B
are simply separated relative to the set S ∪ (A∗ ∩T )∪Z∗, perfectly situated
relative to Rn−k.

Proposition 5. Let A and B be definable subsets of Rn of constant
dimension l ≤ k simply separated relative to a definable set Z ⊂ A ∪ B of
dimension < l. Suppose that A is perfectly situated relative to Rn−k. Then
there exists a definable set Z̃ ⊂ B of dimension < l perfectly situated relative
to Rn−k such that A, B are simply separated relative to Z̃.

Proof. Induction on l. By Proposition 4, we can assume that Z is per-
fectly situated relative to Rn−k. Put S = Z ∩ B and let T be a definable
subset of A of constant dimension l−1 such that Z∩A ⊂ T . Let C be a defin-
able subset of B of constant dimension l− 1 such that d(x,B) = d(x,C) for
each x ∈ T . By Proposition 3 and the induction hypothesis, T∪C = A∗∪B∗,
where A∗, B∗ are definable sets of constant dimension l− 1, A∗ is perfectly
situated relative to Rn−k, T ⊂ A∗ and A∗, B∗ are simply separated relative
to a definable set Z∗ ⊂ B∗ of dimension < l − 1, perfectly situated relative
to Rn−k. Since A∗∩B∗ is nowhere dense in B∗ and B∗ is of constant dimen-
sion, we have B∗ ⊂ C ⊂ B and Z∗ ⊂ B. By Lemma 8(2), A, B are simply
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separated relative to S ∪ (A∗ ∩ C) ∪ Z∗, which is a subset of B perfectly
situated relative to Rn−k.

Proposition 6. Let P and Q be closed definable subsets of Rn of di-
mensions ≤ k and let P be perfectly situated relative to Rn−k. Then there
exists a closed definable set S ⊂ Q perfectly situated relative to Rn−k, of
dimension ≤ min(dimP,dimQ), such that P , Q are simply S-separated.

Proof. Case I: P and Q are both of constant dimension l. By Proposi-
tions 3 and 5, P∪Q = A∪B, where A, B are closed definable sets of constant
dimension l, A is perfectly situated relative to Rn−k, P ⊂ A and A, B are
simply separated relative to a closed definable set Z ⊂ B of dimension < l,
perfectly situated relative to Rn−k. Since B \ Z ⊂ B \ A ⊂ Q and B is of
constant dimension l, we have B ⊂ Q. By Proposition 2(2), (Q\B)∪A = A
and (Q \B)∪B = Q are simply (Q \B)∪Z-separated; hence, P and Q are
S-separated, where S = Q \B ∪ Z (⊂ (A ∩Q) ∪ Z).

Case II: P and Q are both of constant dimensions p and q, respectively,
and p 6= q. This reduces to Case I by Lemma 9 and Proposition 2(4).

Case III: general, reduces to the previous ones by representing P and
Q as finite unions of sets of constant dimension and using Proposition 2(2).

5. Proof of Theorem 0

Part 1. We have E = E◦∪E∗, where E◦ is closed of constant dimension
k and E∗ is closed of dimension < k. By Lemma 0,

E◦ =
m⋃

i=1

E◦i ,

where E◦i is definable closed of constant dimension k, perfectly situated
relative to Vi. By Proposition 3,

E◦ = A1 ∪B1,

where A1, B1 are closed definable of constant dimension k, A1 is perfectly
situated relative to V1, E◦1 ⊂ A1, and any pair of definable subsets A′1
and B′1 of A1 and B1, respectively, is simply separated relative to some set
Z1 ⊂ A′1 ∪B′1 of dimension < k.

Then E◦2 \A1 ⊂ B1 is of constant dimension k, perfectly situated relative
to V2. By Proposition 3,

B1 = A2 ∪B2,

where A2, B2 are closed definable of constant dimension k, A2 is perfectly
situated relative to V2, E◦2 \ A1 ⊂ A2, and any pair of definable subsets A′2
and B′2 of A2 and B2, respectively, is simply separated relative to some set
Z2 ⊂ A′2 ∪B′2 of dimension < k.
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Then E◦3 \ (A1 ∪A2) ⊂ B2 is of constant dimension k, perfectly situated
relative to V3. By Proposition 3,

B2 = A3 ∪B3,

where A3, B3 are closed definable of constant dimension k, A3 is perfectly
situated relative to V3, E◦3 \(A1∪A2) ⊂ A3, and any pair of definable subsets
A′3 and B′3 of A3 and B3, respectively, is simply separated relative to some
set Z3 ⊂ A′3 ∪B′3 of dimension < k.

We continue this process by induction up to the mth step, when
Bm−1 = Am ∪Bm.

Since E◦ = E◦1 ∪ . . . ∪ E◦m ⊂ A1 ∪ . . . ∪ Am, we have E◦ = A1 ∪ . . . ∪ Am
(and since Bm is of constant dimension k and dimBm = dim(Bm ∩ (A1 ∪
. . . ∪Am)) ≤ dim((B1 ∩A1) ∪ . . . ∪ (Bm ∩ Am)) < k, we have Bm = ∅).

By Proposition 5, for each pair i, j ∈ {1, . . . ,m} such that i < j there
exists a closed definable set Zij ⊂ Ai of dimension < k, perfectly situated
relative to Vj , such that Ai and Aj are simply Zij-separated.

By Remark 0,
E∗ =

m⋃

i=1

E∗i ,

where E∗i is closed definable perfectly situated relative to Vi.
Put Pi = Ai ∪ E∗i (i = 1, . . . ,m). Then Pi is closed perfectly situated

relative to Vi. By Propositions 6 and 2(2), for any i, j ∈ {1, . . . ,m} such
that i < j, there exists a closed definable set Tij ⊂ Pj of dimension < k,
perfectly situated relative to Vj , such that Pi, Pj are simply Tij-separated.

Part 2. Now we define a family (Ci1...iµν) of closed definable sets, where
1 ≤ i1 < . . . < iµ < ν ≤ m are integers. We use induction on ν.

If ν = 1, we put C1 = P1. If ν = 2, we put C2 = P2 and C12 = T12.
Let ν > 1. We define Ci1...iµν by induction on µ.
If µ = 0, we put Cν = Pν . If µ = 1, we put Ci1ν = Ti1ν .
Suppose 1 < µ < ν. Then the set Dµ

ν defined by

Dµ
ν =

⋃
{Cj1...jσν | 1 ≤ j1 < . . . < jσ < ν, σ < µ}

is perfectly situated relative to Vν .
If now 1 ≤ i1 < . . . < iµ < ν are integers, there exists a closed definable

set Ci1...iµν ⊂ Ci1...iµ of dimension < k, perfectly situated relative to Vν ,
such that Dµ

ν and Ci1...iµ are simply Ci1...iµν-separated.

Lemma 10. Let 1 ≤ j1 < . . . < jσ < λ ≤ m and 1 ≤ i1 < . . . < iµ <
ν ≤ m be integers and λ < ν.

(1) If µ ≤ σ, then Cj1...jσλ and Ci1...iµν are simply separated relative to
Cj1...jσλν .

(2) If µ ≥ σ and iσ+1 > λ, then Cj1...jσλ and Ci1...iµν are simply sepa-
rated relative to Cj1...jσλiσ+1...iµν .
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Proof. (1) This follows from Ci1...iµν ⊂ Dσ+1
ν .

(2) We use induction on µ−σ. If µ = σ, see (1). Suppose µ > σ. By (1),
Cj1...jσλ and Ci1...iσiσ+1 are simply separated relative to Cj1...jσλiσ+1 . Hence,
Cj1...jσλ and Ci1...iµν are simply separated relative to Cj1...jσλiσ+1 . By the
induction hypothesis Cj1...jσλiσ+1 and Ci1...iµν are simply separated relative
to Cj1...jσλiσ+1...iµν and we conclude by Proposition 2(3).

Part 3. Put Sν =
⋃{Ci1...iµν | 1 ≤ i1 < . . . < iµ < ν} for each ν ∈

{1, . . . ,m}. Then Sν is perfectly situated relative to Vν .
We will show that if 1 ≤ λ < ν ≤ m, then Sλ and Sν are simply

separated.
By Proposition 2(2), it suffices to check that if we have two sequences

1 ≤ j1 < . . . < jσ < λ and 1 ≤ i1 < . . . < iµ < ν, then Cj1...jσλ and Ci1...iµν
are simply Sλ ∩Sν-separated. If µ ≤ σ, this follows from Lemma 10(1); and
if µ > σ and iσ+1 > λ, this follows from Lemma 10(2).

Suppose now that µ > σ and iσ+1 ≤ λ. If λ occurs among iσ+1, . . . , iµ,
then Ci1...iµν ⊂ Sλ∩Sν and clearly Cj1...jσλ and Ci1...iµν are simply Sλ∩Sν-
separated. Otherwise, take % ∈ {1, . . . , µ} such that i% < λ and iω > λ if
% < ω ≤ µ. By Lemma 10(1), Ci1...i% and Cj1...jσλ are simply Ci1...i%λ-
separated; hence, Ci1...iµν and Cj1...jσλ are simply Ci1...i%λ-separated. By
Lemma 10(2), Ci1...i%λ and Ci1...iµν are simply Ci1...i%λi%+1...iµν-separated.
By Proposition 2(3), Ci1...iµν and Cj1...jσλ are simply Ci1...i%λi%+1...iµν-
separated; hence, simply Sλ ∩ Sν-separated. This ends the proof.
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