A decomposition of a set definable in an o-minimal structure into perfectly situated sets

by Wieseaw Paweucki (Kraków)

Dedicated to my wife Jolanta

Abstract

A definable subset of a Euclidean space X is called perfectly situated if it can be represented in some linear system of coordinates as a finite union of (graphs of) definable \mathcal{C}^{1}-maps with bounded derivatives. Two subsets of X are called simply separated if they satisfy the Łojasiewicz inequality with exponent 1 . We show that every closed definable subset of X of dimension k can be decomposed into a finite family of closed definable subsets each of which is perfectly situated and such that any two different sets of the decomposition are simply separated and their intersection is of dimension $<k$.

Introduction. We will assume that there is given an o-minimal structure in the ordered field \mathbb{R} of real numbers (see [1] for the definition and fundamental properties of o-minimal structures).

Let M be a \mathcal{C}^{1}-submanifold of \mathbb{R}^{n} of dimension l and let V be a linear subspace of \mathbb{R}^{n} of dimension $n-k$, where $k \geq l$. We will call M perfectly situated relative to V if the set of the tangents $\left\{T_{a} M \mid a \in M\right\}$ is a relatively compact subset of the set $\left\{W \in \mathbf{G}_{l}\left(\mathbb{R}^{n}\right) \mid W \cap V=\{0\}\right\}$, open in the Grassmann manifold of l-dimensional linear subspaces of \mathbb{R}^{n}. Let A now be a definable subset of \mathbb{R}^{n} of dimension $\leq k$. Then A is a finite union $\bigcup_{i} M_{i}$ of definable \mathcal{C}^{1}-submanifolds. We will call A perfectly situated relative to V if so is each M_{i}. (This does not depend on the representation $A=\bigcup_{i} M_{i}$; cf. [1, Chap. 7, (3.2)].)

Proposition 0 . Let W be a linear complement of V in \mathbb{R}^{n}; i.e. $\mathbb{R}^{n}=$ $W \oplus V$. The following conditions are equivalent:
(1) A is perfectly situated relative to V.

[^0](2) A is a finite disjoint union $\bigcup_{i} \widehat{\varphi}_{i}$ of graphs of definable \mathcal{C}^{1}-maps $\varphi_{i}: \Lambda_{i} \rightarrow V$ defined on \mathcal{C}^{1}-submanifolds $\Lambda_{i} \subset W$ with bounded derivatives (here $\widehat{\varphi}_{i}$ stands for the graph $\left\{w+\varphi_{i}(w) \mid w \in \Lambda_{i}\right\}$ of φ_{i}).
(3) There is $C>0$ such that if $a \in A,\left(x_{\nu}\right)_{\nu \in \mathbb{N}}$ is a sequence of points of $A \backslash\{a\}$ convergent to a and $v=\lim _{\nu \rightarrow \infty}\left(x_{\nu}-a\right) /\left|x_{\nu}-a\right|$, then $d(v, V)$ $\geq C\left({ }^{1}\right)$.
(4) Every definable subset of \bar{A} is perfectly situated relative to V.
(5) A is perfectly situated relative to V^{\prime} for all V^{\prime} from a neighbourhood of V in $\mathbf{G}_{n-k}\left(\mathbb{R}^{n}\right)$.
(6) A is perfectly situated relative to any linear subspace of V.

Proof. (1) $\Leftrightarrow(2)$ by $[1$, Chap. $7,(3.2)] .(1) \Leftrightarrow(3)$ by curve selection (cf. [1, Chap. 6, (1.5)] and the fact that a definable curve is \mathcal{C}^{1} at its extremity. The others are simple consequences.

The notion of a perfectly situated subset was used by the author in [5, Chap. II].

Let P and Q be any two subsets of \mathbb{R}^{n}. We will say that P and Q are simply separated if there exists $C>0$ such that for each $x \in P, d(x, Q) \geq$ $C d(x, P \cap Q)$. This condition is symmetric with respect to P and Q. Indeed, for each $y \in Q$ and $\varepsilon>0$, there is $x \in P$ such that $d(y, P)+\varepsilon>|y-x|$; hence $(C+1)|y-x| \geq d(x, P)+C|y-x| \geq C(d(x, P \cap Q)+|y-x|) \geq C d(y, P \cap Q) ;$ consequently, $d(y, P) \geq \frac{C}{C+1} d(y, P \cap Q)$. In other words, P and Q are simply separated if they satisfy the (global) Łojasiewicz inequality with exponent 1 (cf. [3, p. 139]).

The main result of the present paper is the following
Theorem 0. Let $\Sigma=\{\sigma \mid \sigma \subset\{1, \ldots, n\}$, $\operatorname{card} \sigma=n-k\}=\left\{\sigma_{1}, \ldots, \sigma_{m}\right\}$, where $m=\binom{n}{k}$. Let $V_{i}=\bigoplus_{\nu \in \sigma_{i}} \mathbb{R} e_{\nu}(i=1, \ldots, m)$, where e_{1}, \ldots, e_{n} denote the canonical basis in \mathbb{R}^{n}. Any definable closed subset E of \mathbb{R}^{n} of dimension k is the union $E=\bigcup_{i=1}^{m} S_{i}$ of definable closed subsets S_{i} such that for each i, S_{i} is perfectly situated relative to V_{i} and for each $j \neq i, S_{i}$ and S_{j} are simply separated and $\operatorname{dim}\left(S_{i} \cap S_{j}\right)<k$.

In the subanalytic case similar results have been formulated and proved in a different way by Parusiński [4]. We prove Theorem 0 by a construction based on Lemma 1 below and the Mean Value Theorem.

In the proof of Theorem 0 we will use the following
Lemma 0. Let $V_{i}(i=1, \ldots, m)$ be as in Theorem 0. If E is a definable subset of \mathbb{R}^{n} of constant dimension k (i.e., every nonempty open definable subset of E is of dimension k), then $E=\bigcup_{i=1}^{m} E_{i}$, where for each i, E_{i} is definable of constant dimension k, perfectly situated relative to V_{i}.

$$
\left(^{1}\right) d(x, A)=\inf \{|x-a| \mid a \in A\} \text { if } A \neq \emptyset \text { and } d(x, \emptyset)=1
$$

Proof. It reduces to the case that E is a C^{1}-submanifold, when it follows from linear algebra and the fact that the Gauss mapping $E \ni x \mapsto T_{x} E \in$ $\mathbf{G}_{k}\left(\mathbb{R}^{n}\right)$ is definable.

Remark 0 . If the set E is of constant dimension l, where $l<k$, then again $E=\bigcup_{i=1}^{m} E_{i}$, where for each i, E_{i} is definable of constant dimension l, perfectly situated relative to V_{i}. Indeed, if $W_{j}\left(j=1, \ldots, p, p=\binom{n}{l}\right)$ are the corresponding linear subspaces of dimension $n-l$ and $E=\bigcup_{j=1}^{p} E_{j}^{\prime}$, where for each j, E_{j}^{\prime} is of constant dimension l perfectly situated relative to W_{j}, we put $E_{i}=\bigcup\left\{E_{j}^{\prime} \mid V_{i} \subset W_{j}\right\}$.

Acknowledgements. The author thanks Professor Stanisław Łojasiewicz and the anonymous referee for helpful comments and remarks on the paper. He also thanks Mr. Jerzy Trzeciak for pointing out several language mistakes in the original text.

1. Key lemma and consequences. The proof of Theorem 0 is based on the following elementary

Lemma 1. Let $f_{i}: E \rightarrow \mathbb{R}(i=1, \ldots, p)$ be a finite family of definable bounded functions on the same definable set $E \subset \mathbb{R}^{m}$ and let $\eta>0$. Then E can be represented as a finite union $E=\bigcup_{\mu} A_{\mu}$ of definable sets $A_{\mu} \subset \mathbb{R}^{m}$ such that for each μ there exists $\varepsilon_{\mu} \in(0, \eta)$ such that for each i, either $\left|f_{i}\right| \leq \varepsilon_{\mu}$ on A_{μ} or $\left|f_{i}\right| \geq 4 \varepsilon_{\mu}$ on A_{μ}.

Proof. Let $\Delta=\{\delta \mid \delta \subset\{1, \ldots, p\}\}$ and for each $\delta \in \Delta$ and $\varepsilon \in(0, \eta)$, let $\Omega(\delta, \varepsilon)=\left\{y=\left(y_{1}, \ldots, y_{p}\right) \in \mathbb{R}^{p}| | y_{i} \mid<\varepsilon\right.$ if $i \in \delta,\left|y_{i}\right|>4 \varepsilon$ if $\left.i \notin \delta\right\}$. Then the sets $\Omega(\delta, \varepsilon)$ form an open covering of \mathbb{R}^{p}. Let $f=\left(f_{1}, \ldots, f_{p}\right): E \rightarrow \mathbb{R}^{p}$. Since $f(E)$ is bounded there is a finite family $\left\{\Omega\left(\delta_{\mu}, \varepsilon_{\mu}\right)\right\}$ covering $f(E)$ and the lemma follows.

Lemma 2. Let $f_{i}: E \rightarrow \mathbb{R}(i=1, \ldots, p)$ be a finite family of definable functions on the same set $E \subset \mathbb{R}^{m}$ and let $K>0$. Then E can be represented as a finite union $E=\bigcup_{\mu} A_{\mu}$ of definable sets A_{μ} such that for each μ there exists $M_{\mu} \geq K$ such that for each i, either $\left|f_{i}\right| \leq M_{\mu}$ on A_{μ} or $\left|f_{i}\right| \geq 4 M_{\mu}$ on A_{μ}.

Proof. Take $1 / f_{i}$ in place of f_{i} in Lemma 1.
Lemma 3. Let $\pi: \mathbb{R}^{m} \rightarrow \mathbb{R}^{m-1}$ denote the projection $\pi\left(x_{1}, \ldots, x_{m}\right)=$ $\left(x_{1}, \ldots, x_{m-1}\right)$. Let \mathcal{A} be any finite family of definable subsets of \mathbb{R}^{m}. Then there exists a definable cell decomposition \mathcal{C} of \mathbb{R}^{m} compatible with \mathcal{A} and such that for each $C_{1}, C_{2} \in \mathcal{C}$, if $\operatorname{dim} C_{1}=\operatorname{dim} C_{2}=m-1$ and $\pi\left(C_{1}\right)=$ $\pi\left(C_{2}\right)$ is open in \mathbb{R}^{m-1}, then there is $v \in \mathbb{R}^{m} \backslash\{0\}$ such that C_{1} and C_{2} are perfectly situated relative to $\mathbb{R} v$.

Proof. We have $C_{i}=\left\{\left(u, \varphi_{i}(u)\right) \mid u \in \Omega\right\}, i=1,2$, where Ω is open in \mathbb{R}^{m-1} and $u=\left(x_{1}, \ldots, x_{m-1}\right)$. By [1, Chap. $\left.7,(3.2)\right]$, we can assume φ_{i} are \mathcal{C}^{1} and, by Lemma 2 , that there is $M \geq 1$ such that, for each $i=1,2$, $j=1, \ldots, m-1,\left|\partial \varphi_{i} / \partial x_{j}\right| \leq M$ on Ω or $\left|\partial \varphi_{i} / \partial x_{j}\right| \geq 4 M$ on Ω. Moreover, one can assume that there exist $\mu, \nu \in\{1, \ldots, m-1\}$ such that $\left|\partial \varphi_{1} / \partial x_{\mu}\right| \geq$ $\left|\partial \varphi_{1} / \partial x_{j}\right|$ and $\left|\partial \varphi_{2} / \partial x_{\nu}\right| \geq\left|\partial \varphi_{2} / \partial x_{j}\right|$ on Ω, for each $j=1, \ldots, m-1$, and each of the functions $\partial \varphi_{i} / \partial x_{j}$ is of constant sign on Ω.

CASE I: $\left|\partial \varphi_{1} / \partial x_{\mu}\right| \leq M$ and $\left|\partial \varphi_{2} / \partial x_{\nu}\right| \leq M$. We take $v=(0, \ldots, 0,1)$.
CASE II: $\left|\partial \varphi_{1} / \partial x_{\mu}\right| \geq 4 M$ and $\left|\partial \varphi_{2} / \partial x_{\nu}\right| \leq M$. Put $v=\left(a_{1}, \ldots, a_{m}\right)$, where $a_{j}=0$ for $j \neq \mu, m, a_{\mu}=\frac{1}{2} M^{-1}$ and $a_{m}=1$. Then the sine of the angle α_{1} between v and the tangent to C_{1} is

$$
\frac{\left|1-a_{\mu}\left(\partial \varphi_{1} / \partial x_{\mu}\right)\right|}{|v| \sqrt{1+\left|\operatorname{grad} \varphi_{1}\right|^{2}}} \geq \frac{\frac{1}{4} M^{-1}\left|\partial \varphi_{1} / \partial x_{\mu}\right|}{|v| \sqrt{m}\left|\partial \varphi_{1} / \partial x_{\mu}\right|}=\frac{1}{4|v| \sqrt{m} M}
$$

On the other hand, the sine of the angle α_{2} between v and the tangent to C_{2} is

$$
\frac{\left|1-a_{\mu}\left(\partial \varphi_{2} / \partial x_{\mu}\right)\right|}{|v| \sqrt{1+\left|\operatorname{grad} \varphi_{2}\right|^{2}}} \geq \frac{1-\frac{1}{2} M^{-1} M}{|v| \sqrt{m} M}=\frac{1}{2|v| \sqrt{m} M}
$$

CASE III: $\left|\partial \varphi_{1} / \partial x_{\mu}\right| \geq 4 M$ and $\left|\partial \varphi_{2} / \partial x_{\nu}\right| \geq 4 M$, where $\mu=\nu$. Take the same v as in Case II.

CASE IV: $\left|\partial \varphi_{1} / \partial x_{\mu}\right| \geq 4 M,\left|\partial \varphi_{2} / \partial x_{\nu}\right| \geq 4 M, \mu \neq \nu$ and $\left(\partial \varphi_{1} / \partial x_{\mu}\right) \times$ $\left(\partial \varphi_{1} / \partial x_{\nu}\right) \geq 0$ on Ω. Put $a_{\mu}=\frac{1}{3} M^{-1}, a_{\nu}=\frac{2}{3} M^{-1}, a_{m}=1$ and $a_{j}=0$ if $j \neq \mu, \nu, m$. Then

$$
\begin{aligned}
\sin \alpha_{1} & =\frac{\left|1-a_{\mu}\left(\partial \varphi_{1} / \partial x_{\mu}\right)-a_{\nu}\left(\partial \varphi_{1} / \partial x_{\nu}\right)\right|}{|v| \sqrt{1+\left|\operatorname{grad} \varphi_{1}\right|^{2}}} \\
& \geq \frac{\left|a_{\mu}\left(\partial \varphi_{1} / \partial x_{\mu}\right)+a_{\nu}\left(\partial \varphi_{1} / \partial x_{\nu}\right)\right|-1}{|v| \sqrt{1+\left|\operatorname{grad} \varphi_{1}\right|^{2}}} \geq \frac{\left|a_{\mu}\left(\partial \varphi_{1} / \partial x_{\mu}\right)\right|-1}{|v| \sqrt{1+\left|\operatorname{grad} \varphi_{1}\right|^{2}}} \\
& \geq \frac{\left|\partial \varphi_{1} / \partial x_{\mu}\right|\left(a_{\mu}-\left|\partial \varphi_{1} / \partial x_{\mu}\right|^{-1}\right)}{|v| \sqrt{m}\left|\partial \varphi_{1} / \partial x_{\mu}\right|} \geq \frac{1}{12|v| \sqrt{m} M} \\
\sin \alpha_{2} & \geq \frac{\frac{2}{3} M^{-1}\left|\partial \varphi_{2} / \partial x_{\nu}\right|-\frac{1}{3} M^{-1}\left|\partial \varphi_{2} / \partial x_{\mu}\right|-1}{|v| \sqrt{1+\left|\operatorname{grad} \varphi_{2}\right|^{2}}} \\
& \geq \frac{\frac{2}{3} M^{-1}\left|\partial \varphi_{2} / \partial x_{\nu}\right|-\frac{1}{3} M^{-1}\left|\partial \varphi_{2} / \partial x_{\nu}\right|-1}{|v| \sqrt{1+\left|\operatorname{grad} \varphi_{2}\right|^{2}}} \\
& =\frac{\frac{1}{3} M^{-1}\left|\partial \varphi_{2} / \partial x_{\nu}\right|-1}{|v| \sqrt{1+\left|\operatorname{grad} \varphi_{2}\right|^{2}} \geq \frac{1}{12|v| \sqrt{m} M}}
\end{aligned}
$$

CASE V: $\left|\partial \varphi_{1} / \partial x_{\mu}\right| \geq 4 M,\left|\partial \varphi_{2} / \partial x_{\nu}\right| \geq 4 M, \mu \neq \nu$ and $\left(\partial \varphi_{1} / \partial x_{\mu}\right) \times$ $\left(\partial \varphi_{1} / \partial x_{\nu}\right) \leq 0$ on Ω. One easily modifies Case IV, putting $a_{\mu}=\frac{1}{3} M^{-1}$, $a_{\nu}=-\frac{2}{3} M^{-1}, a_{m}=1$ and $a_{j}=0$ for $j \neq \mu, \nu, m$.

Let X be a subset of \mathbb{R}^{m} and let $\alpha>0$. As in [6, p. 79], we call X α-regular if there exists $C>0$ such that any two points a, b of X can be joined in X by a rectifiable arc $\gamma:[0,1] \rightarrow X$ of length $|\gamma| \leq C|a-b|^{\alpha}$.

Theorem 1 (Kurdyka [2], Parusiński [4]). If Ω is any definable open subset of \mathbb{R}^{m}, then there exists a finite family $\left(G_{i}\right)_{i}$ of disjoint, definable, open, 1-regular subsets of Ω such that $\operatorname{dim}\left(\Omega \backslash \bigcup_{i} G_{i}\right)<m$.

Proof. Consider the following two assertions:
$\left(A_{m}\right) \quad$ For any definable subset Ω of \mathbb{R}^{m} and any nonempty open subset V of $\mathbb{R}^{m} \backslash\{0\}$, there exists a finite family $\left(G_{i}\right)_{i}$ of disjoint, definable, open, 1-regular subsets of Ω such that $\operatorname{dim}\left(\Omega \backslash \bigcup_{i} G_{i}\right)<m$ and, for each i, there is $v_{i} \in V$ such that ∂G_{i} is perfectly situated relative to $\mathbb{R} v_{i}$.
$\left(B_{m}\right) \quad$ For any definable open subset D of \mathbb{R}^{m} there exists a finite family $\left(H_{j}\right)_{j}$ of disjoint, definable open subsets of D such that $\operatorname{dim}(D \backslash$ $\left.\bigcup_{j} H_{j}\right)<m$ and, for each j, there is $v_{j} \in \mathbb{R}^{m} \backslash\{0\}$ such that ∂H_{j} is perfectly situated relative to $\mathbb{R} v_{j}$.
$\left(A_{m-1}\right) \Rightarrow\left(B_{m}\right)$. By Lemma 3, we can assume that D is an open cell $D=\left\{\left(u, x_{m}\right) \mid u \in \Omega, \varphi_{1}(u)<x_{m}<\varphi_{2}(u)\right\}$ such that $C_{1}=\widehat{\varphi}_{1}$ and $C_{2}=\widehat{\varphi}_{2}$ are perfectly situated relative to a common line $\mathbb{R} v$ (the cases $\varphi_{1} \equiv-\infty$ or $\varphi_{2} \equiv+\infty$ can also occur but they will follow by a modification). By Proposition 0 and $\left(A_{m-1}\right)$, we can assume that $\pi(v) \neq 0$ and $\partial \Omega$ is perfectly situated relative to $\mathbb{R} \pi(v)$. Then $\partial D \subset C_{1} \cup C_{2} \cup(\partial \Omega \times \mathbb{R})$ is perfectly situated relative to $\mathbb{R} v$.
$\left(A_{m-1} \& B_{m}\right) \Rightarrow\left(A_{m}\right)$. Using $\left(B_{m}\right)$, Proposition 0 and a linear change of coordinates, we reduce to the case $\Omega=\left\{\left(u, x_{m}\right) \mid u \in Q, \varphi_{1}(u)<x_{m}<\right.$ $\left.\varphi_{2}(u)\right\}$, where Q is open in $\mathbb{R}^{m-1}, \varphi_{i}: Q \rightarrow \mathbb{R}(i=1,2)$ are definable \mathcal{C}^{1}-functions such that $\varphi_{1}<\varphi_{2}$ on Q, and $\left|\partial \varphi_{i} / \partial x_{j}\right| \leq M$ on Q for $i=$ $1,2, j=1, \ldots, m-1$, for some $M \geq 1$ (or $\varphi_{1} \equiv-\infty$ or $\varphi_{2} \equiv+\infty$). We can assume that $V=\Delta \times(\alpha-\varepsilon, \alpha+\varepsilon)$, where Δ is open bounded in $\mathbb{R}^{m-1} \backslash\{0\}$, $\alpha, \varepsilon \in \mathbb{R}, \varepsilon>0$.

Take $L>0$ such that $|u| \leq L$ for each $u \in \Delta$. Dividing Q we can assume that, for each i, j, there exists $\theta_{i j} \in \mathbb{R}$ such that $\left|\partial \varphi_{i} / \partial x_{j}-\theta_{i j}\right| \leq \eta$ on Q, where $0<\eta \leq \varepsilon /(8 L \sqrt{m-1})$. Moreover, by $\left(A_{m-1}\right)$, we can assume that Q is 1-regular and ∂Q is perfectly situated relative to some $u \in \Delta$.

Put $v=\left(u, a_{m}\right)$. The sine of the angle between v and the tangent to $C_{i}=\widehat{\varphi}_{i}$ is

$$
\begin{aligned}
& \frac{\left|a_{m}-\left\langle u, \operatorname{grad} \varphi_{i}\right\rangle\right|}{|v| \sqrt{1+\left|\operatorname{grad} \varphi_{i}\right|^{2}}} \geq \frac{\left|a_{m}-\left\langle u, \theta_{i}\right\rangle-\left\langle u, \operatorname{grad} \varphi_{i}-\theta_{i}\right\rangle\right|}{|v| \sqrt{m} M} \\
& \quad \geq \frac{\left|a_{m}-\left\langle u, \theta_{i}\right\rangle\right|-|u| \cdot\left|\operatorname{grad} \varphi_{i}-\theta_{i}\right|}{|v| \sqrt{m} M} \geq \frac{\varepsilon / 4-L \sqrt{m-1} \eta}{|v| \sqrt{m} M} \geq \frac{\varepsilon}{8|v| \sqrt{m} M}
\end{aligned}
$$

where $\theta_{i}=\left(\theta_{i 1}, \ldots, \theta_{i, m-1}\right)$ and $a_{m} \in\{\alpha-\varepsilon / 2, \alpha, \alpha+\varepsilon / 2\}$ is such that

$$
\left|a_{m}-\left\langle u, \theta_{i}\right\rangle\right| \geq \varepsilon / 4 \quad(i=1,2)
$$

In order to prove that Ω is 1-regular, we first observe that φ_{i} are Lipschitz (because Q is 1-regular and all first derivatives of φ_{i} are bounded; cf. [6, p. 76]). Taking the image of Ω under the Lipschitz automorphism

$$
Q \times \mathbb{R} \ni\left(u, x_{m}\right) \mapsto\left(u, x_{m}-\varphi_{1}(u)\right) \in Q \times \mathbb{R}
$$

we can assume that $\varphi_{1} \equiv 0$. Since Q is 1-regular and φ_{2} is Lipschitz, $\widehat{\varphi}_{2}$ is 1-regular. Let now $a=\left(u, a_{m}\right) \in \Omega$ and $b=\left(w, b_{m}\right) \in \Omega$, where $a_{m} \leq b_{m}$. Take an arc $\gamma:[0,1] \rightarrow Q$ such that $\gamma(0)=u, \gamma(1)=w$ and $|\gamma| \leq C|u-w|$. Then the $\operatorname{arc} \delta=\left(\gamma, a_{m}\right) \cup\left(\{w\} \times\left[a_{m}, b_{m}\right]\right)$ joins a and b, lies in $\bar{Q} \times(0,+\infty)$ and $|\delta| \leq(C+1)|a-b|$. If $\delta \nsubseteq \Omega$, let c be the first and d the last point of δ that lies on $\widehat{\varphi}_{2}$. Take an arc λ joining c and d on $\widehat{\varphi}_{2}$ such that $|\lambda| \leq$ $C^{\prime}|c-d| \leq C^{\prime}|\delta| \leq C^{\prime}(C+1)|a-b|$. Replacing the part of δ between c and d by λ, moving the resulting arc slightly downwards and adding suitable small vertical line segments, we obtain the required arc.
2. Admissible arcs. Let $\lambda=\left(\lambda_{1}, \ldots, \lambda_{m}\right):(\alpha, \beta) \rightarrow \mathbb{R}^{m}$ be \mathcal{C}^{1} on (α, β), where $\alpha, \beta \in \mathbb{R}$ and $\alpha<\beta$. We will call λ an admissible arc in \mathbb{R}^{m} if it satisfies the following conditions:

1) each of the functions λ_{i} and each of the derivatives λ_{i}^{\prime} is of constant sign;
2) for each i, either $\left|\lambda_{i}^{\prime}\right| \geq 1$ on (α, β) or $\left|\lambda_{i}^{\prime}\right|<1$ on (α, β);
3) for each i and j, either $\left|\lambda_{i}^{\prime}\right| \leq\left|\lambda_{j}^{\prime}\right|$ on (α, β) or $\left|\lambda_{i}^{\prime}\right| \geq\left|\lambda_{j}^{\prime}\right|$ on (α, β).

For any admissible arc λ, we put

$$
\nu(\lambda)=\min \left\{i| | \lambda_{i}^{\prime}\left|\geq\left|\lambda_{j}^{\prime}\right| \text { on }(\alpha, \beta), j=1, \ldots, m\right\} \quad \text { and } \quad f_{\lambda}=\lambda_{\nu(\lambda)}\right.
$$

For each $s, t \in(\alpha, \beta)$ and each $j=1, \ldots, m$,

$$
\begin{equation*}
\left|f_{\lambda}(t)-f_{\lambda}(s)\right| \geq\left|\lambda_{j}(t)-\lambda_{j}(s)\right| \tag{*}
\end{equation*}
$$

To see this we can assume that $f_{\lambda}^{\prime} \geq 0$, replacing perhaps λ by $\lambda(\alpha+\beta-t)$. Then, for any fixed $s \in(\alpha, \beta)$, consider the functions $\theta_{j}(t)=f_{\lambda}(t)-f_{\lambda}(s)-$ $\left|\lambda_{j}(t)-\lambda_{j}(s)\right|$ for $t \in[s, \beta)$. Since $\theta_{j}^{\prime}(t)=f_{\lambda}^{\prime}(t) \pm\left|\lambda_{j}^{\prime}(t)\right| \geq 0$ and $\theta_{j}(s)=0$, we have $\theta_{j} \geq 0$ and $f_{\lambda}(t)-f_{\lambda}(s) \geq\left|\lambda_{j}(t)-\lambda_{j}(s)\right|$.

We will say that λ is an admissible arc of the first kind if $\left|f_{\lambda}^{\prime}\right| \geq 1$; otherwise λ is of the second kind. For any admissible arc λ of the first kind, we put $c_{\lambda}=\alpha$ if $\left|f_{\lambda}\right|$ is increasing and $c_{\lambda}=\beta$ if $\left|f_{\lambda}\right|$ is decreasing. Since the limit $\lim _{t \rightarrow c_{\lambda}} f_{\lambda}(t) \in \mathbb{R}$ exists, it follows from $(*)$ that the limit $\lim _{t \rightarrow c_{\lambda}} \lambda(t) \in \mathbb{R}^{m}$ also exists; it will be denoted by $\lambda\left(c_{\lambda}\right)$.

Lemma 4. Let $\lambda:(\alpha, \beta) \rightarrow \mathbb{R}^{m}$ be an admissible arc of the first kind. Let $\widetilde{\lambda}(t)=(t, \lambda(t))$ and $T=\mathbb{R} \times\{0\} \subset \mathbb{R}^{1+m}$. Then, for each $t \in(\alpha, \beta)$,

$$
d(\widetilde{\lambda}(t), T) \geq \frac{1}{\sqrt{m+1}}\left|\widetilde{\lambda}(t)-\tilde{\lambda}\left(c_{\lambda}\right)\right|
$$

Proof. Replacing perhaps λ by $-\lambda$ or by $\mp \lambda(\alpha+\beta-t)$, we reduce to the case $f_{\lambda}>0$ and $f_{\lambda}^{\prime} \geq 1$ on (α, β). Then $c_{\lambda}=\alpha$. Apart from ($*$), we have $\left|f_{\lambda}(t)-f_{\lambda}(s)\right| \geq|t-s| ;$ hence,

$$
d(\widetilde{\lambda}(t), T)=|\lambda(t)| \geq f_{\lambda}(t) \geq f_{\lambda}(t)-f_{\lambda}(\alpha) \geq \frac{1}{\sqrt{m+1}}|\widetilde{\lambda}(t)-\widetilde{\lambda}(\alpha)|
$$

All the above definitions and Lemma 4 extend to $\operatorname{arcs} \lambda:(\alpha, \infty) \rightarrow \mathbb{R}^{m}$ $(\alpha \in \mathbb{R})$, when $c_{\lambda}=\alpha$, and to $\operatorname{arcs} \lambda:(-\infty, \beta) \rightarrow \mathbb{R}^{m}(\beta \in \mathbb{R})$, when $c_{\lambda}=\beta$.
3. Simple separation relative to a set. Let P, Q and Z be any subsets of \mathbb{R}^{n}. We will say that P and Q are simply separated relative to Z (or simply Z-separated) if there exists $C>0$ such that $d(x, Q) \geq C d(x, Z)$ for each $x \in P$.

Proposition 1. The following conditions are equivalent:
(i) P and Q are simply separated relative to Z;
(ii) $\bar{P} \cap \bar{Q} \subset \bar{Z}$ and $\bar{P} \cup \bar{Z}, \bar{Q} \cup \bar{Z}$ are simply separated.

Proof. (i) \Rightarrow (ii). If $z \in \bar{P} \cap \bar{Q}, d(z, Q)=0 \geq C d(z, Z)=0$, so $z \in \bar{Z}$. Therefore $(\bar{P} \cup \bar{Z}) \cap(\bar{Q} \cup \bar{Z})=\bar{Z}$. Let $x \in \bar{P}$. Then either $d(x, \bar{Q} \cup \bar{Z})$ $=d(x, Q) \geq C d(x, Z) \geq \min (C, 1) d(x, \bar{Z})$ or $d(x, \bar{Q} \cup \bar{Z})=d(x, \bar{Z}) \geq$ $\min (C, 1) d(x, \bar{Z})$.
(ii) \Rightarrow (i). If $x \in P$, then $d(x, Q \cup Z) \geq C d(x, Z)$ and either $d(x, Q)=$ $d(x, Q \cup Z) \geq \min (C, 1) d(x, Z)$ or $d(x, Q) \geq d(x, Q \cup Z)=d(x, Z) \geq$ $\min (C, 1) d(x, Z)$.

We will use the following easy

Proposition 2.

(1) If P, Q are simply Z-separated, $P^{\prime} \subset P, Q^{\prime} \subset Q, Z \subset Z^{\prime}$, then P^{\prime}, Q^{\prime} are simply Z^{\prime}-separated.
(2) If P_{i}, Q_{i} are simply Z_{i}-separated for $i=1, \ldots, s$, then $\bigcup_{i} P_{i}, \bigcup_{i} Q_{i}$ are simply $\bigcup_{i} Z_{i}$-separated.
(3) If P, Q are simply S-separated and S, Q are simply T-separated, then P, Q are simply T-separated.
(4) If $Q^{\prime} \subset Q, d(x, Q)=d\left(x, Q^{\prime}\right)$ for each $x \in P$, and P, Q^{\prime} are simply Z-separated, then P, Q are simply Z-separated.

Proof. It is left to the reader.
Lemma 5. Let $C=\left\{x=\left(u, x_{k}\right) \mid u=\left(x_{1}, \ldots, x_{k-1}\right) \in D, \alpha(u)<x_{k}<\right.$ $\beta(u)\}$ be an open definable cell in \mathbb{R}^{k}, possibly with $\alpha \equiv-\infty$ or $\beta \equiv+\infty$ but not both at the same time. Let $\varphi=\left(\varphi_{1}, \ldots, \varphi_{m}\right), \psi=\left(\psi_{1}, \ldots, \psi_{m}\right): C \rightarrow$ \mathbb{R}^{m} be \mathcal{C}^{1} definable mappings and φ be Lipschitz. Assume that there is $M \geq 1$ such that $\left|\partial \varphi_{i} / \partial x_{k}\right| \leq M$ for each $i \in\{1, \ldots, m\}$ and $\left|\partial \psi_{j} / \partial x_{k}\right| \geq 2 M$ for some $j \in\{1, \ldots, m\}$. Assume that, for each $u \in D$,

$$
(\alpha(u), \beta(u)) \ni x_{k} \mapsto \psi\left(u, x_{k}\right)-\varphi\left(u, x_{k}\right) \in \mathbb{R}^{m}
$$

is an admissible arc (of the first kind necessarily). Then (the graphs $\left(^{2}\right.$) of) φ and ψ are simply separated relative to $\bar{\psi} \backslash \psi$.

Proof. Let $x=\left(u, x_{k}\right) \in C$. By Lemma 4 we have

$$
\begin{aligned}
d((x, \psi(x) & -\varphi(x)), \bar{C} \times\{0\}) \\
& \geq \frac{1}{\sqrt{m+1}}\left|(x, \psi(x)-\varphi(x))-\left(u, c_{u}, \psi\left(u, c_{u}\right)-\varphi\left(u, c_{u}\right)\right)\right|
\end{aligned}
$$

where $c_{u} \in\{\alpha(u), \beta(u)\}$. Now, it is enough to apply to this inequality the Lipschitz automorphism

$$
\bar{C} \times \mathbb{R}^{m} \ni(x, y) \mapsto(x, y+\varphi(x)) \in \bar{C} \times \mathbb{R}^{m}
$$

Lemma 6. Let $\varphi: \Omega \rightarrow \mathbb{R}^{m}$ be a Lipschitz mapping on an open subset Ω of \mathbb{R}^{k}. Then $\bar{\varphi}$ and $\mathbb{R}^{k+m} \backslash\left(\Omega \times \mathbb{R}^{m}\right)$ are simply separated (i.e., they are simply $(\bar{\varphi} \backslash \varphi)$-separated).

Proof. Let $a \in \Omega$ and $b \in \partial \Omega$ be such that $|a-b|=d(a, \partial \Omega)$. Then

$$
d\left((a, \varphi(a)), \mathbb{R}^{k+m} \backslash\left(\Omega \times \mathbb{R}^{m}\right)\right)=|a-b| \geq L^{-1}|\varphi(a)-\bar{\varphi}(b)|
$$

hence

$$
d\left((a, \varphi(a)), \mathbb{R}^{k+m} \backslash\left(\Omega \times \mathbb{R}^{m}\right)\right) \geq \frac{1}{L+1}|(a, \varphi(a))-(b, \bar{\varphi}(b))|
$$

Corollary. If S is any subset of $\mathbb{R}^{k+m} \backslash\left(\Omega \times \mathbb{R}^{m}\right)$, then φ and S are simply $(\bar{\varphi} \backslash \varphi)$-separated.

Lemma 7. Let $\left(\Omega_{\mu}\right)_{\mu}$ be a finite family of open definable disjoint subsets of \mathbb{R}^{k}. For every μ, let $\varphi_{\mu \nu}: \Omega_{\mu} \rightarrow \mathbb{R}^{m}\left(\nu \in J_{\mu}\right)$ be a finite family of \mathcal{C}^{1} definable disjoint (as graphs) mappings such that there exists $M_{\mu} \geq 1$ such
$\left(^{2}\right)$ Here and in what follows we will identify a mapping with its graph.
that for each $\nu \in J_{\mu}, i \in\{1, \ldots, m\}, j \in\{1, \ldots, k\}$, either $\left|\partial \varphi_{\mu \nu i} / \partial x_{j}\right| \leq$ M_{μ} or $\left|\partial \varphi_{\mu \nu i} / \partial x_{j}\right| \geq 2 M_{\mu}$ on Ω_{μ}. Put

$$
\begin{aligned}
& A=\bigcup\left\{\varphi_{\mu \nu}\left|\forall i, j:\left|\partial \varphi_{\mu \nu i} / \partial x_{j}\right| \leq M_{\mu}\right\}\right. \\
& B=\bigcup\left\{\varphi_{\mu \nu}\left|\exists i, j:\left|\partial \varphi_{\mu \nu i} / \partial x_{j}\right| \geq 2 M_{\mu}\right\} .\right.
\end{aligned}
$$

Then there exists $M>0$ such that for each pair of definable sets $A^{\prime} \subset A$ and $B^{\prime} \subset B$ and any set $S \subset\left(\mathbb{R}^{k} \backslash \bigcup_{\mu} \Omega_{\mu}\right) \times \mathbb{R}^{m}$ there exists a definable set $Z \subset \overline{A^{\prime}} \cup \overline{B^{\prime}}$ of dimension $<k$ such that $B^{\prime} \cup S$ and A^{\prime} are simply Z-separated with constant M, i.e., for each $a \in B^{\prime} \cup S, d\left(a, A^{\prime}\right) \geq M d(a, Z)$.

Proof. Special case: $A^{\prime}=A$ and $B^{\prime}=B$. Let

$$
\begin{aligned}
\Gamma & =\left\{(\mu, \nu)\left|\forall i, j:\left|\partial \varphi_{\mu \nu i} / \partial x_{j}\right| \leq M_{\mu}\right\},\right. \\
\Delta_{j} & =\left\{(\mu, \nu)\left|\exists i:\left|\partial \varphi_{\mu \nu i} / \partial x_{j}\right| \geq 2 M_{\mu}\right\} \quad(j=1, \ldots, k) .\right.
\end{aligned}
$$

Then $B=\bigcup_{j} B_{j}$, where $B_{j}=\bigcup\left\{\varphi_{\mu \nu} \mid(\mu, \nu) \in \Delta_{j}\right\}$.
It suffices to prove the lemma for each B_{j} in place of B; then we will take $Z=\bigcup_{j} Z_{j}$, where Z_{j} corresponds to B_{j}. Of course, it is enough to consider the case $j=k$. Consequently, we will assume that $B=B_{k}$. By Theorem 1, we can assume that each Ω_{μ} is 1-regular; thus, all $\left(\varphi_{\mu \nu}\right)((\mu, \nu) \in \Gamma)$ are Lipschitz with a common constant L.

By a suitable cell decomposition compatible with all Ω_{μ}, we can assume that each Ω_{μ} is an open definable cell $C=\left\{x=\left(u, x_{k}\right) \mid u \in D, \alpha(u)<\right.$ $\left.x_{k}<\beta(u)\right\}$, and for each $u \in D,(\mu, \nu) \in \Gamma$ and $(\mu, \sigma) \in \Delta_{k}$,

$$
(\alpha(u), \beta(u)) \ni x_{k} \mapsto \varphi_{\mu \sigma}\left(u, x_{k}\right)-\varphi_{\mu \nu}\left(u, x_{k}\right) \in \mathbb{R}^{m}
$$

is an admissible arc. Now, by Lemma 5 and Corollary to Lemma 6, we obtain the required conclusion with $Z=\bigcup_{\mu, \nu}\left(\bar{\varphi}_{\mu, \nu} \backslash \varphi_{\mu \nu}\right)$ and M depending only on L, M_{μ}, m and k.

General case. This reduces to the special case by taking a cell decomposition \mathcal{C} of \mathbb{R}^{k} compatible with all sets $\Omega_{\mu}, \pi\left(\varphi_{\mu \nu} \cap A^{\prime}\right)$ and $\pi\left(\varphi_{\mu \nu} \cap B^{\prime}\right)$, where $\pi: \mathbb{R}^{k+m} \rightarrow \mathbb{R}^{k}$ is the projection $\pi\left(x_{1}, \ldots, x_{k+m}\right)=\left(x_{1}, \ldots, x_{k}\right)$, and considering the family $\varphi_{\mu \nu} \mid C$, where $C \in \mathcal{C}$ open is contained in Ω_{μ}. Then $\varphi_{\mu \nu} \mid C((\mu, \nu) \in \Gamma)$ are Lipschitz with the same constant L as in the special case and the argument of the special case follows.

4. Decompositions

Proposition 3. Let E be a definable subset of $\mathbb{R}^{n}=\mathbb{R}^{k} \times \mathbb{R}^{n-k}$ of dimension $l \leq k$. Let C be a definable subset of E of constant dimension l perfectly situated relative to \mathbb{R}^{n-k}. Then $E=A \cup B$, where A and B are definable, A is of constant dimension l perfectly situated relative to \mathbb{R}^{n-k}, $C \subset A$ and there is $M>0$ such that for each pair of definable sets $A^{\prime} \subset A$
and $B^{\prime} \subset B$, there is a definable set $Z \subset \overline{A^{\prime}} \cup \overline{B^{\prime}}$ of dimension $<l$ such that A^{\prime}, B^{\prime} are simply Z-separated with constant M.

Proof. CASE I: $l=k$. By a cell decomposition, Proposition 0 and Lemma $1, E$ can be represented in the form

$$
E=\bigcup_{\mu, \nu} \varphi_{\mu \nu} \cup S
$$

where $\varphi_{\mu \nu}$ and S are as in Lemma 7 (where $m=n-k$) and $\bigcup\left\{\varphi_{\mu \nu} \mid \varphi_{\mu \nu} \subset\right.$ $C,(\mu, \nu) \in \Gamma\}$ is dense in C. Lemma 7 concludes the proof.

Case II: $l<k$. By Proposition 0 and Lemma $0, C=C_{1} \cup \ldots \cup C_{s}$, where each C_{i} is definable of constant dimension l and there exists a permutation of variables $\alpha_{i}: \mathbb{R}^{k} \rightarrow \mathbb{R}^{k}$ such that $\widetilde{C}_{i}=\left(\alpha_{i} \times \mathrm{id} \mid \mathbb{R}^{n-k}\right)\left(C_{i}\right)$ is perfectly situated relative to \mathbb{R}^{n-l}.

If now $\left(\alpha_{i} \times \mathrm{id} \mid \mathbb{R}^{n-k}\right)(E)=A_{i} \cup B_{i}$ are appropriate decompositions following from Case I, it is enough to put

$$
A=\bigcup_{i=1}^{s}\left(\alpha_{i}^{-1} \times \mathrm{id} \mid \mathbb{R}^{n-k}\right)\left(A_{i}\right) \quad \text { and } \quad B=\bigcap_{i=1}^{s}\left(\alpha_{i}^{-1} \times \mathrm{id} \mid \mathbb{R}^{n-k}\right)\left(B_{i}\right)
$$

Now we will modify the set Z; in particular, we will be able to have Z perfectly situated relative to \mathbb{R}^{n-k}.

Lemma 8. Let $A, B, A_{*}, B_{*}, Z, Z_{*}, C, S$ and T be subsets of \mathbb{R}^{n} such that A, B are simply Z-separated, $Z \subset S \cup T$ and $C \subset \bar{A}$ is such that $d(y, A)=d(y, C)$ for each $y \in T$. Assume that $T \cup C=A_{*} \cup B_{*}$, where A_{*}, B_{*} are simply Z_{*}-separated. Then:
(1) if $C \subset A_{*}$, then A, B are simply $S \cup\left(A_{*} \cap T\right) \cup Z_{*}$-separated;
(2) if $T \subset A_{*}$, then A, B are simply $S \cup\left(A_{*} \cap C\right) \cup Z_{*}$-separated.

Proof. (1) Let $x \in A$. There exists $y \in Z$ such that $d(x, B) \geq 2 M d(x, Z)$ $\geq M|x-y|$. Suppose $y \notin S \cup\left(A_{*} \cap T\right)$. Then $y \in B_{*} \cap T$; hence, $|x-y|$ $\geq d(x, A)=d(x, C) \geq d\left(y, A_{*}\right) \geq M|y-z|$, where $z \in Z_{*}$. Consequently,

$$
\begin{aligned}
|x-z| & \leq|x-y|+|y-z| \leq(1+1 / M)|x-y| \\
& \leq(1 / M)(1+1 / M) d(x, B)
\end{aligned}
$$

(2) Let $x \in A$. There is $y \in Z$ such that $d(x, B) \geq M|x-y|$. Suppose $y \notin S$. Then $y \in T$, and so $y \in A_{*}$. There is $z \in C$ such that $|x-y| \geq$ $d(y, A)=d(y, C) \geq \frac{1}{2}|y-z|$.

If $z \in A_{*}$, then $z \in A_{*} \cap C$ and $|x-z| \leq|x-y|+|y-z| \leq \frac{3}{2}|x-y| \leq$ ${ }_{2}^{3} M^{-1} d(x, B)$.

Suppose now that $z \notin A_{*}$. Consequently, $z \in B_{*}$ and $|y-z| \geq d\left(z, A_{*}\right) \geq$ $M|z-t|$, for some $t \in Z_{*}$. Then

$$
\begin{aligned}
|x-t| & \leq|x-z|+|z-t| \leq|x-z|+M^{-1}|y-z| \\
& \leq|x-y|+|y-z|+M^{-1}|y-z| \leq|x-y|+2\left(1+M^{-1}\right)|x-y| \\
& =\left(3+2 M^{-1}\right)|x-y| \leq M^{-1}\left(3+2 M^{-1}\right) d(x, B)
\end{aligned}
$$

Lemma 9. If $P \subset Q$ are two definable subsets of \mathbb{R}^{n}, Q is closed of constant dimension $q(q \geq 1)$ and $\operatorname{dim} P<q$, then there exists a definable set $P^{\prime} \subset Q$ of constant dimension $q-1$ such that $P \subset P^{\prime}$.

Proof. Use a triangulation [1, Chap. 8, (2.9)] compatible with P and Q.
Proposition 4. Let A and B be definable subsets of \mathbb{R}^{n} of constant dimension $l \leq k$ simply separated relative to a definable set $Z \subset \bar{A} \cup \bar{B}$ of dimension $<l$. Suppose that A is perfectly situated relative to \mathbb{R}^{n-k}. Then there exists a definable set $\widetilde{Z} \subset \bar{A} \cup \bar{B}$ of dimension $<l$ perfectly situated relative to \mathbb{R}^{n-k} such that A, B are simply separated relative to \tilde{Z}.

Proof. Induction on l. By Lemma $9, Z \subset S \cup T$, where S, T are definable of constant dimension $l-1$ such that $S \subset A$ and $T \subset B$, and there exists a definable set $C \subset \bar{A}$ of constant dimension $l-1$ such that for each $y \in T$, $d(y, A)=d(y, C)$. By Proposition $3, T \cup C=A_{*} \cup B_{*}$, where A_{*}, B_{*} are definable of constant dimension $l-1, A_{*}$ is perfectly situated relative to $\mathbb{R}^{n-k}, C \subset A_{*}$ and A_{*}, B_{*} are simply separated relative to a definable set $Z_{*} \subset \bar{A}_{*} \cup \bar{B}_{*}$ of dimension $<l-1$. By the induction hypothesis we can assume Z_{*} is perfectly situated relative to \mathbb{R}^{n-k} and, by Lemma $8(1), A, B$ are simply separated relative to the set $S \cup\left(A_{*} \cap T\right) \cup Z_{*}$, perfectly situated relative to \mathbb{R}^{n-k}.

Proposition 5. Let A and B be definable subsets of \mathbb{R}^{n} of constant dimension $l \leq k$ simply separated relative to a definable set $Z \subset \bar{A} \cup \bar{B}$ of dimension $<l$. Suppose that A is perfectly situated relative to \mathbb{R}^{n-k}. Then there exists a definable set $\widetilde{Z} \subset \bar{B}$ of dimension $<l$ perfectly situated relative to \mathbb{R}^{n-k} such that A, B are simply separated relative to \widetilde{Z}.

Proof. Induction on l. By Proposition 4, we can assume that Z is perfectly situated relative to \mathbb{R}^{n-k}. Put $S=Z \cap \bar{B}$ and let T be a definable subset of \bar{A} of constant dimension $l-1$ such that $Z \cap \bar{A} \subset T$. Let C be a definable subset of \bar{B} of constant dimension $l-1$ such that $d(x, B)=d(x, C)$ for each $x \in T$. By Proposition 3 and the induction hypothesis, $T \cup C=A_{*} \cup B_{*}$, where A_{*}, B_{*} are definable sets of constant dimension $l-1, A_{*}$ is perfectly situated relative to $\mathbb{R}^{n-k}, T \subset A_{*}$ and A_{*}, B_{*} are simply separated relative to a definable set $Z_{*} \subset \bar{B}_{*}$ of dimension $<l-1$, perfectly situated relative to \mathbb{R}^{n-k}. Since $A_{*} \cap B_{*}$ is nowhere dense in B_{*} and B_{*} is of constant dimension, we have $\bar{B}_{*} \subset \bar{C} \subset \bar{B}$ and $Z_{*} \subset \bar{B}$. By Lemma $8(2), A, B$ are simply
separated relative to $S \cup\left(A_{*} \cap C\right) \cup Z_{*}$, which is a subset of \bar{B} perfectly situated relative to \mathbb{R}^{n-k}.

Proposition 6. Let P and Q be closed definable subsets of \mathbb{R}^{n} of dimensions $\leq k$ and let P be perfectly situated relative to \mathbb{R}^{n-k}. Then there exists a closed definable set $S \subset Q$ perfectly situated relative to \mathbb{R}^{n-k}, of dimension $\leq \min (\operatorname{dim} P, \operatorname{dim} Q)$, such that P, Q are simply S-separated.

Proof. CASE I: P and Q are both of constant dimension l. By Propositions 3 and $5, P \cup Q=A \cup B$, where A, B are closed definable sets of constant dimension l, A is perfectly situated relative to $\mathbb{R}^{n-k}, P \subset A$ and A, B are simply separated relative to a closed definable set $Z \subset B$ of dimension $<l$, perfectly situated relative to \mathbb{R}^{n-k}. Since $B \backslash Z \subset B \backslash A \subset Q$ and B is of constant dimension l, we have $B \subset Q$. By Proposition $2(2),(Q \backslash B) \cup A=A$ and $(Q \backslash B) \cup B=Q$ are simply $(Q \backslash B) \cup Z$-separated; hence, P and Q are S-separated, where $S=\overline{Q \backslash B} \cup Z(\subset(A \cap Q) \cup Z)$.

Case II: P and Q are both of constant dimensions p and q, respectively, and $p \neq q$. This reduces to Case I by Lemma 9 and Proposition 2(4).

Case III: general, reduces to the previous ones by representing P and Q as finite unions of sets of constant dimension and using Proposition 2(2).

5. Proof of Theorem 0

Part 1. We have $E=E^{\circ} \cup E^{*}$, where E° is closed of constant dimension k and E^{*} is closed of dimension $<k$. By Lemma 0,

$$
E^{\circ}=\bigcup_{i=1}^{m} E_{i}^{\circ}
$$

where E_{i}° is definable closed of constant dimension k, perfectly situated relative to V_{i}. By Proposition 3,

$$
E^{\circ}=A_{1} \cup B_{1}
$$

where A_{1}, B_{1} are closed definable of constant dimension k, A_{1} is perfectly situated relative to $V_{1}, E_{1}^{\circ} \subset A_{1}$, and any pair of definable subsets A_{1}^{\prime} and B_{1}^{\prime} of A_{1} and B_{1}, respectively, is simply separated relative to some set $Z_{1} \subset \overline{A_{1}^{\prime}} \cup \overline{B_{1}^{\prime}}$ of dimension $<k$.

Then $E_{2}^{\circ} \backslash A_{1} \subset B_{1}$ is of constant dimension k, perfectly situated relative to V_{2}. By Proposition 3,

$$
B_{1}=A_{2} \cup B_{2}
$$

where A_{2}, B_{2} are closed definable of constant dimension k, A_{2} is perfectly situated relative to $V_{2}, E_{2}^{\circ} \backslash A_{1} \subset A_{2}$, and any pair of definable subsets A_{2}^{\prime} and B_{2}^{\prime} of A_{2} and B_{2}, respectively, is simply separated relative to some set $Z_{2} \subset \overline{A_{2}^{\prime}} \cup \overline{B_{2}^{\prime}}$ of dimension $<k$.

Then $E_{3}^{\circ} \backslash\left(A_{1} \cup A_{2}\right) \subset B_{2}$ is of constant dimension k, perfectly situated relative to V_{3}. By Proposition 3,

$$
B_{2}=A_{3} \cup B_{3}
$$

where A_{3}, B_{3} are closed definable of constant dimension k, A_{3} is perfectly situated relative to $V_{3}, E_{3}^{\circ} \backslash\left(A_{1} \cup A_{2}\right) \subset A_{3}$, and any pair of definable subsets A_{3}^{\prime} and B_{3}^{\prime} of A_{3} and B_{3}, respectively, is simply separated relative to some set $Z_{3} \subset \overline{A_{3}^{\prime}} \cup \overline{B_{3}^{\prime}}$ of dimension $<k$.

We continue this process by induction up to the m th step, when

$$
B_{m-1}=A_{m} \cup B_{m}
$$

Since $E^{\circ}=E_{1}^{\circ} \cup \ldots \cup E_{m}^{\circ} \subset A_{1} \cup \ldots \cup A_{m}$, we have $E^{\circ}=A_{1} \cup \ldots \cup A_{m}$ (and since B_{m} is of constant dimension k and $\operatorname{dim} B_{m}=\operatorname{dim}\left(B_{m} \cap\left(A_{1} \cup\right.\right.$ $\left.\left.\ldots \cup A_{m}\right)\right) \leq \operatorname{dim}\left(\left(B_{1} \cap A_{1}\right) \cup \ldots \cup\left(B_{m} \cap A_{m}\right)\right)<k$, we have $\left.B_{m}=\emptyset\right)$.

By Proposition 5, for each pair $i, j \in\{1, \ldots, m\}$ such that $i<j$ there exists a closed definable set $Z_{i j} \subset A_{i}$ of dimension $<k$, perfectly situated relative to V_{j}, such that A_{i} and A_{j} are simply $Z_{i j}$-separated.

By Remark 0,

$$
E^{*}=\bigcup_{i=1}^{m} E_{i}^{*}
$$

where E_{i}^{*} is closed definable perfectly situated relative to V_{i}.
Put $P_{i}=A_{i} \cup E_{i}^{*}(i=1, \ldots, m)$. Then P_{i} is closed perfectly situated relative to V_{i}. By Propositions 6 and $2(2)$, for any $i, j \in\{1, \ldots, m\}$ such that $i<j$, there exists a closed definable set $T_{i j} \subset P_{j}$ of dimension $<k$, perfectly situated relative to V_{j}, such that P_{i}, P_{j} are simply $T_{i j}$-separated.

Part 2. Now we define a family $\left(C_{i_{1} \ldots i_{\mu} \nu}\right)$ of closed definable sets, where $1 \leq i_{1}<\ldots<i_{\mu}<\nu \leq m$ are integers. We use induction on ν.

If $\nu=1$, we put $C_{1}=P_{1}$. If $\nu=2$, we put $C_{2}=P_{2}$ and $C_{12}=T_{12}$.
Let $\nu>1$. We define $C_{i_{1} \ldots i_{\mu} \nu}$ by induction on μ.
If $\mu=0$, we put $C_{\nu}=P_{\nu}$. If $\mu=1$, we put $C_{i_{1} \nu}=T_{i_{1} \nu}$.
Suppose $1<\mu<\nu$. Then the set D_{ν}^{μ} defined by

$$
D_{\nu}^{\mu}=\bigcup\left\{C_{j_{1} \ldots j_{\sigma} \nu} \mid 1 \leq j_{1}<\ldots<j_{\sigma}<\nu, \sigma<\mu\right\}
$$

is perfectly situated relative to V_{ν}.
If now $1 \leq i_{1}<\ldots<i_{\mu}<\nu$ are integers, there exists a closed definable set $C_{i_{1} \ldots i_{\mu} \nu} \subset C_{i_{1} \ldots i_{\mu}}$ of dimension $<k$, perfectly situated relative to V_{ν}, such that D_{ν}^{μ} and $C_{i_{1} \ldots i_{\mu}}$ are simply $C_{i_{1} \ldots i_{\mu} \nu^{\prime}}$-separated.

Lemma 10. Let $1 \leq j_{1}<\ldots<j_{\sigma}<\lambda \leq m$ and $1 \leq i_{1}<\ldots<i_{\mu}<$ $\nu \leq m$ be integers and $\lambda<\nu$.
(1) If $\mu \leq \sigma$, then $C_{j_{1} \ldots j_{\sigma \lambda}}$ and $C_{i_{1} \ldots i_{\mu} \nu}$ are simply separated relative to $C_{j_{1} \ldots j_{\sigma} \lambda \nu}$.
(2) If $\mu \geq \sigma$ and $i_{\sigma+1}>\lambda$, then $C_{j_{1} \ldots j_{\sigma} \lambda}$ and $C_{i_{1} \ldots i_{\mu} \nu}$ are simply separated relative to $C_{j_{1} \ldots j_{\sigma} \lambda i_{\sigma+1} \ldots i_{\mu} \nu}$.

Proof. (1) This follows from $C_{i_{1} \ldots i_{\mu} \nu} \subset D_{\nu}^{\sigma+1}$.
(2) We use induction on $\mu-\sigma$. If $\mu=\sigma$, see (1). Suppose $\mu>\sigma$. By (1), $C_{j_{1} \ldots j_{\sigma} \lambda}$ and $C_{i_{1} \ldots i_{\sigma} i_{\sigma+1}}$ are simply separated relative to $C_{j_{1} \ldots j_{\sigma} \lambda i_{\sigma+1}}$. Hence, $C_{j_{1} \ldots j_{\sigma} \lambda}$ and $C_{i_{1} \ldots i_{\mu} \nu}$ are simply separated relative to $C_{j_{1} \ldots j_{\sigma} \lambda i_{\sigma+1}}$. By the induction hypothesis $C_{j_{1} \ldots j_{\sigma} \lambda i_{\sigma+1}}$ and $C_{i_{1} \ldots i_{\mu} \nu}$ are simply separated relative to $C_{j_{1} \ldots j_{\sigma} \lambda i_{\sigma+1} \ldots i_{\mu} \nu}$ and we conclude by Proposition 2(3).

Part 3. Put $S_{\nu}=\bigcup\left\{C_{i_{1} \ldots i_{\mu} \nu} \mid 1 \leq i_{1}<\ldots<i_{\mu}<\nu\right\}$ for each $\nu \in$ $\{1, \ldots, m\}$. Then S_{ν} is perfectly situated relative to V_{ν}.

We will show that if $1 \leq \lambda<\nu \leq m$, then S_{λ} and S_{ν} are simply separated.

By Proposition 2(2), it suffices to check that if we have two sequences $1 \leq j_{1}<\ldots<j_{\sigma}<\lambda$ and $1 \leq i_{1}<\ldots<i_{\mu}<\nu$, then $C_{j_{1} \ldots j_{\sigma} \lambda}$ and $C_{i_{1} \ldots i_{\mu} \nu}$ are simply $S_{\lambda} \cap S_{\nu}$-separated. If $\mu \leq \sigma$, this follows from Lemma 10(1); and if $\mu>\sigma$ and $i_{\sigma+1}>\lambda$, this follows from Lemma 10(2).

Suppose now that $\mu>\sigma$ and $i_{\sigma+1} \leq \lambda$. If λ occurs among $i_{\sigma+1}, \ldots, i_{\mu}$, then $C_{i_{1} \ldots i_{\mu} \nu} \subset S_{\lambda} \cap S_{\nu}$ and clearly $C_{j_{1} \ldots j_{\sigma} \lambda}$ and $C_{i_{1} \ldots i_{\mu} \nu}$ are simply $S_{\lambda} \cap S_{\nu^{-}}$ separated. Otherwise, take $\varrho \in\{1, \ldots, \mu\}$ such that $i_{\varrho}<\lambda$ and $i_{\omega}>\lambda$ if $\varrho<\omega \leq \mu$. By Lemma 10(1), $C_{i_{1} \ldots i_{o}}$ and $C_{j_{1} \ldots j_{\sigma} \lambda}$ are simply $C_{i_{1} \ldots i_{o} \lambda^{-}}$ separated; hence, $C_{i_{1} \ldots i_{\mu} \nu}$ and $C_{j_{1} \ldots j_{\sigma} \lambda}$ are simply $C_{i_{1} \ldots i_{e} \lambda}$-separated. By Lemma 10(2), $C_{i_{1} \ldots i_{e} \lambda}$ and $C_{i_{1} \ldots i_{\mu} \nu}$ are simply $C_{i_{1} \ldots i_{e} \lambda i_{e+1} \ldots i_{\mu} \nu \text {-separated. }}$ By Proposition 2(3), $C_{i_{1} \ldots i_{\mu} \nu}$ and $C_{j_{1} \ldots j_{\sigma} \lambda}$ are simply $C_{i_{1} \ldots i_{e} \lambda i_{e+1} \ldots i_{\mu} \nu^{-}}$ separated; hence, simply $S_{\lambda} \cap S_{\nu}$-separated. This ends the proof.

References

[1] L. van den Dries, Tame Topology and O-Minimal Structures, Cambridge Univ. Press, 1998.
[2] K. Kurdyka, On a subanalytic stratification satisfying a Whitney property with exponent 1, in: Real Algebraic Geometry (Rennes, 1991), Lecture Notes in Math. 1524, Springer, 1992, 316-322.
[3] S. Łojasiewicz, Ensembles semi-analytiques, Inst. Hautes Études Sci., Bures-surYvette, 1964.
[4] A. Parusiński, Lipschitz stratification of subanalytic sets, Ann. Sci. École Norm. Sup. 27 (1994), 661-696.
[5] W. Pawłucki, Points de Nash des ensembles sous-analytiques, Mem. Amer. Math. Soc. 425 (1990).
[6] J. C. Tougeron, Idéaux des Fonctions Différentiables, Springer, 1972.
Institute of Mathematics
Jagiellonian University
30-059 Kraków, Poland
E-mail: pawlucki@im.uj.edu.pl

[^0]: 2000 Mathematics Subject Classification: Primary 14P10; Secondary 32B20, 51M15, 51M20.

 Key words and phrases: o-minimal structure, definable set, perfectly situated set, simple separation, Lipschitz mapping.

 This research has been partially supported by the KBN grant 2 PO3A 01314.

