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On global smoothness preservation
in complex approximation

by George A. Anastassiou (Memphis, TN) and
Sorin G. Gal (Oradea)

Abstract. By using the properties of convergence and global smoothness preser-
vation of multivariate Weierstrass singular integrals, we establish multivariate complex
Carleman type approximation results with rates. Here the approximants fulfill the global
smoothness preservation property. Furthermore Mergelyan’s theorem for the unit disc is
strengthened by proving the global smoothness preservation property.

1. Introduction. In the theory of approximation of real-valued func-
tions of real variables, the topic of global smoothness preservation has been
intensively studied in recent years (see, e.g., the book [1]).

Combining the classical Weierstrass approximation theorem with the
global smoothness preservation property of Bernstein polynomials attached
to f ∈ C[0, 1], Bn(f)(x), that is,

ω1(Bn(f); δ)[0,1] ≤ 2ω1(f ; δ)[0,1], ∀δ > 0, ∀n ∈ N, ∀f ∈ C[0, 1],

where ω1(f ; δ)[0,1] = sup{|f(x1)− f(x2)|; |x1 − x2| ≤ δ, x1, x2 ∈ [0, 1]} (see,
e.g., [2] or [1, p. 244], we easily obtain the following

Theorem 1.1. For any f ∈ C[0, 1] and any ε > 0, there exists an alge-
braic polynomial P such that |P (x)− f(x)| < ε for all x ∈ [0, 1] and

ω1(P ; δ)[0,1] ≤ 2ω1(f ; δ)[0,1], ∀δ > 0.

Here the constant 2 is optimal.

On the other hand, natural extensions of Weierstrass’ theorem to the
complex case are the following well-known results.
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Theorem 1.2 (Scheinberg [7]). Let m ∈ N. For every continuous func-
tion f : Rm → R and every continuous function ε: Rm → R+, there exists
an entire function g: Cm → C such that

|f(x)− g(x)| < ε(x), ∀x ∈ Rm.
Remark. For m = 1 Theorem 1.2 becomes Carleman’s result in [3].

Theorem 1.3 (Mergelyan [6], or e.g., [5, p. 97]). Let K ⊂ C be compact
in C with C \K connected and suppose f : K → C is continuous on K and
analytic in K0. Then for any ε > 0, there exists an algebraic polynomial P
such that

|f(z)− P (z)| < ε, ∀z ∈ K.
It is then natural to ask if there exist analogues of Theorem 1.1 for the

cases of Theorems 1.2 and 1.3.
In this paper we give some answers to the above question.

2. Global smoothness preservation. Let f be a function defined
on Rm with values in R. Let x = (x1, . . . , xm), h = (h1, . . . , hm), δ =
(δ1, . . . , δm) ∈ Rm. Set

∆r
hf(x) =

r∑

i=0

(−1)r−i
(
r

i

)
f(x+ rh), r ∈ N,

and define the rth Ls-modulus of smoothness over Rm, 1 ≤ s ≤ ∞, by

ωr(f ; δ)s := sup{‖∆r
hf(·)‖Ls(Rm); |h| ≤ δ},

where |h| = (|h1|, . . . , |hm|), |h| ≤ δ means |hi| ≤ δi, i = 1,m, and

‖f‖Ls(Rm) :=





{ ∞�

−∞
. . .

∞�

−∞
|f(x1, . . . , xm)|s dx1 . . . dxm

}1/s
if 1 ≤ s <∞,

sup{|f(x1, . . . , xm)|; xi ∈ R, i = 1,m} if s =∞.
Next we introduce the multivariate Jackson-type generalization of the

Weierstrass integral:

Wp,n(f)(x) = −
( m∏

i=1

ni√
π

) p+1∑

k=1

(−1)k
(
p+ 1
k

)

×
∞�

−∞
. . .

∞�

−∞
f(x1 + kt1, . . . , xm + ktm)

( m∏

i=1

e−n
2
i t

2
i

)
dt1 . . . dtm,

where n = (n1, . . . , nm) ∈ Nm, p ∈ N ∪ {0}, x = (x1, . . . , xm) and
∞�

−∞
e−n

2
i t

2
i dti =

2
ni

∞�

0

e−t
2
i dti =

√
π

ni
, i = 1,m.

First we present
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Theorem 2.1. Let f ∈ L1(Rm). For s = 1 and s =∞ we have

‖f −Wp,n(f)‖Ls(Rm) ≤ Cp,mωp+1(f ; 1/n)s,

where 1/n := (1/n1, . . . , 1/nm), n = (n1, . . . , nm) ∈ Nm, and

ωr(Wp,n(f); δ)s ≤ (2p+1 − 1)ωr(f ; δ)s, ∀r ∈ N, ∀δ > 0,

where

cp,m =
[

2√
π

∞�

0

(u+ 1)p+1e−u
2
du

]m
<∞.

Proof. First let s = 1. We obtain

(1) f(x)−Wp,n(f)(x) =
( m∏

i=1

ni√
π

)

×
∞�

−∞
. . .

∞�

−∞
(−1)p+1∆p+1

t f(x)
( m∏

i=1

e−n
2
i t

2
i

)
dt1 . . . dtm

for all x = (x1, . . . , xm), t = (t1, . . . , tm) ∈ Rm, n = (n1, . . . , nm) ∈ Nm,
p ∈ N ∪ {0}.

Taking the absolute value, then integrating with respect to x over Rm,
and defining

|t|/n = (|t1|/n1, . . . , |tm|/nm), n|t| = (n1|t1|, . . . , nm|tm|),
we get

‖f −Wp,n(f)‖L1(Rm)

≤
( m∏

i=1

ni√
π

) ∞�

−∞
. . .

∞�

−∞
ωp+1(f ;n · |t|/n)1

( m∏

i=1

e−n
2
i t

2
i

)
dt1 . . . dtm

≤
( m∏

i=1

ni√
π

)
ωp+1(f ; 1/n)1

∞�

−∞
. . .

∞�

−∞

[ m∏

i=1

(1 + ni|ti|)
]p+1

×
( m∏

i=1

e−n
2
i t

2
i

)
dt1 . . . dtm

=
( m∏

i=1

ni√
π

)
ωp+1(f ; 1/n)1

( m∏

i=1

2
ni

)(∞�

0

(1 + u)p+1e−u
2
du
)m

=
(

2√
π

)m(∞�

0

(1 + u)p+1e−u
2
du
)m

ωp+1(f ; 1/n)1,

because
∞�

−∞
(1 + ni|ti|)p+1e−n

2
i t

2
i dti =

2
ni

∞�

0

(1 + u)p+1e−u
2
du, ∀i = 1,m.
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Now, let r ∈ N and fix δ = (δ1, . . . , δm) > 0 (i.e., δi > 0, i = 1,m). For
any h = (h1, . . . , hm) with |h| ≤ δ, we have

∆r
h[Wp,n(f)](x) = −

(
m∏

i=1

ni√
π

)
p+1∑

k=1

(−1)k
(
p+ 1
k

)
(2)

×
∞�

−∞
. . .

∞�

−∞
∆r
hf(x+ kt)

( m∏

i=1

e−n
2
i t

2
i

)
dt1 . . . dtm.

Taking in (2) the absolute value, integrating and taking into account
that by |h| ≤ δ it follows that

�

Rm
|∆r

hf(x+ t)| dt ≤ ωr(f ; δ)1,

we finally obtain

ωr(Wp,n(f); δ)1 ≤
p+1∑

k=1

(
p+ 1
k

)
ωr(f ; δ)1 = (2p+1 − 1)ωr(f ; δ)1.

For the case s =∞, by using the relations (1) and (2) above, the reasoning
is similar; this establishes the theorem.

Corollary 2.2. Let f ∈ L1(Rm). For s = 1 and s =∞, there exists an
entire function depending on f , W (f): Cm → C, that satisfies the estimates
of Theorem 2.1.

Proof. By making the substitutions xi+kti = ui, i = 1,m, inWp,n(f)(x),
x ∈ Rm, we easily obtain

Wp,n(f)(x) = −
( m∏

i=1

ni√
π

) m∑

k=1

(−1)k
(
p+ 1
k

)
1
km

×
∞�

−∞
. . .

∞�

−∞
f(u1, . . . , um)

( m∏

i=1

e−n
2
i (ui−xi)2/k2

)
du1 . . . dum.

If we replace now x ∈ Rm by z ∈ Cm, then obviously Wp,n(f)(z) becomes
an entire function, which proves the corollary.

Corollary 2.3. Let f ∈ L1(Rm).

(i) For any ε>0 and any r∈N, there exists an entire function g: Cm→C
such that

‖f − g‖L1(Rm) < ε and ω1(g; δ)1 ≤ cω1(f ; δ)1

for all δ > 0, where c > 0 is an absolute constant (i.e., independent of f , m,
ε and δ).

(ii) If moreover f is uniformly continuous on Rm, then for any ε
> 0 and any r ∈ N, there exists an entire function g: Cm → C such that
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|f(x)− g(x)| < ε for all x ∈ Rm and ω1(g; δ)∞ ≤ cω1(f ; δ)∞ for all δ > 0,
where c > 0 is an absolute constant.

Proof. (i) This is immediate by Theorem 2.1 and Corollary 2.2, because
if f ∈ L1(Rm), then ωr(f ; 1/n)1 → 0 as n→∞ (here n = (n1, . . . , nm)→∞
means n1 →∞, . . . , nm →∞.

(ii) This is also immediate by Theorem 2.1 and Corollary 2.2, because
f being uniformly continuous on Rm implies that ωr(f ; 1/n)∞ → 0 as
n→∞.

Open Question. For any uniformly continuous function f : Rm → R,
any continuous error function ε: Rm → R+ and any r ∈ N, does there exist
an entire function g: Cm → C such that |f(x)− g(x)| < ε(x) for all x ∈ Rm
and

ωr(g; δ)∞ ≤ cωr(f ; δ)∞, ∀δ > 0,

where c > 0 is an absolute constant?

Remarks. 1) It is known (see, e.g., [4, p. 285]) that the order λ of an
entire function g: C→ C is given by

λ = lim sup
r→∞

log logM(r)
log r

, where M(r) = max{|f(z)|; |z| = r}.

For p = 0 and m = 1, Wp,n(f)(z) becomes the usual Weierstrass integral.
In this case, easy calculations show that the order of Wp,n(f)(z) is ≤ 2 if we
suppose in addition that f is bounded on R.

2) For K = {z ∈ C; |z| ≤ 1}, consider the following operator attached
to a function f , continuous on K and analytic on K0:

Fn(f)(z) =
1

2πn

2π�

0

f(zeiu)Φn(u) du, ∀z = reix ∈ K,

where Φn(u) =
(

sin nu
2

sin u
2

)2
is the Fejér kernel.

First we prove that Fn(f)(z) represents in fact the complex Fejér poly-
nomials of degree n− 1, given by

1
n

n−1∑

j=0

(n− j)ajzj, where f(z) =
∞∑

j=0

ajz
j

(see, e.g., [5, p. 53]).
Indeed, because f is analytic on K0, we can write

f(zeiu) =
∞∑

k=0

ak(zeiu)k =
∞∑

k=0

akz
keiuk.
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On the other hand, if we set w = eiu/2, then by the general formula sinα =
(eiα − e−iα)/(2i), we get

Φn(u) =
(
wn − 1/wn

w − 1/w

)2

=
1

(eiu)n−1 [(eiu)n−1 + (eiu)n−2 + . . .+ eiu + 1]2.

Also writing eiu = t, we obtain

1
tn−1 (tn−1 + tn−2 + . . .+ t+ 1)2

=
1

tn−1 {t
2(n−1) + t2(n−2) + . . .+ t2 + 1 + 2[t+ t2 + . . .+ tn−1

+ (t3 + t4 + . . .+ tn−1 + tn) + (t5 + . . .+ tn−1 + tn + tn+1)

+ . . .+ (t2n−5 + t2n−4) + t2n−3]}

=
1

tn−1

{2n−2∑

k=n

ckt
k + [1 + 2t+ 3t2 + . . .+ ntn−1]

}

=
2n−2∑

p=n

cpt
p−(n−1) +

n−1∑

j=0

(n− j)t−j ,

that is,

Φn(u) =
2n−2∑

p=n

cpe
iu[p−(n−1)] +

n−1∑

j=0

(n− j)e−iju.

In general we have
2π�

0

ei(k+λ)udu =
{ 0 if k + λ 6= 0,

2π if k = −λ.

Integrating with respect to u the product

f(zeiu)Φn(u) =
( ∞∑

k=0

akz
keiuk

)[2n−2∑

p=n

cpe
iu[p−(n−1)] +

n−1∑

j=0

(n− j)e−iju
]

=
∞∑

k=0

bkz
keiu(k+λk) +

∞∑

k=0

n−1∑

j=0

akz
k(n− j)eiu(k−j),

where λk > 0 for all k ∈ N, we immediately obtain

1
2πn

2π�

0

f(zeiu)Φn(u) du =
1
n

n−1∑

j=0

ajz
j(n− j).

It is well known (see [5, p. 53]) that complex Fejér polynomials satisfy
the assertion of Theorem 1.3 when K is the unit disc.
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Now, let z1, z2 ∈ K, δ > 0, |z1 − z2| ≤ δ. We have

|Fn(f)(z1)− Fn(f)(z2)| ≤
√

2
2πn

2π�

0

|f(z1e
iu)− f(z2e

iu)|Φn(u) du

≤
√

2ω1(f ; |z1 − z2|)K ,
because |z1e

iu−z2e
iu| = |z1−z2| (here ω1(f ; δ)K = sup{|f(z1)−f(z2)|; z1, z2

∈ K, |z1 − z2| ≤ δ}.
This immediately implies the global smoothness preservation property

ω1(Fn(f); δ)K ≤
√

2ω1(f ; δ)K , ∀δ > 0, ∀n ∈ N.
3) It is an open question if for general K and f with the properties as

in Theorem 1.3, there exists a polynomial P (z) satisfying |P (z)− f(z)| < ε
for all z ∈ K and moreover

ω1(P ; δ)K ≤ Cω1(f ; δ)K , ∀δ > 0,

with some constant C > 0.
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