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Sets of interpolation and sampling
for weighted Banach spaces of holomorphic functions

by Paweł Domański (Poznań) and Mikael Lindström (Åbo)

Abstract. We give an elementary approach which allows us to evaluate Seip’s con-
ditions characterizing interpolating and sampling sequences in weighted Bergman spaces
of infinite order for a wide class of weights depending on the distance to the boundary of
the domain. Our results also give some information on cases not covered by Seip’s theory.
Moreover, we obtain new criteria for weights to be essential.

1. Introduction. We study sequences of interpolation and sampling in
weighted Bergman spaces of infinite order:

B∞v := {f : D→ C : f analytic, ‖f‖v := sup
z∈D

v(z)|f(z)| <∞}

endowed with the norm ‖ · ‖v, where v : D → R+ is an arbitrary weight,
i.e., a continuous strictly positive function on the unit disc D. By the Rie-
mann Mapping Theorem, we can consider, in fact, weighted Bergman spaces
B∞v (Ω) on arbitrary simply connected domains Ω ⊆ C, Ω 6= C. We are es-
pecially interested in weights v : Ω → R+ of the form v(z) = ϕ(dist(z, ∂Ω)).

For a sequence (zn) ⊂ D, let us define a restriction operator
T : B∞v → l∞, T (f) = (f(zn)v(zn))n∈N.

We call a sequence (zn) of distinct points in D a set of interpolation, of
linear interpolation or of sampling for v, respectively, if T is surjective,
has a continuous linear right inverse or is a topological into isomorphism,
respectively.

In a fundamental paper [S2] (cf. [HKZ, Section 5]) Seip characterized
sets of interpolation and sampling in classical Bergman spaces with weights
vp(z) := (1− |z|2)p, p > 0, on D as follows.
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Theorem A. A sequence Γ of distinct points in D is a set of sampling
for vp if and only if it contains a uniformly discrete subsequence Γ ′ for which
D−(Γ ′) > p. Moreover , if Γ is a uniformly discrete set of sampling for the
above weight , then D−(Γ ) > p.

Theorem B. A sequence Γ of distinct points in D is a set of (linear)
interpolation for vp if and only if Γ is uniformly discrete and D+(Γ ) < p.

Here D+(Γ ) and D−(Γ ) denote some special densities of Γ independent
of p which will be defined below. Later, Berndtsson and Ortega Cerdà [BO,
Thm. 6] extended the sufficiency part of Theorem B to weights v for which
(−∆ log v(z)) ∼ (1 − |z|2)−2. Their condition compares some functions of
z ∈ D (and of an additional parameter r) depending on the sequence with
functions depending on −∆ log v. Finally, Seip announced during ICM-98 in
Berlin full characterizations for the same class of weights v. A rough sketch
of the proof is contained in [S3, Thms. 2 and 3]. His approach is to embed
B∞v into a suitable B∞vp via a certain pointwise multiplier operator. The
characterization is given in terms of more subtle new densities depending
on −∆ log v.

Our paper has three main aims:

(1) To give a more elementary approach yielding an extension of Theo-
rems A and B to more general not necessarily radial weights which
allows us to evaluate the conditions of Seip from his characterization
[S3]. We consider especially the family of weights v : Ω → R+, Ω an
arbitrary simply connected domain, depending only on the distance
from the boundary ∂Ω of Ω, i.e., of the form v(z) = ϕ(dist(z, ∂Ω)).
These are the most typical and interesting weights. Here we will ex-
press the conditions directly in terms of ϕ (see Cor. 32, Thm. 10 and
Cor. 11). A crucial role is played by Theorem 10.

(2) To get information on interpolating and sampling sequences for
weights tending to zero at the boundary either very slowly or very
rapidly (i.e., not contained in the class of [BO]). We are interested
in stability or a kind of uniform separation.

(3) To get new criteria of essentiality of non-radial weights, especially,
weights depending on dist(z, ∂Ω). A weight v is essential if v(z) ∼
1/‖δz‖, where δz denotes the evaluation functional at z and the norm
is calculated in the dual of B∞v . This notion plays a fundamental
role in the theory of weighted Bergman spaces of infinite order (see
[BBT], [BDL1], [AD]).

Last but not least, we prove some intrinsically interesting inequalities
(which, we believe, will turn out useful in a more general context): see, for
instance, Lemma 8 which leads to the crucial Theorem 10.
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In order to fulfill our first task we use a very simple comparison result
(Proposition 21) which allows us to show that an interpolation (sampling)
sequence for one weight has the same property for another weight. A novelty
is that instead of using new densities depending on v we measure decay of v
by some special indices. These indices give a rough estimate which sequences
are interpolating or sampling for the given weight (Thm. 29). The indices
are defined for arbitrary weights but they prove to be especially useful for
the weights v(z) = ϕ(dist(z, ∂Ω)) (in particular, radial weights) because in
that case they can be estimated by (or in some cases they are even equal
to) indices of real positive functions ϕ well-known from the theory of Orlicz
spaces and convex functions ([Mal, p. 21], [LT, p. 143]) but so far not applied
to Bergman spaces (see Theorem 10 and Corollary 11). Let us point out that
the indices of weights are invariant with respect to biconformal maps, i.e.,
if v : Ω → R+ is any weight and f : Ω0 → Ω a biconformal map, then the
indices of v and of v ◦ f coincide! Summarizing, although our results are not
so general and precise as in [BO] or [S3], the conditions obtained are easier
to check and cover also cases not included in the above-mentioned papers.

In that way we deduce, for instance:

(a) Theorems A and B hold for the whole class of weights which in some
sense are similar to vp (Corollaries 31 and 32, cf. also Theorem 29
combined with Corollary 11). Note that this class contains a lot of
spaces essentially different from B∞vp .

In order to fulfill the second task we apply our tools to get, for instance:

(b) If a weight v tends to zero slowly, i.e., Uv = 0 (so it is not contained in
the class of [BO]), then every interpolating sequence has D+ density
zero (Corollary 30), is uniformly discrete (Corollary 16) and stable
under perturbations (Lemma 18). The weights slowly tending to zero
include logarithmic ones from [SW1, p. 265].

Moreover, we define a special metric %v on Ω which allows us to get
stability results for interpolating and sampling sequences also for arbitrary
weights, even very rapidly tending to zero (see Corollary 16, Lemma 18).
We obtain, for instance:

(c) If v is an arbitrary weight, then every H∞ interpolating sequence is
also a set of linear interpolation for B∞v (Corollary 23).

In the third area we prove three results: Theorem 4, Corollary 5 and
Corollary 12. The best one is the last one:

(d) If ϕ : R+ → R+ tends polynomially to zero at zero, then the weight
v(z) := ϕ(dist(z, ∂Ω)) is essential.
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Our approach can be easily extended to several variables and is appli-
cable to non-radial weights and general domains. Although our approach is
different from Seip’s [S3] we owe much to some ideas of [S2].

Observe that, in general, we cannot simplify our approach via simple
tricks. The weights v(z) = ϕ(dist(z, ∂Ω)) can be transferred via the Rie-
mann Mapping Theorem to the weights on D of the form

w(z) := ϕ((1− |z|2)|f ′(z)|),

where f : D→ Ω is the Riemann map. As we will see later, if Ω is bounded
and has the so-called Dini-smooth boundary, then w ∼ w1, where w1(z) :=
ϕ(1 − |z|2), i.e., w can be replaced by a radial weight. Unfortunately, this
simple trick does not work for natural domains such as any half-plane or
the strip Ω = {z : |Im z| < π/2}. Moreover, if ϕ(t) = tp, then the pointwise
multiplication operator M(f ′)p : B∞w → B∞w1

,

M(f ′)p(g)(z) := (f ′(z))pg(z),

is an onto isometry. This trick also allows one to get many results for B∞w
but, unfortunately, it does not work for other functions ϕ. That is why we
had to develop our theory.

The problem which sequences are sets of interpolation for various spaces
of analytic functions has been studied extensively (see, for instance, [Sd,
Sec. 11.5], [W, III.E], [BP], [M], [LS], [BO], [B], [GW], [S1], [Sch1], [Sch2],
[ScS1], [ScS2]). The analogous problem for sampling sets has attracted much
attention quite recently (see, for example, [LS], [GW], [S1], [Sch1], [Z2]).

The space B∞v appears naturally in the study of growth conditions for
analytic functions and has been studied in many papers (see for example
[RS], [SW1], [SW2], [BS], [L1], [L2], [BBT], [BDLT], [BDL1], [BDL2] and
others). For references on Bergman spaces see [Z1] and especially [HKZ].

In Sections 3 and 4 we study in detail weights of moderate decay in the
radial and non-radial case respectively. Such radial weights were considered
by many authors using various defining conditions. Although it is probably
known to specialists that some of them are equivalent we could not find
any reference. That is why we collect them in Lemma 1. We also collect
known criteria for weights to be essential. We extend these results to weights
on arbitrary Ω depending on the distance from the boundary. Then we
introduce upper and lower indices Uv and Lv of an arbitrary weight v and
show how to calculate them easily for weights depending on the distance
from the boundary.

In Section 5 we prove a useful result estimating the distance between the
evaluation functionals on B∞v and we present results on stability of interpo-
lating and sampling sequences in terms of a special metric %v induced on D
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by the weight v. Section 6 contains comparison results and in Section 7 we
obtain the main results characterizing interpolating and sampling sequences.

2. Preliminaries. A weight v on the disc is radial if v(z) = v(|z|).
Every radial weight v is assumed to be an almost decreasing function of |z|.
As in [T] (cf. [BBT]), a weight v is called essential if there exists a C > 0
such that

v(z) ≤ ṽ(z) ≤ Cv(z) for each z,

where the associated weight (see [AD] or [BBT]) ṽ is defined by

ṽ(z) := (sup{|f(z)| : f ∈ B∞v , ‖f‖v ≤ 1})−1.

If we take ṽ instead of v, the space B∞v and the norm ‖ · ‖v do not change.
The associated weight is better tied to the space B∞v than v itself. For in-
stance, for any sequence (zn) ⊆ D and f ∈ B∞v the sequence (f(zn)ṽ(zn)) is
bounded. Roughly speaking, that means that one can expect sets of sampling
or interpolation only for essential weights. Precisely, every set of (linear) in-
terpolation or sampling for v is a set of the same type for ṽ. Let us point
out that ṽp(z) = vp(z), p > 0. Since every weight can be approximated
by a smooth weight we may always pass to smooth weights without loss of
generality. Note also that − log ṽ is subharmonic for every weight v.

We write f ∼ g for functions f , g if there are positive constants a, b
such that af ≤ g ≤ bf for all values of variables. Functions f , g are called
additively equivalent , denoted by f ♠ g, if |f−g| is bounded. We set ∆ = ∂∂,
which differs from the standard definition of the Laplacian by a factor of 4.
The log-transform of a positive function ϕ is Φ(t) := logϕ(et).

The pseudohyperbolic metric % on D is defined by

%(z, w) := |ϕw(z)|, where ϕw(z) :=
w − z
1− wz , z, w ∈ D.

A sequence (zn) in D is called d-uniformly discrete if infn6=k d(zn, zk) > 0
for a given metric d. If d = % then we speak just about uniform discrete-
ness. We denote by dist the Euclidean metric. A domain Ω is called thin if
supz∈Ω dist(z, ∂Ω) < ∞. For instance, the strip {z : |Im z| < π/2} is thin
but unbounded.

For a uniformly discrete sequence Γ = (zn) and 1/2 < r < 1, let

D(Γ, r) =
(

log
(

1
1− r

))−1 ∑

1/2<|zn|<r
log
(

1
|zn|

)
.

The lower and upper uniform densities of Γ are defined, respectively, as

D−(Γ ) = lim inf
r→1−

inf
w∈D

D(ϕw(Γ ), r), D+(Γ ) = lim sup
r→1−

sup
w∈D

D(ϕw(Γ ), r).
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For an equivalent definition see [Sch2, Sec. 2]. These densities were intro-
duced in [S2]. Closely related are the earlier notions proposed by Korenblum
[K] in connection with his study of zero sets in B∞vp .

The classical interpolation problem in H∞ (i.e., for v ≡ 1) was com-
pletely solved by L. Carleson. It is known (see [W, III.E.4], [G, Ch. VIII])
that Γ = (zn) is a set of (linear) interpolation for v(z) = 1 if and only if
there is a δ > 0 such that for each fixed k,

∏

n6=k

∣∣∣∣
zn − zk
1− znzk

∣∣∣∣ ≥ δ.

If a set Γ satisfies this condition, then D+(Γ ) = 0 (see [Sch1, Lemma 5]).

3. Indices of radial weights of moderate decay. Recall that a func-
tion f : [a, b] → R+ is called almost decreasing (resp. increasing) if there
exists a constant C > 0 such that for any x < y (resp. x > y) it follows that
f(y) ≤ Cf(x). It is worth noting that every almost decreasing (continuous)
function on [a, b] has an equivalent non-increasing majorant. There are three
types of indices of a positive continuous function: at zero, at infinity and
on R+. For our purposes we will use only the first and the last ones (see
[Mal]). We recall that the indices of positive continuous functions on (0, ti]
(cf. [Mal, especially Thm. 3.3], [LT, p. 143]) are defined by

αiϕ := sup
{
q : sup

λ∈(0,1], t∈(0,ti]

ϕ(λt)
ϕ(t)λq

<∞
}

= sup{q : ϕ(t)/tq is almost increasing for t ∈ (0, ti]},

βiϕ := inf
{
q : inf

λ∈(0,1], t∈(0,ti]

ϕ(λt)
ϕ(t)λq

> 0
}

= inf{q : tq/ϕ(t) is almost increasing for t ∈ (0, ti]}.
When ti = ∞, we always consider (0, ti] = (0,∞). If ti < ∞ we may (and
will) assume that ti = 1. In that case we denote the corresponding indices
by α0

ϕ, β0
ϕ and call them the lower and upper index at zero. If ti = ∞ we

denote the indices by α∞ϕ , β∞ϕ and call them just the lower and upper index .
We will use the notation αiϕ, βiϕ to cover both cases.

Clearly for ϕ almost increasing we have 0 ≤ αiϕ ≤ βiϕ ≤ ∞. We say that
ϕ satisfies the ∆2-condition (resp. the ∆2-condition at zero), briefly ϕ ∈ ∆∞2
(ϕ ∈ ∆0

2, resp.), if there is a constant C such that

ϕ(2t) ≤ Cϕ(t) for t ∈ R+ (for t ∈ (0, 1/2], resp).

For ϕ almost increasing, it is easily seen that ϕ ∈ ∆∞2 (resp. ϕ ∈ ∆0
2) if and

only if β∞ϕ <∞ (β0
ϕ <∞, resp.).

Of course, every radial almost decreasing weight v is of the form v(z) =
ϕ(1 − |z|), where ϕ is almost increasing. We will denote the function ϕ
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attached as above to v by ϕv. Equivalently, v(z) = ϕ̂(1 − |z|2), where ϕ̂ is
also almost increasing. Since ϕ̂(t) = ϕ(1 −

√
1− t) and ϕ(2t) ≤ Cϕ(t) if

and only if ϕ̂(2t) ≤ Ĉϕ̂(t), we observe that βiϕ <∞ if and only if βiϕ̂ <∞.
Moreover, we easily observe that ϕ̂ ∼ ϕ whenever the latter condition holds.
Summarizing, if ϕ ∈ ∆2, then αiϕ̂ = αiϕ and βiϕ̂ = βiϕ.

Some of the equivalent conditions in the next lemma are known but for
the sake of completeness we give the whole proof. The conditions (a)(v) and
(b)(iv) seem to be new.

Lemma 1. Let v be a radial weight on D, v(z) = ϕ(1−|z|), with ϕ almost
increasing , and set ψ(t) := 1/v(1− 1/t), t ≥ 1.

(a) The following statements are equivalent :

(i) β0
ϕ <∞.

(ii) ϕ satisfies the ∆2-condition at zero.
(iii) v satisfies condition (∗) from [L2, p. 310], i.e.,

inf
n

v(1− 2−n−1)
v(1− 2−n)

> 0.

(iv) v satisfies condition (U) from [SW2, p. 5], i.e., there exists a
q > 0 such that ψ(x)/xq is almost decreasing.

(v) v has a bounded variation with respect to the pseudohyperbolic
metric, i.e., there are r > 0 and C <∞ such that v(z)/v(p) ≤ C
whenever %(z, p) ≤ r.

(b) The following statements are equivalent :

(i) α0
ϕ > 0.

(ii) v satisfies the condition from [L2, p. 310], i.e., there exists a
k ∈ N such that

lim sup
n

v(1− 2−n−k)
v(1− 2−n)

< 1.

(iii) v satisfies condition (L) from [SW2, p. 5], i.e., there exists a
q > 0 such that ψ(x)/xq is almost increasing.

(iv) There is an r ∈ (0, 1) such that

lim
|p|→1−

sup
%(z,p)≤r

v(z)
v(p)

> 1.

In [SW2] Shields and Williams call weights v satisfying both (L) and (U)
(or, equivalently by Lemma 1, 0 < α0

ϕ ≤ β0
ϕ < ∞) normal weights. Clearly

the weight vp(z) = (1 − |z|2)p, p > 0, is normal, α0
tp = β0

tp = p. On the
other hand, the weight w(z) = (1− log(1− |z|))−ε, ε > 0, is not normal but
satisfies condition (U), in fact, β0

ϕw = 0. For u(z) = exp(A(1 − |z|)B) with
A,B < 0, we have α0

ϕu = β0
ϕu =∞.
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Proof of Lemma 1. We first show (a). It is easily seen that (i)⇔(ii), and
(ii)⇒(iii) follows by taking t = 2−n−1.

(iii)⇒(i). By (iii), there is a 0 < C < 1 with v(1− 2−n−1)/v(1− 2−n)
> C for all n. Let q := −logC/log 2 < ∞. For given λ, t ∈ (0, 1], there
exist n,m ∈ N with 2−m−1 ≤ λ ≤ 2−m and 2−n−1 ≤ t ≤ 2−n. Thus
1− 2−n ≤ 1− t ≤ 1− 2−n−1 and 1− 2−m−n ≤ 1− λt ≤ 1− 2−m−n−2. Now
we have

v(1− λt)
v(1− t)λq ≥

v(1− 2−m−n−2)
v(1− 2−n)2−mq

≥ Cm+22mq = C2.

Since C does not depend on λ and t we conclude that β0
ϕ <∞.

(iv)⇒(iii). Let r = 1− 1/t, so 0 ≤ r < 1. Then v satisfies condition (U)
if and only if (1− r)q/v(r) is almost decreasing for some q > 0. Putting
r = 1− 2−n and s = 1− 2−n−1 we obtain (iii).

(i)⇒(iv). By (i), there is a constant C such that v(1− λt)/(v(1− t)λq)
≥ C for some q < ∞ and all λ, t ∈ (0, 1]. For 0 ≤ r < s < 1, we put
λ = (1− s)/(1− r) and t = 1− r. Thus (iv) follows by using the same form
of (U) as above.

(iii)⇔(v). First we observe that the pseudohyperbolic disc with center
p and radius r is a Euclidean disc with diameter on the line through the
origin and p, and intersects that line in the points

|p| − r
1− |p|r ·

p

|p| and
|p|+ r

1 + |p|r ·
p

|p|
(cf. [Sh, Exercise 4.8.1]). If z belongs to such a pseudohyperbolic disc and r =
1/2, then 1/3 ≤ (1− |z|)/(1− |p|) ≤ 3. Thus, if v(1− 2−n−1)/v(1− 2−n) >
C for all n, then for r = 1/2 we have v(z)/v(p) < C−2. On the other hand,
if v(p)/v(z) ≤ C for %(z, p) ≤ r, then v(1− t/(1 + r))/v(1− t) ≥ 1/C for
all t ∈ [0, 1). Finally, for k large enough,

v(1− 2−n−1)
v(1− 2−n)

≥ 1
Ck

.

(b) (i)⇔(ii). If α0
ϕ > 0, then there is a C with v(1− λt)/(v(1− t)λq) ≤

C for some q > 0 and all λ, t ∈ (0, 1]. Fix k. Then v(1−2−n−k)/v(1−2−n) ≤
C2−kq <∞ for all n. Thus lim supn v(1− 2−n−k)/v(1− 2−n) < 1 for some
k ∈ N. Conversely, the assumption implies that there is an integer k > 0, a
constant 0 < C < 1 and an index n0 ≥ 1 with v(1− 2−nk−k)/v(1− 2−nk) ≤
C for all n ≥ n0. Let q := −logC/(k log 2) > 0. It suffices to consider only
λ, t ∈ (0, 2−n0k]. Given λ, t ∈ (0, 2−n0k], there exist n,m ∈ N with n,m ≥ n0

such that 2−(m+1)k ≤ λ ≤ 2−mk and 2−(n+1)k ≤ t ≤ 2−nk. Consequently,

v(1− λt)
v(1− t)λq ≤

v(1− 2−(m+n)k)
v(1− 2−(n+1)k)2−(m+1)kq

≤ Cm−12(m+1)kq = C−2.
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Again C does not depend on λ and t, so it follows that α0
ϕ > 0.

The proof of (i)⇒(iii)⇒(ii)⇔(iv) is analogous to (a) (i)⇒(iv)⇒(iii)
⇔(v).

For later use we now collect known characterizations of essential not
necessarily radial weights.

Proposition 2. Let v be a strictly positive continuous function on D.

(a) [BDL1, Prop. 7] If v is a radial weight , then v is essential if and
only if it is equivalent to a log-convex radial function (weight) w, i.e., t 7→
− logw(et) is convex (or , for smooth functions, −∆ logw(t) > 0).

(b) [SW2, Lemma 1] If v is a radial continuous function and β0
ϕv <

∞, then v is an essential weight if and only if it is almost decreasing (in
particular , if α0

ϕv > 0).
(c) [S3, Thm. 6] If v is smooth and −∆ log v(z) ∼ (1− |z|2)−2 near the

boundary of D, then v is an essential weight.

Proof. (b) If v is an essential weight, then by Observation 1.5 in [BBT]
the associated weight ṽ is decreasing and therefore v is almost decreasing. If
β0
ϕv < ∞, the converse implication is a direct consequence of Lemma 1(iv)

in [SW2] (cf. Prop. 3.4 in [BBT]). In [SW2] and [BBT], v is assumed to be
decreasing but the same proof works when v is almost decreasing.

If α0
ϕv > 0, then there are q > 0 and M such that v(1−λt) ≤Mλqv(1−t)

for all λ, t ∈ (0, 1]. For 0 ≤ r < s < 1, by putting λ = (1− s)/(1− r) and
t = 1− r, we get v(s) ≤Mv(r).

(c) By [S3, Thm. 6] (cf. [S4]), we find two analytic functions g1, g2 such
that |g1(z)| ∼ %(z,G1)/v(z), |g2(z)| ∼ %(z,G2)/v(z), where G1, G2 are the
zero sets of g1, g2, respectively, and %(G1, G2) > 0. It follows that 1/v(z) ∼
max(|g1(z)|, |g2(z)|).

Theorem 3. For a radial weight v on D we have

β0
ϕv = inf{C > 0 : ∃w ∼ v, w radial , smooth,

0 ≤ inf
z∈D

(1− |z|2)2(−∆ logw(z)) ≤ sup
z∈D

(1− |z|2)2(−∆ logw(z)) ≤ C}

= inf{C > 0 : ∃w ∼ v, w smooth, sup
z∈D

(1− |z|2)2(−∆ logw(z))≤C}.

If β0
ϕv <∞, then

α0
ϕv = sup{C ≥ 0 : ∃w ∼ v, w radial , smooth,

C ≤ inf
z∈D

(1− |z|2)2(−∆ logw(z)) ≤ sup
z∈D

(1− |z|2)2(−∆ logw(z)) <∞}

= sup{C ≥ 0 : ∃w ∼ v, w smooth, C ≤ inf
z∈D

(1− |z|2)2(−∆ logw(z))}.
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We omit the proof since later we prove a more general result (see Theo-
rem 10 and Corollary 11).

4. General weights of moderate decay. Apart from radial weights
on the unit disc another class of natural weights are those weights on an
arbitrary simply connected domain Ω which depend on the distance from
the boundary. We will try to develop their theory in the spirit of the theory
of radial weights. We always denote by g : Ω → D a Riemann map and by
f its inverse. By dist(z, ∂Ω) we denote the Euclidean distance of z to the
boundary of Ω. By [Po, Cor. 1.4],

1− |g(z)|2
4|g′(z)| ≤ dist(z, ∂Ω) ≤ 1− |g(z)|2

|g′(z)| ,

1
4

(1− |z|2)|f ′(z)| ≤ dist(f(z), ∂Ω) ≤ (1− |z|2)|f ′(z)|.

Note that the rightmost term in the first line above is closely connected to
the Bergman kernel of Ω. Thus for ϕ almost increasing and ϕ ∈ ∆∞2 the
weights

ϕ(dist(z, ∂Ω)) and ϕ

(
1− |g(z)|2
|g′(z)|

)

are equivalent; similarly, after transferring the weights via the Riemann map-
ping f to the disc, the weights

ϕ(dist(f(z), ∂Ω)) and ϕ((1− |z|2)|f ′(z)|)
are equivalent. If the domainΩ is thin (i.e., supz∈Ω dist(z, ∂Ω) <∞), then it
suffices to assume that ϕ ∈ ∆0

2. If the boundary ofΩ is a Dini-smooth Jordan
curve, then |f ′| is bounded from above and from below [Po, Thm. 3.5]. Thus
in that case the weights above are equivalent to radial weights. Let us point
out that this does not apply to any unbounded domain (like a half-plane or
strip).

Since the general form of the biholomorphic map ϕ : D→ D is given by
ϕ(z) = eiθ(w − z)/(1− wz) and

|∂ϕ/∂z|2
(1− |ϕ(z)|2)2 =

1
(1− |z|2)2 ,

the following definition does not depend on the choice of the Riemann map
g : Ω → D. Let v be a continuous weight on a simply connected domain
Ω ⊆ C, Ω 6= C. Then we define the upper and lower index of the weight v by

Uv := inf
{
C>0 : ∃w ∼ v, w smooth, −∞< inf

z∈Ω
(−∆ logw(z))

(1−|g(z)|2)2

|∂g/∂z|2

≤ sup
z∈Ω

(−∆ logw(z))
(1− |g(z)|2)2

|∂g/∂z|2 ≤ C
}
,
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Lv := sup
{
C≥0 : ∃w ∼ v, w smooth, ∞> sup

z∈Ω
(−∆ logw(z))

(1−|g(z)|2)2

|∂g/∂z|2

≥ inf
z∈Ω

(−∆ logw(z))
(1− |g(z)|2)2

|∂g/∂z|2 ≥ C
}
.

By Theorem 3, the above definition coincides for radial weights on D with
the previous definition. That means that if v is radial and β0

ϕv <∞, then v
is automatically essential by Proposition 2(b) and therefore

Uv = β0
ϕv and Lv = α0

ϕv .

Since ∆(f ◦ h) = (∆f) · |∂h/∂z|2 for h analytic, the above definition is in-
variant with respect to transferring weights via the Riemann map, i.e., if
f : Ω1 → Ω2 is a biholomorphic map and v : Ω2 → R+ is a weight, then

Uv = Uv◦f , Lv = Lv◦f .

Note that if Ω is the upper half-plane, then

(1− |g(z)|2)2

|∂g/∂z|2 = 4|Im z|2.

Similarly, if Ω = {z ∈ C : |Im z| < π/2}, then

(1− |g(z)|2)2

|∂g/∂z|2 = 4 cos2(Im z).

Moreover, if h is non-vanishing and analytic, then−∆ log((1−|z|2)|h(z)|)α =
α/(1− |z|2)2, which allows one to calculate the indices Uv and Lv easily for
that weight on the disc. This suggests that we can calculate the indices easily
for weights depending on (1− |z|2)|h(z)|.

The following result is a generalization of Proposition 2(b) above. It is
especially interesting for h = f ′ (see above).

Theorem 4. Let h : D → C be an analytic function without zeros such
that a branch of the argument of h is bounded. Let ϕ : R+ → R+ be an
almost increasing continuous function with the ∆∞2 -condition. If the weight
v(z) := ϕ((1− |z|2)|h(z)|) is bounded , then it is essential. If (1− |z|2)|h(z)|
is bounded then it suffices to assume the ∆2-condition only at zero.

The problem appears for which Riemann maps f their derivative f ′ has
a bounded branch of argument. By [Po, Thm. 3.2], if the boundary of Ω is a
smooth Jordan curve (i.e., in particular,Ω is bounded), then the argument of
f ′ is bounded (since it extends continuously to the closed disc). For general
(bounded) Ω, it is not true. For instance, take

Ω := D \ ({γ(t) : t ≥ 1} ∪ {0}),
where γ(t) = t−1eit. In general, the argument of f ′ at reiθ can be calculated
as π/2 + u + θ, where u is an argument of the derivative of the curve θ 7→
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f(reiθ). So if the arguments of the derivative of all these curves are bounded
then the assumption of Theorem 4 is satisfied for h = f ′. This gives plenty
of examples of simply connected (bounded or unbounded) domains Ω with
bounded argument of f ′ (even without any smoothness of the boundary).
For instance, by [Po, p. 66, formula (5)], if Ω is a star-like domain with
respect to zero (or its translation, for instance any convex domain), then
f(rD) are also star-like and then one observes easily that f ′ has a bounded
branch of argument.

Corollary 5. Let Ω be a thin domain such that the argument of the
derivative f ′ of the Riemann map f : D → Ω is bounded. If an almost
increasing continuous function ϕ : R+ → R+ satisfies the ∆2-condition at
zero, then the weight

v(z) := ϕ(dist(z, ∂Ω))

on Ω is essential.

Proof of Theorem 4. We may assume that v is bounded by 1. Define

k(z) := eiθ(h(z)(1− eiλz2))−α,

where α > 0 is chosen in such a way that for every λ there is θ such that
k : D → H+ := {z : Re z > 0}. Moreover, for t ∈ [1/2, 1), p > 0, C > 0, we
define an analytic function st : D→ C by

st(z) := C

(
1

1− t(1− k(z)−1)

)p
.

Fix z0 ∈ D and define t0 < 1 by

(1)
1

1− t0
= |h(z0)(1− |z0|2)|−α.

We will show the following properties of st whenever t0 ≥ 1/2:

|st(z)| ≤ 2pC|h(z)(1− |z|2)|−pα for t ≥ 1/2 and z ∈ D,(2)

|st0(z)| ≤ C|h(z0)(1− |z0|2)|−pα for z ∈ D,(3)

|st0(z0)| ≥ C

2p
|k(z0)|p.(4)

We start with the proof of (2). It is easily seen that for Rew ≥ 0 and
t ≥ 1/2 we have |(1− t) + tw| ≥ 1

2 |w|. Thus

1
|k(z)| ≤ 2

∣∣∣∣(1− t) +
t

k(z)

∣∣∣∣.

Since 1− |z|2 ≤ |1− eiλz2| we have

|k(z)| ≤ (|h(z)|(1− |z|2))−α.

Combining the above inequalities we obtain (2).
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In order to show (3) it suffices to observe that
∣∣∣∣1− t0 +

t0
k(z)

∣∣∣∣
−1

≤
(

Re
(

(1− t0) +
t0
k(z)

))−1

≤ 1
1− t0

.

To obtain (4) we note that

C|k(z0)|p
|st0(z0)| = |(1− t0)k(z0) + t0|p ≤ (1 + t0)p ≤ 2p.

Now, we are ready to prove the result. Modifying suitably ϕ we may
find q > 0 such that tq/ϕ(t) is a strictly increasing function. Let p satisfy
pα = q. Then we take an arbitrary z0 ∈ D and find t0 according to (1). For
λ satisfying eiλz2

0 ≥ 0 we take θ in such a way that k(D) ⊆ H+. Since ϕ is
almost increasing we assume that

ϕ(t1) ≤ C1ϕ(t2) for t1 < t2.

If t0 ≤ 1/2, then v(z0) ≥ C−1
1 ϕ(2−1/α) =: C2, where the latter constant

does not depend on z0. The function f ≡ 1 satisfies ‖f‖v = 1 = supz∈D v(z)
and |f(z0)v(z0)| ≥ C2.

If t0 ≥ 1/2, then we take C > 0 such that

ϕ(|h(z0)|(1− |z0|2)) = C−1(|h(z0)|(1− |z0|2))q.

Then we define f := st0 . By (4) and the choice of the constants λ and C,
we have

|f(z0)| ≥ 2−pv(z0)−1.

If |h(z)(1 − |z|2)| ≥ |h(z0)(1 − |z0|2)|, then v(z)−1 ≥ C|h(z)(1 − |z|2)|−q
(because tq/ϕ(t) is increasing). Therefore, by (2),

|f(z)| ≤ 2pv(z)−1.

If |h(z)(1− |z|2)| ≤ |h(z0)(1− |z0|2)|, then C1v(z)−1 ≥ v(z0)−1 (because ϕ
is almost increasing). By (3), |f(z)| ≤ C1v(z)−1.

Summarizing, ‖f‖v ≤ max(2p, C1, 1) but |f(z0)|v(z0) ≥ min(2−p, C2).
The weight is essential.

Now, we prove an analogue of Theorem 3 showing that for weights de-
pending only on the distance to the boundary the indices are easily calcu-
lable.

First we need some definitions. Recall that the log-transform of the func-
tion ϕ : R+ → R+ is the function Φ : R→ R given by

Φ(t) := logϕ(et).

Further, recall that the functions f , g are called additively equivalent, de-
noted by f ♠ g, if |f − g| is bounded.

Lemma 6. If F,G : A → R, A = R or A = a half-line, are additively
equivalent continuously differentiable functions such that F ′ ≤ a, G′ ≥ b
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then there is a continuously differentiable function H : A → R additively
equivalent to F and G such that

b ≤ H ′ ≤ a.
Proof. We give a proof only for A = R. If G′ ≥ F ′ then we take

H(t) =
t�
0

(min(G′(x), a) +G(0)) dx for t ∈ R.

This is the function we are looking for since F ′ ≤ H ′ ≤ G′. If G′ ≤ a, then
we take H = G.

Let I := {t : G′(t) > a}. This is a union of countably many open
intervals. Since G′ is uniformly continuous on compact sets, there are only
finitely many of these intervals intersecting [−n,−n+ 1]∪ [n− 1, n], n ∈ N,
and such that G′ > a + 2−n somewhere in the interval. Therefore we may
modify G′ in such a way that G ♠ F , G′ ≥ b but

{t ∈ [−n, n] : G′(t) > a}
is a union of finitely many open intervals. Indeed, it suffices to cut off “small
bumps” of G′ over a and integrate.

Assume that I ∩ R+ =
⋃
n∈N(pn, kn), with the intervals (pn, kn) num-

bered in order of increasing starting points. Without loss of generality we
assume that p0 = 0. We define h(t) = a for t ∈ (pn, kn), n ∈ N. Let

t1 := inf
{
t :

t�
0

(F ′ −G′)+ =
t�
0

(G′ − a)+
}
.

Then for t ∈ (0, t1), we define

h(t) := max(F ′(t),min(G′(t), a)).

Of course, t1 ∈ (kn, pn+1) and for t ∈ (t1, pn+1) we define

h(t) := G′(t).

Then we repeat the same procedure starting from pn+1 instead of 0. In-
ductively, we define h(t) for t > 0. An analogous procedure gives h(t) for
negative t.

We define

H(t) := G(0) +
t�
0

h(x) dx for t ∈ R.

Clearly, b ≤ H ′ ≤ a and H is differentiable. For t ∈ (0, t1), F ′(t) ≤ H ′(t).
Thus

(G(0)− F (0)) + F (t) ≤ H(t).
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On the other hand, H(t) ≤ G(t) because for u < t1,
u�
0

(h−G′) =
�

[0,u]\I
(F ′(t)−G′(t))+ dt−

�
[0,u]∩I

(G′(t)− a)+ dt

=
u�
0

(F ′ −G′)+ −
u�
0

(G′ − a)+ ≤ 0.

Since � t10 (h−G′) = 0, we have H(t1) = G(t1) and the same holds for other
t ∈ (t1, pn+1). Repeating the above procedure inductively we get

F (t)− sup
u
|F (u)−G(u)| ≤ H(t) ≤ G(t).

Lemma 7. If H : A → R, A = R or A = a half-line, is a continuously
differentiable function such that

b ≤ H ′ ≤ a
then for every ε > 0 there is a smooth function G : A → R additively
equivalent to H such that

|G′′| < ε, b ≤ G′ ≤ a.
Proof. We prove the lemma only for A = R+. We take k = (a− b)/ε

and define a piecewise affine continuous function h with knots at lk, l ∈ N,
as follows. We take h(0) = b and set

r(l) =
2
k

lk�
0

(H ′ − b)− 2
( l−1∑

j=1

(h(jk)− b)
)

+ b

and

h(lk) :=




a if r(l) > a,
r(l) if r(l) ∈ [b, a],
b if r(l) < b.

Between multiples of k we define h to be affine. Note that if r(l) ∈ [b, a],
then

lk�
0

(h(u)−H ′(u)) du = 0

and for t ∈ [lk, (l+ 1)k] we have

∣∣∣
t�
0

(h(u)−H ′(u)) du
∣∣∣ =

∣∣∣
t�
lk

(h(u)−H ′(u)) du
∣∣∣ ≤ (a− b)k

2
.

If r(l + 1), . . . , r(l + m) > a, then h(t) = a for t ∈ [(l + 1)k, (l + m)k] so
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h(t) ≥ H ′(t) for these t but still
t�
lk

(h(u)−H ′(u)) du ≤ 0.

Therefore � t
lk

(h(u) − H ′(u)) du is a non-decreasing function of t and it is
not less than −(a− b)k/2. Treating the case of r(l) < b analogously, we can
show that ∣∣∣

t�
0

(h(u)−H ′(u)) du
∣∣∣ ≤ 2(a− b)k.

Since |h′| ≤ ε whenever h′ exists, we can find a smooth function h̃ such
that b ≤ h̃ ≤ a, |h̃′| ≤ ε and � R |h− h̃| < 1. Thus

G(t) :=
t�
0

h̃(u) du+H(0)

is a function we are looking for.

Now, we prove a crucial lemma.

Lemma 8. Let ϕ : R+ → R+ be almost increasing and let Φ denote the
log-transform of ϕ. If f : D→ Ω is a conformal equivalence, then the weight

v(z) := ϕ((1− |z|2)|f ′(z)|)
satisfies the following inequality :∣∣∣∣−∆ log v(z)− Φ′(k(z))

(1− |z|2)2

∣∣∣∣ ≤
4|Φ′′(k(z))|
(1− |z|2)2 ,

where
k(z) := log((1− |z|2)|f ′(z)|).

Proof. We have

−∆ log v(z) = −∆ logϕ(exp(k(z))) = −∆Φ ◦ k(z).

Moreover,

∆Φ ◦ k(z) = Φ′′(k(z)) · (∂k(z)∂k(z)) + Φ′(k(z)) ·∆k(z).

We calculate

∂k(z) =
−z

1− |z|2 +
1
2
f ′′(z) · f ′(z)
|f ′(z)|2 ,

∂k(z) =
−z

1− |z|2 +
1
2
f ′′(z) · f ′(z)
|f ′(z)|2 .

Since f ′ never vanishes we have

∆k(z) = ∆ log(1− |z|2) =
−1

(1− |z|2)2 .
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Therefore, we obtain

−∆ log v(z) = −∆Φ ◦ k(z)

= −Φ′′(k(z)) ·
∣∣∣∣
−z

1− |z|2 +
1
2
f ′′(z)
f ′(z)

∣∣∣∣
2

+ Φ′(k(z))
1

(1− |z|2)2

=
1

(1− |z|2)2

(
Φ′(k(z))− Φ′′(k(z)) ·

∣∣∣∣
1
2
f ′′(z)
f ′(z)

(1− |z|2)− z
∣∣∣∣
2)
.

By [Po, Prop. 1.2] (which follows immediately from the Bieberbach conjec-
ture for the second coefficient),

∣∣∣∣
1
2
f ′′(z)
f ′(z)

(1− |z|2)− z
∣∣∣∣ ≤ 2 for z ∈ D.

Thus the required inequality follows.

Lemma 9. Let ϕ : R+ → R+ be a differentiable function and let Φ be its
log-transform. Let t0 = 1, t∞ =∞. Then, for i = 0 or i =∞,

(a) αiϕ = sup{inft∈(0,ti] Φ
′
1(t) : Φ ♠ Φ1 and Φ1 is smooth};

(b) βiϕ = inf{supt∈(0,ti] Φ
′
1(t) : Φ ♠ Φ1 and Φ1 is smooth};

(c) ϕ is almost increasing (near zero) if and only if there exists Φ1 ♠ Φ,
Φ1 smooth, such that Φ′1 ≥ 0 (near zero).

Proof. (a) By the definition, it follows easily that

αiϕ = sup{q : ∃ϕ1 ∼ ϕ : ϕ1(t)/tq is increasing, t ∈ (0, ti], ϕ1 smooth}.
Thus for the log-transform Φ1 of ϕ1 we see that

log
(
ϕ1(et)
etq

)
= Φ1(t)− tq

is increasing, hence Φ′1(t) ≥ q.
The proof of (b) and (c) is analogous.

Theorem 10. Let f : D → Ω be a biconformal map. Let ϕ : R+ → R+

be an almost increasing function with βiϕ <∞, where i = 0 or ∞ depending
on whether (1− |z|2)|f ′(z)| is bounded on D or not (i.e., whether Ω is thin
or not). Then for every ε > 0 there is a smooth weight w depending on
(1− |z|2)|f ′(z)| and equivalent to v(z) := ϕ((1− |z|2)|f ′(z)|) such that

αiϕ − ε
(1− |z|2)2 ≤ −∆ logw(z) ≤

βiϕ + ε

(1− |z|2)2 .

Proof. By Lemma 9, there are two functions Φ1, Φ2 additively equivalent
to the log-transform of ϕ such that

Φ′1 ≥ αiϕ − ε/2 and Φ′2 ≤ βiϕ + ε/2.
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Applying Lemmas 6 and 7 we find another smooth function Ψ additively
equivalent to the log-transform of ϕ such that

αiϕ − ε/2 ≤ Ψ ′ ≤ βiϕ + ε/2 and |Ψ ′′| ≤ ε/8.
By Lemma 8, the weight

w(z) := exp(Ψ(log((1− |z|2)|f ′(z)|)))
is the one we are looking for.

Corollary 11. If ϕ is an almost increasing function, ϕ ∈ ∆∞2 , and v
is a weight on some simply connected domain Ω ⊆ C, v(z) = ϕ(dist(z, ∂Ω)),
then

α∞ϕ ≤ Lv ≤ Uv ≤ β∞ϕ .
If Ω is bounded then Uv = β0

ϕ and if , additionally , ϕ ∈ ∆0
2 then Lv = α0

ϕ.

Proof. If Ω is bounded, then the curves (1− |g(z)|2)/|g′(z)| = const are
closed. Let

−∆ logw(z) ≤ C(1− |z|2)−2 for w ∼ v, v(z) = ϕ(H(z)),

and

H(z) :=
1− |g(z)|2
|∂g/∂z| .

Thus log(w(z)/H(z)C) is subharmonic, so w(z)/H(z)C is either constant
or has no local maximum. If tC/ϕ(t) is not almost increasing then we
can find sequences (t1,n), (t2,n), t1,n < t2,n, in the range of ϕ such that
tC1,n/ϕ(t1,n) > ntC2,n/ϕ(t2,n). This leads to a contradiction by taking n large
enough with respect to the equivalence constant of w and v because Ω is
thin and therefore H is bounded. A similar proof works for Lv = α0

ϕ.

Corollary 12. If Ω is a simply connected domain, ϕ is almost in-
creasing and 0 < α∞ϕ ≤ β∞ϕ <∞, then the weight

v(z) = ϕ(dist(z, ∂Ω))

is essential. For thin domains it suffices to assume 0 < α0
ϕ ≤ β0

ϕ <∞.

Proof. By Theorem 10, there is a smooth weight w equivalent to v such
that

−∆ logw(z) ∼ 1
(1− |z|2)2 .

By Proposition 2(c), the result follows.

Corollary 11 cannot be improved. Take ϕ(t) := ett and consider the
weight w(z) := ϕ(|Re z|) on the left half-plane Re z < 0. Via the Riemann
map we obtain a weight on D:

v(z) := (1− |z|2)|f ′(z)| exp((1− |z|2)|f ′(z)|)
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for f(z) = (1 + z)/(1− z). Easy calculations show that α0
ϕ = β0

ϕ = α∞ϕ = 1
but β∞ϕ =∞. On the other hand,

−∆ log v(z) =
1

(1− |z|2)2 ,

which implies that Lv = Uv = 1.

5. Metric on D induced by a weight v and stability of sequences
of interpolation and sampling. We define δz(f) := f(z), z ∈ D, and

%v(z, p) := d

(
δz
‖δz‖

, lin δp

)
= inf{‖δz ṽ(z)− aδp‖(B∞v )′ : a ∈ C}

= sup{|f(z)ṽ(z)| : ‖f‖v ≤ 1, f(p) = 0}.
Since using %v we can estimate from above the distance of a to the unit
circle, we easily obtain

%v(z, p) ≤ inf
|λ|=1

∥∥∥∥
δz
‖δz‖

− λδp
‖δp‖

∥∥∥∥ ≤ 2%v(z, p),

so %v is equivalent to some metric on D. Moreover, %v = %ṽ and if v ≡ 1,
then %v = %.

Lemma 13. If u = w/ṽ is an essential weight , then C%v ≤ %w for some
constant C > 0. In particular , for every weight w,

%w ≥ C% for some constant C > 0.

Proof. Let f(p) = 0, ‖f‖ṽ ≤ 1. For each z ∈ D there is a g ∈ H(D) with
‖g‖u ≤ 1, |g(z)| ≥ Cṽ(z)/w(z). Thus

C|f(z)ṽ(z)| ≤ |f(z)g(z)w(z)| ≤ %w(z, p).

The following result is closely connected to [HKZ, Lemma 5.1] and gener-
alizes [BP, Lemma] (cf. also [M, p. 395] and [Sch2, Lemma 4.2] for weighted
Bergman spaces Bpv , p <∞).

Lemma 14. Let v be a radial weight on D and let f ∈ B∞v . Assume that
there are 0 < r < 1 and C < ∞ such that v(z)/v(p) ≤ C for all z, p ∈ D
with %(z, p) ≤ r. Then

|f(z)− f(p)| ≤ 4C‖f‖v
rv(z)

%(z, p)

for all z, p ∈ D with %(z, p) ≤ r/2.

Proof. Fix p ∈ D. Since ϕp(ϕp(z)) = z and ϕp(0) = p, we get

|f(z)− f(p)| = |f(ϕp(ϕp(z)))− f(ϕp(0))|.
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For |z| = %(ϕp(z), p) = r,

|f(ϕp(z))| ≤ ‖f‖v
v(ϕp(z))

≤ ‖f‖v
v(p)

· v(p)
v(ϕp(z))

≤ C‖f‖v
v(p)

.

Now consider gp := f ◦ ϕp. Then, for %(z, p) = |ϕp(z)| ≤ r/2,

|f(z)− f(p)| = |gp(ϕp(z))− gp(0)|

≤ |g′p(ζ)| · |ϕp(z)| =
∣∣∣∣ϕp(z)

1
2π

�
|ξ|=r

gp(ξ)
(ξ − ζ)2 dξ

∣∣∣∣,

since |ζ| ≤ |ϕp(z)| < r/2. Thus

|f(z)− f(p)| ≤ |ϕp(z)|r C‖f‖v
(r − |ϕp(z)|)2 ·

1
v(p)

≤ 4C‖f‖v
rv(p)

%(z, p)

for %(z, p) ≤ r/2.

Corollary 15. If v is an arbitrary essential weight with Uv <∞, then
%v ∼ %.

Proof. By Lemma 14, %vp ≤ Cp% for some constant Cp > 0. Moreover,
if Uv <∞, then there is a p > 0 such that

−∆ log
vp
v
∼ (1− |z|2)−2.

Apply Lemma 13 and Proposition 2(c).

The following result is known for weights v satisfying −∆ log v(z) ∼
(1− |z|2)−2 (see [S3, Thm. 3], and for weights vp, p > 0, [BP, Thm. 9], [S2,
Lemma 6.1]). For the multi-variable case see [M, Lemma 1.1].

Corollary 16. Every set of interpolation for an arbitrary essential
weight v is %v-uniformly discrete. If Uv < ∞, then it is %-uniformly dis-
crete.

Proof. If (zk) is a set of interpolation for v, then there exist functions
fn ∈ B∞v and a constant M > 0 such that fn(zn)v(zn) = 1, fn(zk) = 0 if
k 6= n, and ‖fn‖v ≤M . Thus %v(zn, zk) > 1/M . Apply Corollary 15.

It was shown in [Le, Sec. 6 II] (cf. [BP, Thm. 8], [JMT, Lemma 1.9])
that the sets of interpolation for vp are stable under small perturbations. To
prove this for arbitrary weights v we need the following lemma.

Lemma 17. Let v be an arbitrary weight on D. If (zn) is a sequence of
distinct points in D, then the following statements are equivalent :

(a) (zn) is a set of interpolation for v.
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(b) There is a constant C > 0 such that

‖(ξn)n‖l1 ≤ C
∥∥∥
∞∑

n=1

ξnv(zn)δzn
∥∥∥ for all (ξn)n∈N ∈ l1.

If the unit ball of

B0
v := {f ∈ B∞v : lim

|z|→1
|f(z)|v(z) = 0} ⊆ B∞v

is pointwise dense in some ball of B∞v , then the above conditions are equiv-
alent to

(c) The continuous linear map R : B0
v(D) → c0, R(f) = (f(zn)v(zn))n,

is surjective, i.e. (zn) is a set of interpolation for H0
v (D).

Proof. Clearly, the unit ball Bv of B∞v is compact in the compact-open
topology co. Thus, by [BS, Thm. 1.1(a)], (G∞v )′ = B∞v , where

G∞v := {f ∈ (B∞v )′ : f |Bv is co-continuous}.
Define a map S : l1 → G∞v by

S((ξn)n) =
∞∑

n=1

ξnv(zn)δzn .

This is a well-defined continuous linear map. The adjoint map St of S co-
incides with the restriction operator T . Hence, T is surjective if and only if
(b) is fulfilled.

If the assumption of (c) holds, then by [BS, Thm. 1.1(b)], G∞v = (B0
v)′

and Rt = S.

Lemma 18. Let v be an essential weight on D and let (zn) be a set of
interpolation (respectively a set of sampling) for v. Then there is a constant
0 < δ < 1 such that each sequence (z′n) of distinct points in D satisfying
%v(zn, z′n) ≤ δ for all n is a set of interpolation (respectively of sampling)
for v. If Uv <∞ we can take % instead of %v.

Proof. Assume that (zn) is a set of interpolation for v. By Lemma 17,

‖(ξn)n‖l1 ≤ C
∥∥∥
∞∑

n=1

ξnv(zn)δzn
∥∥∥

≤ C
(∥∥∥

∞∑

n=1

ξnλnṽ(z′n)δz′n

∥∥∥+
∥∥∥
∞∑

n=1

ξn(λnṽ(z′n)δz′n − ṽ(zn)δzn)
∥∥∥
)

≤ C
(∥∥∥

∞∑

n=1

ξnλnṽ(z′n)δz′n

∥∥∥+ 2 sup
n∈N

%v(zn, z′n)‖(ξn)‖l1
)

for a suitably chosen sequence (λn), |λn| = 1, not depending on (ξn)n∈N.
This completes the proof of the first part by Lemma 17.
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If (zn) is a set of sampling for v, then

‖f‖v ≤ C sup
n∈N
|f(zn)v(zn)|

≤ C sup
n∈N
|f(z′n)v(z′n)|+ C‖f‖v sup

n∈N

∥∥∥∥
δzn
‖δzn‖

− λnδz′n
‖δz′n‖

∥∥∥∥

≤ C sup
n∈N
|f(z′n)v(z′n)|+ 2C‖f‖v sup

n∈N
%v(zn, z′n).

By Corollary 15, % ∼ %v if Uv <∞.

Corollary 19. If v is an essential weight and (zn) is a set of sampling
for v, then it contains a %v-uniformly discrete subsequence which is also a
set of sampling for v. If Uv <∞, we can take % instead of %v.

6. Comparison of weights. We start by making a simple but useful
observation.

Lemma 20. A sequence (zn) ⊂ D is a set of linear interpolation for v if
and only if there is a sequence (hn) ⊂ B∞v such that

hn(zk) =
{

1/v(zn) if k = n,
0 if k 6= n,

and there is a constant C such that
∞∑

n=1

|hn(z)|v(z) ≤ C for every z ∈ D.

Proof. We define a right inverse R for T by R((an)) :=
∑∞
n=1 anhn.

This is clearly a well-defined, continuous map. On the other hand, if R
is an appropriate right inverse for T , then we take hn := R(en) ∈ B∞v .
Now easy duality arguments for R|c0 imply the existence of C < ∞ with∑∞
n=1 |hn(z)|v(z) ≤ C for all z ∈ D.

We apply the previous lemma to obtain the following comparison result
(for other comparison type results see [JMT, Thm. 3.3], [M, Cor. 1.6], [S3,
p. 720]).

Proposition 21. Let v and w be weights on D and let (zn) ⊂ D be a
sequence.

(a) If (zn) is a set of interpolation for v and there is a function f ∈ B∞u ,
u := w/v, such that f(zn) ≥ 1/u(zn) for every n ∈ N, then (zn) is a set of
interpolation for w.

(b) If (zn) is a set of interpolation for v and there is a sequence of
functions (gn) ⊂ B∞u , u := w/v, such that gn(zn) = 1/u(zn) for every
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n ∈ N and there is a constant C <∞ with
∞∑

n=1

|gn(z)|u(z) ≤ C for all z ∈ D,

then (zn) is a set of linear interpolation for w.
(c) If (zn) is a set of linear interpolation for v and u := w/v is equivalent

to an essential weight , then (zn) is a set of linear interpolation for w.
(d) If (zn) is a set of sampling for v and u := v/w is equivalent to an

essential weight , then (zn) is a set of sampling for w.

Note that the results above are not obvious because changing weights
in interpolation or sampling we change not only the space but also the
restriction map.

Proof. (a) Let (an) ∈ l∞ and let bn := an/(f(zn)u(zn)). Clearly (bn) ∈
l∞. If g ∈ B∞v satisfies g(zn)v(zn) = bn, then the function h ∈ B∞w , h(z) :=
g(z)f(z), satisfies h(zn)w(zn) = an.

(b) Clearly, there is a sequence (fn) in B∞v such that

fn(zk) =
{

1/v(zn) if k = n,
0 if k 6= n,

and, further, the Open Mapping Theorem yields a constant M < ∞ with
‖fn‖v ≤M for all n ∈ N. Hence it is easily seen that the functions hn(z) :=
fn(z)gn(z) in B∞w satisfy the conditions of Lemma 20.

(c) Since u is equivalent to an essential weight, there is a bounded se-
quence (fn) in B∞u with fn(zn) = 1/u(zn). Moreover, there is a sequence
(gn) ⊂ B∞v satisfying the conditions of Lemma 20. Obviously, (hn) ⊂ B∞w
defined by hn(z) := fn(z)gn(z) satisfies the same conditions with w in place
of v (with a different constant C).

(d) Assume that (zn) is not a set of sampling for w. Then for every k ∈ N
there is a point ξk ∈ D and a function fk ∈ B∞w such that |fk(ξk)|w(ξk) ≥ k
while supn∈N |fk(zn)|w(zn) ≤ 1. Now, there is a bounded sequence (gk) in
B∞u such that gk(ξk) = 1/u(ξk). Clearly, (hk) ⊂ B∞v , hk(z) := gk(z)fk(z),
and supn∈N |hk(zn)|v(zn) ≤ ‖gk‖u ≤ C although |hk(ξk)|v(ξk) ≥ k. Thus
(zn) cannot be a set of sampling for v.

Now, it makes sense to check which “weights” u satisfy the corresponding
conditions from Proposition 21.

Lemma 22. For the weight u(z) = (1− |z|2)ε, ε > 0, on D the assump-
tions of Proposition 21(b) are satisfied for each uniformly discrete sequence
(zn).
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Proof. We define

gn(z) :=
1

(1− |zn|2)ε

(
1− |zn|2
1− znz

)s
, where s > 1 + ε.

Thus gn(zn)(1− |zn|2)ε = 1 for all n. Further, for z ∈ D we have
∞∑

n=1

|gn(z)|(1− |z|2)ε ≤ (1− |z|2)ε
∞∑

n=1

(1− |zn|2)s−ε

|1− znz|s
.

Since, by [S2, pp. 34–35], there is a constant M > 0 such that for all z ∈ D,
∞∑

n=1

(1− |zn|2)s−ε

|1− znz|s
≤M(1− |z|2)−ε

whenever (zn) is uniformly discrete, the conclusion follows.

Now, we present some immediate consequences (for several variables a
special case of the following result is also true; see [JMT, Thm. 3.3]).

Corollary 23. Let v be an arbitrary essential weight. Then every set of
interpolation for H∞ is also a set of linear interpolation for v. Analogously ,
every set of sampling for B∞v is also a set of sampling for H∞.

As the next application observe that Proposition 21(b) (together with
Lemma 22 and Corollary 16) gives an elementary proof of the following
result of Seip [S2] (for the unit ball in Cn, see [M, Cor. 1.6]).

Corollary 24. Every set of interpolation for vp is a set of linear in-
terpolation for vq for 0 ≤ p < q.

By Proposition 21(c) and 2(c) we obtain elementarily a much stronger
result which under the additional assumption −∆ log v(z) ∼ (1 − |z|2)−2

also follows from [S3, Thm. 3].

Corollary 25. If v and w are arbitrary smooth weights such that

−∆ log
w(z)
v(z)

∼ (1− |z|2)−2,

then every set of linear interpolation for v is also a set of linear interpolation
for w.

Now, applying Proposition 21 we compare weights by means of our in-
dices.

Corollary 26. Let v, w be essential weights on D.

(a) If Uw <∞ and Lu > 0 for u := w/v, then every set of interpolation
for v is a set of linear interpolation for w.

(b) If Uv <∞ and Lu > 0 for u := v/w, then every set of sampling for
v is a set of sampling for w.
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For radial weights v and w we have:

(c) If Uw < ∞ and u := w/v is almost decreasing , then every set of
linear interpolation for v is also a set of linear interpolation for w.

(d) If Uv < ∞ and u := v/w is almost decreasing , then every set of
sampling for v is also a set of sampling for w.

Remark. If Uw < ∞ and Uv < Lw, then Lu > 0 for u := w/v and the
latter condition implies for radial weights that u is almost decreasing (use
Corollary 11 and the observation that Uu < ∞). This follows from the last
part of the proof of Proposition 2(b) and some easy calculations.

Proof of Corollary 26. (a) First observe that Uv <∞. Indeed,

−∆ log v(z) = −∆ logw(z) +∆ log u(z) ≤ Uw − Lu
(1− |z|2)2 .

Now, by Corollary 16, any set (zn) of interpolation for v must be uniformly
discrete. Hence, by Proposition 21(b) and Lemma 22, the sequence (zn) is
a set of linear interpolation for the weight v(z)(1 − |z|)ε, ε > 0. Choosing
ε < Lu, we see that Lk > 0 for k(z) := w(z)/(v(z)(1− |z|)ε). Consequently,
by Propositions 2(c) and 21(c), it suffices to show that Uk < ∞, which
follows easily from Uw <∞.

(b) The proof is analogous.
(c) Since Uw<∞, there are q<∞ andM such that w(1−λt)/(w(1− t)λq)

≥M for all λ, t ∈ (0, 1]. The weight v is almost decreasing and we conclude
that Uu <∞. Consequently, Proposition 2(b) implies that u is an essential
weight. Now, the statement follows from Proposition 21(c).

(d) First, as above, one shows that Uu <∞. Then, by Propositions 2(b)
and 21(d), the conclusion follows.

7. Main results. In order to get the final results we need two lemmas.

Lemma 27. For r ∈ (1/2, 1) and δ ∈ (0, 1/2) we have the following
inequalities:

(i) log
1− δr
r − δ ≥ (1 + δ) log

1
r

;

(ii) log
1 + δr

r + δ
≤ (1− δ) log

1
r

.

Proof. For r = 1 both inequalities hold, so it suffices to check that for
δ ∈ (0, 1/2) the differences between both sides of the inequalities are suitably
monotonic.

The following result is based on ideas contained in the proof of necessity
of [S2, Thms. 1.1 and 1.2].
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Lemma 28. Let Γ = (zn) be a uniformly discrete sequence in D with
%(zm, zn) > β for m 6= n and 0 < δ < β < 1/2.

(a) If D+(Γ ) < ∞, then there is a sequence Γ ′ = (z′n) ⊆ D with
%(zn, z′n) ≤ δ for n ∈ N such that

D+(Γ ′) ≥ (1 + δ)D+(Γ ).

(b) If D−(Γ ) > 0, then there is a sequence Γ ′ = (z′n) ⊆ D with
%(zn, z′n) ≤ δ for n ∈ N such that

D−(Γ ′) ≤ (1− δ)D−(Γ ).

Proof. (a) Let D+(Γ ) = α. Then there is a sequence (wj) ⊆ D and an
increasing sequence (rj) of positive numbers rj → 1− such that

D(ϕwj (Γ ), rj) ≥ α− 2−j .

Let S1 :=
{
z ∈ D : %

(
z, 1

2D
)
≤ β

}
. Clearly S1 is a Euclidean disc with

center 0 and some radius R. Since for any w ∈ D, ϕw(Γ ) is also β-discrete,
there is a constant K such that for any w ∈ D the set S1 contains at most
K elements of ϕw(Γ ).

We split Γ into disjoint finite sets as follows:

Γ1 := {zk : R < |ϕw1(zk)| < r1},

Γj := {zk : R < |ϕwj (zk)| < rj} \
j−1⋃

l=1

Γl.

Inductively, taking rj large enough, we may assume that

(K + card
⋃j−1
l=1 Γl) log 2

log 1
1−rj

< 2−j .

Finally,
(

log
1

1− rj

)−1 ∑

zk∈Γj
log

1
|ϕwj (zk)| ≥ α− 2−j+1 for j ∈ N.

We define

z′k := ϕwj

( |ϕwj (zk)| − δ
1− δ|ϕwj (zk)| ·

ϕwj (zk)
|ϕwj (zk)|

)
for zk ∈ Γj .

For zk belonging to no Γj we define z′k := zk. It is known (see [Sh, Ex. 4.8.1])
that ϕwj (z

′
k) is the point at pseudohyperbolic distance δ from ϕwj (zk) which

has the smallest module.
By Lemma 27,

log
1

|ϕwj (z′k)| ≥ (1 + δ) log
1

|ϕwj (zk)| for zk ∈ Γj .
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Hence

D(ϕwj (Γ
′), rj) ≥ (1 + δ)

(
log

1
1− rj

)−1 ∑

zk∈Γj
log

1
|ϕwj (zk)|

≥ (1 + δ)(α− 2−j+1).

Thus lim supr→1− supw∈DD(ϕw(Γ ′), rj) ≥ (1 + δ)α.
(b) Let D−(Γ ) = α. Then there is a sequence (wj) ⊆ D and a sequence

(rj) of positive numbers rj → 1− such that

D(ϕwj (Γ ), rj) ≤ α+ 2−j .

We set Sj := {z ∈ D : %(z, rjD) ≤ β}. We split Γ into disjoint finite sets as
follows:

Γ1 := {zk : 1/2 < |ϕw1(zk)| < r1},

Γj := {zk : 1/2 < |ϕwj (zk)| < rj} \
j−1⋃

l=1

{zk : ϕwl(zk) ⊂ Sl}.

Additionally, we define

Vj :=
j−1⋃

l=1

{zk : ϕwl(zk) ⊂ Sl}.

Inductively, taking rj large enough, we may assume that

(log 2) cardVj
log 1

1−rj
< 2−j .

We define

z′k := ϕwj

( |ϕwj (zk)|+ δ

1 + δ|ϕwj (zk)| ·
ϕwj (zk)
|ϕwj (zk)|

)
for zk ∈ Γj .

For zk belonging to no Γj we define z′k := zk. It is known (see [Sh, Ex. 4.8.1])
that ϕwj (z

′
k) is the point at pseudohyperbolic distance δ from ϕwj (zk) which

has the greatest module.
By Lemma 27,

log
1

|ϕwj (z′k)| ≤ (1− δ) log
1

|ϕwj (zk)| for zk ∈ Γj .

Hence,

D(ϕwj (Γ
′), rj)

≤
(

log
1

1− rj

)−1( ∑

zk∈Γj
log

1
|ϕwj (z′k)| +

∑

zk∈Vj
log

1
|ϕwj (z′k)|

)
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≤
(

log
1

1− rj

)−1

(1− δ)
∑

zk∈Γj

1
|ϕwj (zk)| + 2−j

≤ (1− δ)(α+ 2−j) + 2−j .

Therefore, D−(Γ ′) ≤ (1− δ)α.

By the results of Seip [S2] and Corollary 26 we now obtain the following
result.

Theorem 29. Let v be an essential weight on D such that Uv <∞.

(a) Every uniformly discrete sequence Γ = (zn) of density D+(Γ ) < Lv
is a set of linear interpolation for v.

(b) If Γ = (zn) is a set of interpolation for v, then Γ is uniformly
discrete and D+(Γ ) < Uv or D+(Γ ) = 0 if Uv = 0.

(c) If the sequence Γ = (zn) contains a uniformly discrete subset Γ ′ of
density D−(Γ ′) > Uv, then Γ is a set of sampling for v.

(d) If Lv > 0 and Γ = (zn) is a set of sampling for v, then Γ contains
a uniformly discrete subset Γ ′ with D−(Γ ′) > Lv.

Proof. (a) Let 0 < ε < Lv − D+(Γ ), so Lv − ε > D+(Γ ). Since Γ is
uniformly discrete, Theorem B implies that Γ is a set of interpolation for the
weight w(z) = (1 − |z|2)Lv−ε. Now, Uw = Lv − ε < Lv, so Corollary 26(a)
and Remark after it show that Γ is a set of linear interpolation for v.

(b) By Corollary 16, Γ is uniformly discrete. Take an arbitrary ε > 0.
Then Uv+ε <∞ and for w(z) = (1−|z|2)Uv+ε it follows that Uv < Uv+ε =
Lw. Hence Γ is a set of linear interpolation for w by Corollary 26(a). By
Theorem B, D+(Γ ) < Uv + ε for every ε > 0. Thus D+(Γ ) ≤ Uv.

By Lemma 18, we choose δ for Γ as a set of interpolation for v. Take a
sequence Γ ′ = (z′n) in D such that %(zn, z′n) ≤ δ for all n and (1+δ)D+(Γ ) ≤
D+(Γ ′) (use Lemma 28). By Lemma 18, the set Γ ′ is a set of interpolation
for v, so the above argument shows that D+(Γ ′) ≤ Uv. Hence D+(Γ ) < Uv.

(c) Let 0 < ε < D−(Γ ) − Uv. Thus, by Theorem A, the set Γ is a
set of sampling for w(z) = (1 − |z|2)Uv+ε. Since Uw = Uv + ε < ∞ and
Lw = Uv + ε > Uv, Corollary 26(b) gives the statement.

(d) By Corollary 19, we may assume that Γ = (zk) is uniformly discrete
where

%(zm, zn) ≥ β for m 6= n.

Take an arbitrary 0 < ε < 1. Then Uw = εLv < Lv for the weight w(z) =
(1 − |z|2)εLv . Hence Γ is a set of sampling for w by Corollary 26(b). Since
Theorem A yields D−(Γ ) > εLv for any ε, we have D−(Γ ) ≥ Lv.

By Lemma 18, we choose δ for Γ as a set of sampling for v. We may
assume that δ < β/3. By Lemma 28, we choose a sequence Γ ′ = (z′k) in D
such that %(z′n, zn) ≤ δ and D−(Γ ′) ≤ (1 − δ)D−(Γ ). By Lemma 18, the



Sets of interpolation and sampling 261

set Γ ′ is a set of sampling for v, and it is uniformly discrete. Thus, by the
above arguments, D−(Γ ′) ≥ Lv and

Lv ≤ D−(Γ ′) ≤ (1− δ)D−(Γ ).

Corollary 30. Let v be an essential weight on D and Uv = 0. Then
every set of interpolation Γ for v is uniformly discrete and D+(Γ ) = 0.

The above corollary applies for instance to any weight v which is de-
fined by

v(z) =
(

log
(

e

1− |z|

))ε
,

where ε < 0, or any logarithmic weight as in [SW1, p. 265]. These weights
are not covered by Seip’s theory [S3] because −∆ log v(z) = o((1− |z|2)−2).

Corollary 31. Let v be an essential weight on D such that 0 < Lv =
Uv <∞.

(a) Γ is a set of interpolation for v if and only if Γ is uniformly discrete
and D+(Γ ) < Uv.

(c) Γ is a set of sampling for v if and only if Γ contains a uniformly
discrete subset Γ ′ with D−(Γ ′) > Lv.

The above corollary means that if Uv = Lv = p then the spaces B∞v
and B∞vp have exactly the same sets of interpolation and sets of sampling,
although they can be essentially different. As one easily calculates this holds,
for instance, for

v(z) = (1− |z|2)p
(

log
(

e

1− |z|

))ε
,

where ε ∈ R, or even

v(z) = ((1− |z|2)|f ′(z)|)p
(

log
(

e

(1− |z|2)|f ′(z)|

))ε
,

where f : D→ Ω is an arbitrary Riemann map.
The possibility of such a phenomenon can also be deduced from the

results in [S3], but our machinery allows us to identify easily such weights.
Using Corollaries 11 and 12 we may formulate the following result.

Corollary 32. Let ϕ : R+ → R+ be an almost increasing function with
0 < α∞ϕ = β∞ϕ <∞ (for instance, ϕ(t) = tp). Let Ω be an arbitrary simply
connected domain and g : Ω → D be a Riemann map. Let v : Ω → R+,
v(z) = ϕ(dist(z, ∂Ω)).

(a) A set Γ ⊆ Ω is a set of interpolation for B∞v (Ω) if and only if g(Γ )
is uniformly discrete and D+(g(Γ )) < α∞ϕ .
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(b) A set Γ ⊆ Ω is a set of sampling for B∞v (Ω) if and only if Γ contains
a subset Γ ′ such that g(Γ ′) is uniformly discrete and D−(g(Γ ′)) > α∞ϕ .

If Ω is thin, then we have the same result for α0
ϕ, β0

ϕ in place of α∞ϕ , β∞ϕ .

Let us mention that on the strip Ω := {z : |Im z| < π/2} the Riemann
map g : Ω → D is given by the formula

g(z) :=
ez − 1
ez + 1

.

A sequence Γ ⊆ Ω is a set of interpolation for B∞v , v(z) = cos2p(Im z),
p > 0, if and only if Γ is uniformly discrete and

D+(g(Γ )) < p.
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