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Existence of positive solutions
for second order m-point boundary value problems

by RuyuN Ma (Lanzhou)

Abstract. Let «,3,7,0 > 0 and 0 := v8+ ay + ad > 0. Let ¢(t) = B+ at,
o(t) =+ —~t, t €[0,1]. We study the existence of positive solutions for the m-point
boundary value problem

'+ h(t)f(u) =0, 0<t< 1,
au(0) — Bu' (0) = 75 % asu(&),
yu(1) + 6u' (1) = L7 b)),

where & € (0,1), a;,b; € (0,00) (for i € {1,...,m — 2}) are given constants satisfying
0= Y7L aid(&) > 0, 0= X1 bi(§) > 0 and
~ X (&) o= X" aid(€)
A= e 2 <0.
o= X&) — X bio(&)

We show the existence of positive solutions if f is either superlinear or sublinear by a simple
application of a fixed point theorem in cones. Our result extends a result established by
Erbe and Wang for two-point BVPs and a result established by the author for three-point
BVPs.

1. Introduction. The study of multi-point boundary value problems
for linear second order ordinary differential equations was initiated by II'in
and Moiseev [6]. Motivated by [6], Gupta [4] studied certain three-point
boundary value problems for nonlinear ordinary differential equations. Since
then, more general nonlinear multi-point boundary value problems have
been studied by several authors. We refer the reader to [4-6, 8-10] for some
relevant references.
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266 R.Y. Ma

In this paper, we are interested in the existence of positive solutions of
the second order m-point boundary value problem

W +h(t)f(u)=0, 0<t<l,

au(0) — fu’(0) = z_: a;u(&;),

yu(1) + du'(1 Zblu
=1

(1.1)

where & € (0,1), a;,b; € (0,00) (for i € {1,...,m —2}) are given constants.
Ifa;=b;=0for:=1,...,m — 2, then the m-point BVP (1.1) reduces
to the two-point BVP
W+ h(t)f(u)=0, 0<t<l,
(1.2) au(0) — fu’(0) =0,
yu(1) 4 du'(1) = 0.
In 1994, Erbe and Wang [3] obtained the following excellent result for (1.2).
THEOREM A ([3, Theorem 1]). Suppose that
(A1) f € C([0,00), [0,00));
(A2)  heC([0,1],][0,00)) and h(t) =0 on no subinterval of (0,1);
(A3)  «,83,7,0 >0, and 0 := 8+ ay + ad > 0.
Then (1.2) has at least one positive solution if either
(i) fo =0 and foo = 0, or
(i) fo = 00 and fx = 0.
where
fo:= lim M, foo := lim —=

u—0t u u—oo U
This result has been extended and developed by many authors (see Erbe,
Hu and Wang [2] and Lian, Wong and Yeh [7] for some references).
fa=~v=1,=0=0,a;=0fori=1,...,m—2, and b; = 0 for
j=2,...,m—2, then (1.1) reduces to the three-point BVP
(1.3) o +h(t)f(u)=0, 0<t<l,
| u(0) =0, (1) = bu(é).
In 1998, Ma [8] obtained the following result for (1.3).
THEOREM B ([8, Theorem 1]). Suppose that
(H1) 0<b<1;
(H2)  f € C([0,00), [0,00));
(H3) h e C([0,1],]0,00)) and there exists to € [£,1] such that h(tg) > 0.
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Then (1.3) has at least one positive solution if either

(i) fo =0 and foo = 0, or

(ii) fo =00 and fs = 0.

Theorem B has been extended by Webb [10]. We remark that in the
proof of Theorem B, we rewrite (1.3) as the equivalent integral equation

0 3
(1.4)  u(t)= — S (t —s)h(s)f(u(s))ds — - Etbg S (€ — s)h(s)f(u(s))ds
° 0
+1fM§ﬂ—smwvm@»ds

0
which contains one positive term and two negative terms and is not conve-
nient for studying the existence of positive solutions.

In this paper, we consider the more general m-point BVP (1.1). To deal
with (1.1), we give a new integral equation which is equivalent to (1.1) and
only contains two positive terms. Our main result (see Theorem 3.1 below)
extends and unifies the main results of [2, 3, 7, §].

By a positive solution of (1.1) we understand a function u(t) which is
positive on (0,1) and satisfies the differential equation and the boundary
conditions in (1.1).

The main tool of this paper is the following well-known Guo—Krasnosel’-
skii fixed point theorem.

THEOREM C (see [3]). Let E be a Banach space, and let K C E be a
cone. Assume §21, £25 are open bounded subsets of E with 0 € §21, 21 C §2o,
and let

AZKﬂ(ﬁQ\\Ql)HK

be a completely continuous operator such that either

(1) [JAu|| < |ull, we KNIy, and ||Aul| > ||u|, v e K NOS2%; or
(ii) |Aul| > |lull, v e KNOf, and ||Aul| < ||lu||, v € K NOL2s.

Then A has a fized point in K N (025 \ £21).

2. The preliminary lemmas. Set

(2.1) Y(t):=B+at, ¢t):=y+d—t, te[0,1],
and
m—2 m—2
> aip&)  o— Y aip(&)
A — =1 =1 ]

m—2 m—2
0= D biv(&) = bid(&)
i=1 i—1
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LEMMA 2.1. Let (A3) hold. Assume
(H4) A£0.
Then fory € C|0,1], the problem
u +y(t)=0, 0<t<l,

m—2
au(0) — Bu’ (0) = Z aiu(&;),

yu(1) + du’( Z biu(&;)

(2.2)

has a unique solution
1

(2.3) u(t) = | G(t, s)y(s)ds + Aly)(t) + Bly)e(t)

where

(24)  G(t,s):= é { zgt) (s), 0<s<t<l,

m—2 1 m—2
) Z aiSG(fzvs)y(S) ds o— Z az¢(€l)
25 AW =7|., , o
bi{G(&s)y(s)ds  — Y bip(&)
=1 0 =1
=Y anp(&) Y ai|\G(&, s)y(s) ds
(26)  Bu)=%| e s 1
0— > bi(&) bi | G(&, 9)y(s) ds
=1 =1 0

Proof. Since i and ¢ are two linearly independent solutions of the equa-
tion u” = 0, we know that any solution of u”(t) = y(t) can be represented
as

1

(2.7) u(t) = | G(t, s)y(s) ds + Ay(t) + Bo(t)
0
where G is as in (2.4).
It is easy to check that the function defined by (2.7) is a solution of (2.2)
if A and B are defined by (2.5) and (2.6), respectively.
Now we show that the function defined by (2.7) is a solution of (2.2)
only if A and B are as in (2.5) and (2.6), respectively.
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Let w as in (2.7) be a solution of (2.2). Then
1

ult) = | éwsw(wy(s) ds+ | £ (s)p(t)y(s) ds + A(t) + Bo(t)
0 t
u'(t) = ¢'(1) | §w<s>y<s> ds+ /(1) | é o(s)y(s) ds + AY/ () + B (1)
0 t
W(t) = ¢"(1) | S ()(s) ds + &' (1) = )y (t)
00 0

+4"(t) § % d(s)y(s)ds — ' ()= o(t)y(t) + A" (t) + Bo" (1)

so that t
(2.8 ' (t) = 5 [0 (0~ o000 (Olu6) = ~(0)
Since 1

u(0) = 5  0(s)u(s) ds-+ A+ By +9),

1

u'(0) = a§ ; d(s)y(s)ds + Aa + B(—),
we have
29 Blatbatas) =S ol [SG y(s) ds + Au(&;) + Bo() .
Since 1 -

u(1) = 5§ é W(s)y(s)ds + A+ B) + BS,

(1) = —75 S 0(5)y() ds + Aa + B(=1),
we have

(210)  A(ya+da+58) = 3 bi|[Gl&. s)y(s) ds + Av(&) + Bo(&)|.

i=1 0
From (2.9) and (2.10), we get

m—2 m—2 m—2

= > @) A+ [o- Zaqu )| B = ZalSGfl,

3

M
3

o= 3 bve) A [Zb@(&)}B=gbiia<fi,s>y<s>ds,
i=1 ] 0

=1

269
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which implies A and B satisfy (2.5) and (2.6), respectively. This completes
the proof of the lemma.

In the following, we will make the following assumption:

m—2 m—2
(H5) A<0, 0= (&) >0, o— Y bi(&)>0.
i=1 i=1
It is easy to see that if a =~v=1,=0=0,a;, =0fori=1,...,m— 2,
by >0 and b; =0 for j =2,...,m — 2, then (H5) reduces to
0< b1§1 < 1,

which is a key condition in [8, Theorem 1].

LEMMA 2.2. Let (A3) and (H5) hold. Then for y € C|0,1] with y > 0,
the unique solution u of the problem (2.2) satisfies

u(t) >0, telo,1].

Proof. This is an immediate consequence of the facts that G > 0 on
[0,1] x [0,1] and A(y) > 0, B(y) = 0.

We note that if (H5) does not hold, then y € C10, 1] with y > 0 does not
imply that the unique solution u of (2.2) is positive. We can see this from
the following result:

LEMMA 2.3 ([8, Lemma 3]). Let b§ > 1. If y € C[0,1] and y > 0, then
(1.3) has no positive solution.

LEMMA 2.4. Let (A3) and (H5) hold. Let o € (0,1/2) be a constant.
Then for y € C[0,1] with y > 0, the unique solution u of the problem (2.2)
satisfies

min{u(t) |t € [o,1 — o]} > I'|ul|
where ||u| = max{u(t) | t € [0,1]} and
(2.11) I = min{o(1 — 0)/6(0), ¥()/H(1)}.
Proof. We see from (2.4) and (2.3) that
0<G(t,s) <G(s,s), te]0,1],

which implies

1

(2.12) u(t) < {G(s, s)y(s) ds + A(y)(t) + B(y)g(t), t e [0,1].
0
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Applying (2.4), we find that for ¢ € [0,1 — o],

G(t,s) [ ot)/o(s), 0<s<t<l1,
(2.13) Gwﬁ)_{¢@ﬂwﬁ, 0<t<s<l,
>{¢(1—a)/¢(0), 0<s<t<1l-o,
— L ¥(0)/4(1), o<t<s<l,
> 1T,
where I' is an in (2.11). Thus for ¢ € [0,1 — 0],
) = | Gk Gl s)yle) ds+ AW)ULE) + Bl)ott)

v
~

[ G(s,5)y(s) ds + A(y)(t) + B(y)e(t)
0

I[§G(s, 5)y(s) ds + Aly)(t) + Bly)o(®)] > I'ul.
0

v

3. The main result. The main result of the paper is the following
THEOREM 3.1. Let (H2), (A3) and (H5) hold. Assume that
(H6) h e C(]0,1],[0,00)) and there exists to € [0,1] such that h(ty) > 0.
Then (1.1) has at least one positive solution if either

(i) fo =0 and foo = 00, or
(ii) fo = oo and fo = 0.

REMARK 3.2. Condition (H6) is weaker than (H3).
REMARK 3.3. Theorem 3.1 extends [3, Theorem 1] and [8, Theorem 1].

Proof of Theorem 3.1. Since h € C|0, 1], we may assume that ¢t € (0, 1)
in (H6). Take o € (0,1/2) > 0 such that ¢y € (0,1 — o) and let I" be defined
by (2.11).

Superlinear case. Suppose then that fy = 0 and fo, = co. We wish to
show the existence of a positive solution of (1.1). Now (1.1) has a solution
u = u(t) if and only if u solves the operator equation

(3.1) u(t) = {G(t,5)h(s) f(u(s)) ds + A(R() f (u(-)(t)
0

+ B(h()f(u(-)))o(t)
= (Tu)(t)
where ¢ and ¥, G, A and B are defined by (2.1), (2.4), (2.5) and (2.6),
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respectively. Clearly

(32)  [A(R()f(u())]

-2

3

m—2

G(&,s)h(s)ds o — Z a;i ¢ (&)

i=1

Q;

<.
||M
—_

Ot = O e

< 1f ()

2
b;
1

1
—A

3
\

Gl (s ds = 3 bio(&)

= Allf (w)]

3
b

m—2
> a(&)
1 i=1
j m—2
0= > bib(&) bi
i=1 '

G(&,s)h(s)ds

1f (W)l
G (&, s)h(s)ds

a;

<.
||M
_

O ) = O e

<

3
S

&
Il
—_

= B| f(w)].
Define
(3.4) K={ueC[0,1] | u >0, min{u(t) | t € [o,1 — o]} > I'|ul}.
It is obvious that K is a cone in C[0, 1]. Moreover, by Lemmas 2.2 and 2.4,
TK C K. It is also easy to check that T': K — K is completely continuous.

Now since fo = 0, we may choose Hy; > 0 so that f(u) < eu for 0 < u
< Hi, where € > 0 satisfies

1
(3.5) ([ G5 9)h(s)ds + Al + Bllo]) < 1.
0
Thus, if v € K and |u|lp = Hi, then from (3.1)-(3.5) and the fact that
G(t,s) < G(s,s) and 0 < 9(t) < (1), we have
1
(3.6) Tu(t) = | G(t, s)h(s)f(u(s)) ds
0

+ ARC) [ ()9 () + B(h() f (ul-))¢(t)

1

< (YG(s,9)h(s) ds + Ao + Blol) 1 )]

0

=(§Gs,9)n(s) ds+ A + Blloll) lull < Jlu].
0

IN
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Now if we let
(3.7) 2 ={ueCl0,1] | ||u|| < Hi},

then (3.6) shows that ||Tu|| < ||ul| for v € K N 0.
Further, since fo, = oo, there exists H, > 0 such that f(u) > gou for
u > Hs, where gg > 0 is chosen so that

l1—0o

(3.8) 007 S G(to,s)h(s)ds > 1.

(o2

Let Hy = max{2H;, Hy/T'} and 2, = {u € C[0,1] | |lu| < Hz}. Then
u € K and ||u|| = Hy implies

min  u(t) > ||| > Ho,
o<t<l—o

and so

(3.9) Tu(to) = \G(to, s)h(s)f(u(s))ds

A(h() [ ()9 () + B(R() f (u(-))¢(t)

l1—0o

G(to,s)h(s)f(u(s))ds > S G(to, s)h(s)oou(s) ds

o

+ O ey

O ey

1—0
> 00" | Glto,s)h(s)ds|lul.

o

Hence, [|Tu|| > |lu| for u € K N 0. Therefore, by the first part of Theo-
rem C, T has a fixed point u in K N (§22 \ §21) such that H; < ||u|| < Hs.
This completes the superlinear part of the theorem.

Sublinear case. Suppose next that fo = oo and foo = 0. We first choose
Hs > 0 such that f(y) > My for 0 < y < Hs, where

(3.10) MFISUG(tO,s)h(s) ds > 1.

o

By using the method to get (3.9), we obtain

1

(3.11)  Tu(to) SG to, s)h(s)f(u(s))ds
0
1

o l-0o
> | Glto,s)h(s)Mu(s)ds > MI' | G(to,s)h(s)ds|ul.

(o2
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Thus, if we let 25 = {u € C[0,1] | ||u]| < H3} then
[Tull = [lull,  we€ KnNos.

Now, since fo, = 0, there exists ﬁ4 > 0 so that f(u) < Au for u > ﬁ4,
where A > 0 satisfies
1
(3.12) A(1G (s, )h(s) ds + Al + Bllgl ) < 1.
0

We consider two cases:
Case 1. Suppose f is bounded, say f(y) < N for all y € [0,00). In this
case choose

Hy = max{2Hs, N(G(s, 5)h(s) ds + Al + Bllg] ) }
0
so that for v € K with ||u|| = H4 we have
Tu(t) =\ G(t, 5)h(s) f(u(s)) ds + A(h() f(u()9(t) + B(h() f(ul-)) (1)
0

< (65 9)h(s) ds + Aljyl| + Bllo| )N < H,
0
and therefore ||Tul| < [jul|.
Case 2. If f is unbounded, then we know from (Al) that there exists
H, > max{2Hs, Hy/I'} such that

fly) < f(Hy) for 0 <y < Hy.

Then for v € K and ||u| = Ha, we have
1

Tu(t) = {G(t, 5)h(s) f(u(s)) ds + A(h() f(u()9(t) + B(h() f(ul-)) (1)

0

IN

(Y6 (s, 9)n(s) ds + A + Bl )11 ()]
0

1
< A(§G(s,9)n(s) ds + Al + Blle| ) lull < Ha.
0
Therefore, in either case we may put

94 = {U S C[O, 1] ’ HUH < IT[4}7

and for u € KNJf24 we have ||Tu|| < ||ul|. By the second part of Theorem C,
it follows that BVP (1.1) has a positive solution. Thus, we have completed
the proof of Theorem 3.1.
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REMARK 3.4. Erbe, Hu and Wang [2] and Lian, Wong and Yeh [7] stud-
ied the existence of multiple positive solutions of the two-point boundary
value problem

u' +g(tu) =0, 0<t<l,

au(0) — Bu (0) =0,

yu(1) + du'(1) = 0.
It is easy to see from the proof of Theorem 3.1 that we can apply Lemmas 2.2
and 2.4 to establish the corresponding multiplicity results under condition
(H5) for the m-point boundary value problem
v +g(t,u) =0, 0<t<l,

—2

au(0) — fu’(0) = aiu(&i),

=1

3

-
I

m—2

yu(l) 4 6u'(1) = Z biu(&i),

=1

and extend the multiplicity results of [2, 7] without any difficulties.
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