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A note on Rosay’s paper

by Armen Edigarian (Kraków)

To Professor Józef Siciak on his 70th birthday

Abstract. We give a simplified proof of J. P. Rosay’s result on plurisubharmonicity
of the envelope of the Poisson functional [10].

1. Introduction. Let D denote the unit disk in C. In [10], J. P. Rosay
proved the following result.

Theorem 1.1. Let u be an upper semicontinuous function on a complex
manifold X. Then

Eu(x) = inf
{

1
2π

2π�

0

u(f(eiθ)) dθ : f ∈ O(D,X), f(0) = x

}

is plurisubharmonic on X.

Here, O(D,X) denotes the set of all holomorphic mappings D → X
which extend holomorphically to a neighborhood of D.

Special cases of Theorem 1.1 have been treated by E. Poletsky (see [8]),
Lárusson–Sigurdsson (see [6]), and by the author (see [1]).

As a corollary we have the following characterization of Liouville mani-
folds.

Corollary 1.2. Let X be a complex manifold. Then any plurisubhar-
monic function on X bounded from above is constant (i.e., X is a Liouville
manifold) if and only if for any x ∈ X, any open set U ⊂ X, and any ε > 0
there exists a holomorphic mapping f ∈ O(D,X) such that f(0) = x and
the measure of the set {θ ∈ [0, 2π) : f(eiθ) ∈ U} is at least 2π − ε.
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For a complex manifold for which Eu is plurisubharmonic for any upper
semicontinuous function u on X (by Theorem 1.1 on any complex manifold)
Corollary 1.2 is given in [1]. The “only if” part is mentioned in Rosay’s
paper [10] (see also [6]). Some other applications of Theorem 1.1 can be
found in [1].

The main purpose of the paper is to give a simplified proof of Theo-
rem 1.1.

2. Preliminary results. Let us start with the following modification
of a well known result (see e.g. [1], [6], [10]). For completeness we give the
proof.

Theorem 2.1. Let X be a complex manifold. Let f : DR → X, R > 0,
be a holomorphic mapping , where DR = {ξ ∈ C : |ξ| < R}. Then for any
r ∈ (0, R) there exists a holomorphic mapping F : Dr×Dnr → X (n = dimX)
such that :

(i) F (ξ, 0) = f(ξ), ξ ∈ Dr,
(ii) Fξ = F (ξ, ·) is an injective holomorphic mapping for any ξ ∈ Dr

(note that Fξ : Dnr → Fξ(Dnr ) ⊂ X is a biholomorphic mapping).

For the proof of Theorem 2.1 we need the following simple result, which
follows immediately from the implicit function theorem.

Lemma 2.2. Let Ω be a domain in Cn and let T : D% × Ω → C be a
holomorphic function, where % > 0. Assume that the following conditions
are fulfilled :

• T ′ξ(ξ, w) 6= 0 for any (ξ, w) ∈ D% ×Ω;
• for any w ∈ Ω there exists exactly one ξ = ξ(w) ∈ D% such that

T (ξ(w), w) = 0.

Then Ω 3 w 7→ ξ(w) ∈ D% is a holomorphic function.

Proof of Theorem 2.1. Consider the graph

Γ = {(ξ, f(ξ)) : ξ ∈ DR} ⊂ DR ×X.
Then Γ is a Stein submanifold of DR×X. By Siu’s theorem (see [11, Corol-
lary 1]) there exist a Stein neighborhood W̃ ⊂ DR × X of Γ and a bi-
holomorphic mapping Ψ̃ of W̃ onto a neighborhood of the zero section of
the normal bundle of Γ , which identifies Γ with the zero section. It is well
known that the normal bundle of Γ is holomorphically trivial (see e.g. [2,
Theorem 30.4]) and therefore it is biholomorphic to Γ × Cn. From this we
conclude that there exists a biholomorphic mapping Ψ−1 : W̃ → W such
that Ψ−1(ξ, f(ξ)) = (ξ, 0) for all ξ ∈ DR, where W is a neighborhood of
DR × {0}.
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Fix r ∈ (0, R) and % ∈ (r,R). Note that {(ξ, 0)) : ξ ∈ D%} is relatively
compact in W . Therefore, there exists C > 0 such that

U := {(ξ, z1, . . . , zn) : ξ ∈ D%, |zj| < C, j = 1, . . . , n} ⊂W.
Put Ũ = Ψ(U). We define Φ : D%×Dn% 3 (ξ, z) 7→ Ψ(ξ, (C/%)z) ∈ Ũ ⊂ C×X.
Note that Φ is a biholomorphic mapping such that Φ(ξ, 0) = (ξ, f(ξ)) for
any ξ ∈ D%.

Let s ∈ (r, %). There exists ε > 0 such that

|Φ1(ξ, z)− Φ1(ξ, 0)| < s− r for ξ ∈ Ds, |||z||| ≤ ε,(2.1)

where Φ = (Φ1, Φ2) : Dn+1
r → C×X and |||z||| = max{|z1|, . . . , |zn|}.

Consider the holomorphic function
T (ξ, ζ, z) = Φ1(ξ, z)− ζ, (ζ, ξ, z) ∈ C× D% × Dn% .

Note that T (ξ, ζ, 0) = ξ − ζ has a single zero for any fixed ζ ∈ D%. So, by
Rouché’s theorem (use (2.1)), the function T (ξ, ζ, z) has a single zero for
any fixed ζ ∈ Dr and z ∈ Dnε . Hence, for any (ζ, z) ∈ Dr × Dnε there exists
exactly one ξ ∈ Ds (which we denote S(ζ, z)) such that Φ1(ξ, z) = ζ.

Note that T ′ξ(ξ, ζ, 0) = 1 for any (ξ, ζ) ∈ D% × C. Hence, there exist ε′ ∈
(0, ε) and %′ ∈ (r, %) such that T ′ξ(ξ, ζ, z) 6= 0 for any (ξ, ζ, z) ∈ D%′×D%′×Dnε′ .
By Lemma 2.2 we see that S : Dr ×Dnε′ → C is a holomorphic function. Set
F (ξ, z) = Φ2(S(ξ, δz), δz), where δ > 0 is sufficiently small.

Proposition 2.3. Let J be a closed subset of the unit circle T in C such
that J 6= T. Then H = (J×D)∪(D×{0}) is a polynomially convex compact
set in C2. Therefore, there exists a smooth plurisubharmonic function % :
C2 → [0,∞) such that {z ∈ C2 : %(z) = 0} = H.

Proof. Fix (ξ0, ζ0) ∈ C2 \H. We have to show that there exists a poly-
nomial p on C2 such that |p(ξ0, ζ0)| > ‖p‖H .

If |ξ0| > 1 (resp. |ζ0| > 1), put p(ξ, ζ) = ξ (resp. p(ξ, ζ) = ζ).
Let ξ0 ∈ D\J . Note that J is a polynomially convex set in C (see e.g. [9]).

Consider a polynomial pn(ξ, ζ) = ζqn(ξ), n ∈ N, where q is a polynomial
such that |q(ξ0)| > 1 and ‖q‖J = 1. If ζ0 6= 0, then for sufficiently large n
we have |pn(ξ0, ζ0)| = |ζ0| · |q(ξ0)|n > 1 = ‖pn‖H .

The existence of a smooth plurisubharmonic function % is well known
(see e.g. [3]).

Proposition 2.4. Let Ω be a domain in Cn and let D× {0}Cn−1 ⊂ Ω.
Assume that F : Ω → Cn is an injective holomorphic mapping such that
F (ξ, 0) = (ξ, 0), ξ ∈ D. Then there exist C ≥ 1 and r > 0 such that F and
F−1 are well defined on D1+r × Dn−1

r and
1

C
√
n
‖z‖ ≤ 1

C
|||z||| ≤ |||F2(ξ, z)||| ≤ C|||z||| ≤ C‖z‖, (ξ, z) ∈ D1+r × Dn−1

r ,

where ‖ · ‖ denotes the Euclidean norm in Cn.
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Proof. There exists a δ > 0 such that F (D1+δ×Dn−1
δ ) ⊂ D2×Dn−1. For

any (ξ, z) ∈ D1+δ × Dn−1
δ we have

1
δ
|||z||| = c∗Dn−1

δ
(z, 0) = c∗D1+δ×Dn−1

δ
((ξ, z), (ξ, 0))

≥ c∗D2×Dn−1(F (ξ, z), F (ξ, 0)) ≥ c∗Dn−1(F2(ξ, z), F2(ξ, 0)) = |||F2(ξ, z)|||,
where c∗D is the Carathéodory pseudodistance of a domain D (see e.g. [4]).
Hence, |||F2(ξ, z)||| ≤ (1/δ)|||z|||.

Put Ω̃ = F (Ω). Note that F : Ω → Ω̃ is biholomorphic and F−1(ξ, 0) =
(ξ, 0) for any ξ ∈ D. From the first part of the proof there exists a δ′ ∈ (0, δ)
such that F−1(D1+δ′×Dn−1

δ′ ) ⊂ D1+δ×Dn−1
δ and |||(F−1)2(ξ, z)||| ≤ (δ/δ′)|||z|||.

So, |||F2(ξ, z)||| ≥ (δ′/δ)|||z|||. Now it suffices to put r = δ′.

3. Proof of Theorem 1.1. First recall the following well known result
(see [1], [6], [8], [10]).

Proposition 3.1. Let X be a complex manifold and let u be an upper
semicontinuous function on X. Then Eu is also upper semicontinuous on X.

According to Proposition 3.1 it suffices to show that for any h ∈ O(D,X)
we have

Eu(h(0)) ≤ 1
2π

2π�

0

Eu(h(eiθ)) dθ.

From [1], [6] we know that for this it suffices to construct a special Stein
neighborhood (see below). The following important result is a main tool in
this construction (see [7, Theorem II]).

Theorem 3.2. A complex manifold X is a Stein manifold if and only
if there exists a continuous strongly plurisubharmonic function q defined on
X with

Xα = {x ∈ X : q(x) < α} b X for each α ≥ 0.

Recall that a plurisubharmonic function v defined in a neighborhood
of z0 ∈ Cn is called strongly plurisubharmonic at z0 if there exist r > 0
and α > 0 such that v(z) − α‖z − z0‖2 is a plurisubharmonic function on
{z ∈ Cn : ‖z − z0‖ < r}. We say that v is strongly plurisubharmonic in
an open set Ω if it is strongly plurisubharmonic at any point of Ω. Note
that strong plurisubharmonicity is a local property. So, we may define it on
a complex manifold via local coordinates. Note that the maximum of two
strongly plurisubharmonic functions is strongly plurisubharmonic.

A C2 plurisubharmonic function v is strongly plurisubharmonic at z0 ∈
Cn iff

Lv(z0,X) =
n∑

j,k=1

∂2v(z0)
∂zj∂zk

XjXk > 0 for any X ∈ Cn \ {0}.

The following simple result will be useful in the proof of Theorem 1.1.
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Lemma 3.3. Let β : C → R be a smooth subharmonic function and
let u be a strongly plurisubharmonic function on a domain Ω ⊂ Cn. Then
v(ξ, z) = |ξ|2 + eβ(ξ)u(z) is a strongly plurisubharmonic function on C×Ω.

Proof. Fix (ξ0, z0) ∈ C×Ω. Since u is strongly plurisubharmonic at z0,
there exist r > 0 and α > 0 such that u(z)−α‖z− z0‖2 is plurisubharmonic
on {z ∈ Cn : ‖z − z0‖ < r}. So, it suffices to note that ṽ(ξ, z) = |ξ|2 +
αeβ(ξ)‖z − z0‖2 is strongly plurisubharmonic at (ξ0, z0).

Proof of Theorem 1.1. Step 1. Fix an x0 ∈ X. Let h be a holomorphic
mapping from a neighborhood of the closed unit disk D into X with h(0)
= x0. We have to show that

Eu(x0) ≤ 1
2π

2π�

0

Eu(h(eiθ)) dθ.

Let ε > 0. Since Eu is upper semicontinuous, there exists a continuous
function Γ : T→ R such that Γ (eiθ) > Eu(h(eiθ)) and

1
2π

2π�

0

Γ (eiθ) dθ ≤ 1
2π

2π�

0

Eu(h(eiθ)) dθ + ε.

By the definition of Eu, for any θ0 ∈ [0, 2π) there exists a holomorphic disk
φθ0 : D%0 → X, %0 > 1, such that φθ0(0) = h(eiθ0), and

1
2π

2π�

0

u(φθ0(eiν)) dν < Γ (eiθ0).

Fix an r0 ∈ (1, %0). By Theorem 2.1, there exists a holomorphic mapping
F o : Dr0 × Dnro → X such that

(i) F 0(ξ, 0) = φθ0(ξ), ξ ∈ Dr0 ,
(ii) F 0(ξ, ·) is an injective holomorphic mapping for any ξ ∈ Dr0 .

Put G0 = F 0(0, ·). Let r̃ 0 ∈ (1, r0). We know that G0(0) = h(eiθ0).
Hence, there exists a neighborhood ω0 ⊂ Dr̃ 0 of eiθ0 such that

‖(G0)−1(h(ξ)))‖ < r0 − r̃ 0 for any ξ ∈ ω0.

We put

T 0 : ω0 × Dr̃ 0 × Dnr̃ 0 3 (ξ, ζ, z) 7→ (ξ, ζ, F 0(ζ, z + (G0)−1(h(ξ)))) ∈ C2 ×X.
Note that T 0(ξ, 0, 0) = (ξ, 0, h(ξ)), ξ ∈ ω0, and

T 0(eiθ0 , ζ, 0) = (eiθ0 , ζ, φθ0(ζ)).

Let Π : C2×X → X be the natural projection. Put ũ = u ◦Π. We have

1
2π

2π�

0

ũ ◦ T 0(eiθ0 , eiν , 0) dν < Γ (eiθ0).
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By the upper semicontinuity of ũ for θ ≈ θ0 we have

1
2π

2π�

0

ũ ◦ T 0(eiθ, eiν , 0) dν < Γ (eiθ).

By a compactness argument there exist disjoint closed arcs J1, . . . , JN on T
and open disks ω1, . . . , ωN in C such that Jj ⊂ ωj , ωk ∩ωj = ∅ if j 6= k, and

1
2π

�

T\⋃j Jj
Γ (eiθ) dθ < ε.

Put Ωj = ωj × Drj × Dnrj , rj > 1, and

Tj : Ωj 3 (ξ, ζ, z) 7→ (ξ, ζ, Fj(ζ, z +G−1
j (h(ξ)))) ∈ C2 ×X.

We have
1

2π

2π�

0

ũ ◦ Tj(eiθ, eiν , 0) dν < Γ (eiθ).

By Theorem 2.1, there exists a holomorphic mapping F0 : Dr0 × Dnr0 → X
such that F0(ξ, 0) = h(ξ) and F0(ξ, ·) is an injective holomorphic mapping
for any ξ ∈ Dr0 . We may assume that 1 < r0 < min{rj : j = 1, . . . , N}. Put
Ω0 = Dr0 × Dr0 × Dnr0 and

T0 : Ω0 3 (ξ, ζ, x) 7→ (ξ, ζ, F0(ξ, x)) ∈ C2 ×X.
Note that T0(ξ, 0, 0) = (ξ, 0, h(ξ)).

Set H :=
⋃N
j=1 Tj((Jj × D× {0}Cn)) ∪ T0(D× {0}Cn+1).

Step 2. We claim that H has a Stein neighborhood in Y :=
⋃N
j=0 Tj(Ωj).

Note that T−1
j ◦ T0(ξ, 0, 0) = (ξ, 0, 0), ξ ∈ Jj , j = 1, . . . , N . Hence, by

Proposition 2.4 there exist C ≥ 1 and δ > 0 such that T−1
j ◦T0 and T−1

0 ◦Tj
are well defined on ω′j × Dn+1

δ for any j = 1, . . . , N , and

1
C

(|ζ|2 + ‖z‖2) ≤ |ζ|2 + ‖π ◦ T−1
j ◦ T0(ξ, ζ, z)‖2 ≤ C(|ζ|2 + ‖z‖2),(3.1)

where Jj ⊂ ω′j b ωj is an open disk and π : Cn+2 3 (ξ, ζ, z) 7→ z ∈ Cn is the
natural projection.

Taking even smaller δ > 0 we may assume that δ < 1/
√
C. Take open

disks Jj ⊂ ω′′′j b ω′′j b ω′j .
Let β be a smooth subharmonic function on C such that eβ≥δ2/3 on C,

eβ =
δ2

3
on

N⋃

j=1

ω′′′j , and eβ ≥ 1 on
N⋃

j=1

∂ω′′j .(3.2)

Put M := supξ∈⋃Nj=1 ω
′
j
eβ(ξ).
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Let γ be a smooth subharmonic function on C such that eγ ≥ 1/C on C,

eγ(ξ) =
1
C

on
N⋃

j=1

ω′′j , and eγ(ξ) ≥M + C on
N⋃

j=1

∂ω′j .(3.3)

According to Proposition 2.3 there exists a smooth plurisubharmonic
function %̂ : C2 → [0,∞) such that

{%̂ = 0} = (J × D) ∪ (D× {0}),(3.4)

where J =
⋃N
j=1 Jj .

Fix an r ∈ (1, r0). By the smoothness of %̂ and (3.4) there exists a positive
number κ with the following property: if (ξ, ζ) ∈ D2

r0 is such that %̂(ξ, ζ) < κ

then either ξ ∈ ⋃N
j=1 ω

′′
j and |ζ| < r, or |ξ| < r and |ζ| < δ.

Now we define a function % on Y as follows. For j = 1, . . . , N we set

% ◦ Tj(ξ, ζ, z)

=
1
κ
%̂(ξ, ζ) +

1
3
|ξ|2 +

1
δ2 (eβ(ξ)|ζ|2 + ‖z‖2) for ξ ∈ ω′′j ,

% ◦ T0(ξ, ζ, z)

=
1
κ
%̂(ξ, ζ) +

1
3
|ξ|2 +

1
δ2 e

γ(ξ)(|ζ|2 + ‖z‖2) for ξ ∈ Dr0 \
N⋃

j=1

ω′j ,

and

% ◦ T0(ξ, ζ, z) =
1
κ
%̂(ξ, ζ) +

1
3
|ξ|2

+
1
δ2 max{eβ(ξ)|ζ|2 + ‖π ◦ T−1

j ◦ T0(ξ, ζ, z)‖2, eγ(ξ)(|ζ|2 + ‖z‖2)}
for ξ ∈ ω′j \ ω′′j .

For ξ ∈ ⋃N
j=1 ∂ω

′′
j , from (3.1)–(3.3) we have

eβ(ξ)|ζ|2 + ‖π ◦ T−1
j ◦ T0(ξ, ζ, z)‖2 ≥ (eβ(ξ) − 1)|ζ|2 +

1
C

(|ζ|2 + ‖z‖2)

≥ eγ(ξ)(|ζ|2 + ‖z‖2).

For ξ ∈ ⋃N
j=1 ∂ω

′
j , again from (3.1)–(3.3) we have

eβ(ξ)|ζ|2 + ‖π ◦ T−1
j ◦ T0(ξ, ζ, z)‖2 ≤ (M − 1)|ζ|2 + C(|ζ|2 + ‖z‖2)

≤ eγ(ξ)(|ζ|2 + ‖z‖2).

Therefore, % is a continuous strongly plurisubharmonic function defined
on Y (use Lemma 3.3). It is easy to see that H ⊂ {% ≤ 2/3}. Define
V =

⋃N
j=1 Tj(ω

′′
j × Dn+1

r ) ∪ T0(Dn+2
r ). Note that H ⊂ V b Y .
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Assume for a while that % ≥ 1 on Y \ V . Then 1/(1− %) is a contin-
uous strongly plurisubharmonic exhaustion function of {% < 1} ⊂ V . By
Theorem 3.2 we see that {% < 1} is a Stein neighborhood of H in Y .

So, we have to show that % ≥ 1 on Y \ V . If ξ ∈ ω′′j and either |ζ| ≥ r or
‖z‖ ≥ δ, then

% ◦ Tj(ξ, ζ, z) ≥ 1
κ
%̂(ξ, ζ) +

1
δ2 ‖z‖

2 ≥ 1.

If ξ 6∈ ⋃N
j=1 ω

′′
j and either |ζ| ≥ δ or ‖z‖ ≥ r, then

% ◦ T0(ξ, ζ, z) ≥ 1
κ
%̂(ξ, ζ) +

1
Cδ2 ‖z‖

2 ≥ 1

(recall that δ2C < 1 < r).

Step 3. Having constructed a Stein neighborhood of H, one has to pro-
ceed as in Lárusson–Sigurdsson’s paper (see [6], and also [1], [8]).
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