ANNALES
POLONICI MATHEMATICI
80 (2003)

A note on Rosay’s paper
by ARMEN EDIGARIAN (Krakéw)

To Professor Jozef Siciak on his 70th birthday

Abstract. We give a simplified proof of J. P. Rosay’s result on plurisubharmonicity
of the envelope of the Poisson functional [10].

1. Introduction. Let D denote the unit disk in C. In [10], J. P. Rosay
proved the following result.

THEOREM 1.1. Let u be an upper semicontinuous function on a complex
manifold X. Then
1 2m .
E,(x) = inf {% S u(f(e?))db : f e O, X), f(0) = :U}
0
1s plurisubharmonic on X.

Here, O(D, X) denotes the set of all holomorphic mappings D — X
which extend holomorphically to a neighborhood of D.

Special cases of Theorem 1.1 have been treated by E. Poletsky (see [8]),
Lérusson—Sigurdsson (see [6]), and by the author (see [1]).

As a corollary we have the following characterization of Liouville mani-
folds.

COROLLARY 1.2. Let X be a complex manifold. Then any plurisubhar-
monic function on X bounded from above is constant (i.e., X is a Liouville
manifold) if and only if for any x € X, any open set U C X, and any e > 0
there exists a holomorphic mapping f € O(D, X) such that f(0) = = and
the measure of the set {0 € [0,2n) : f(e®) € U} is at least 21 — .
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For a complex manifold for which FE, is plurisubharmonic for any upper
semicontinuous function v on X (by Theorem 1.1 on any complex manifold)
Corollary 1.2 is given in [1]. The “only if” part is mentioned in Rosay’s
paper [10] (see also [6]). Some other applications of Theorem 1.1 can be
found in [1].

The main purpose of the paper is to give a simplified proof of Theo-
rem 1.1.

2. Preliminary results. Let us start with the following modification
of a well known result (see e.g. [1], [6], [10]). For completeness we give the
proof.

THEOREM 2.1. Let X be a complex manifold. Let f:Dr — X, R > 0,
be a holomorphic mapping, where D = {£ € C : || < R}. Then for any
r € (0, R) there exists a holomorphic mapping F : D, xD' — X (n = dim X)
such that:

(i) F(&,0) = f(&), § € Dr,

(ii) Fe = F(&,-) is an injective holomorphic mapping for any & € D,
(note that F¢ : D} — Fe(D}) C X is a biholomorphic mapping).

For the proof of Theorem 2.1 we need the following simple result, which
follows immediately from the implicit function theorem.

LEMMA 2.2. Let 2 be a domain in C" and let T : D, x 2 — C be a
holomorphic function, where o > 0. Assume that the following conditions
are fulfilled:

o Té({,w) # 0 for any (&, w) € D, x £2;

e for any w € (2 there exists exactly one { = &{(w) € D, such that
T(¢(w),w) = 0.

Then 2 5 w — &(w) € D, is a holomorphic function.

Proof of Theorem 2.1. Consider the graph

I'={(& f(¢)) : £ € Dr} C Dr x X.

Then I' is a Stein submanifold of D x X. By Siu’s theorem (see [11, Corol-
lary 1]) there exist a Stein neighborhood W C Dg x X of I' and a bi-
holomorphic mapping ¥ of W onto a neighborhood of the zero section of
the normal bundle of I'; which identifies I" with the zero section. It is well
known that the normal bundle of I" is holomorphically trivial (see e.g. [2,
Theorem 30.4]) and therefore it is biholomorphic to I" x C". From this we
conclude that there exists a biholomorphic mapping ¥~ : W — W such
that w=1(&, £(£)) = (£,0) for all ¢ € Dg, where W is a neighborhood of
D R X {0}
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Fix r € (0,R) and p € (r, R). Note that {(£,0)) : £ € D,} is relatively
compact in W. Therefore, there exists C' > 0 such that
U:={(&z1,...,2n) : £ €Dy, 25| <C,j=1,...,n} CW.
Put U = ¥ (U). We define & : D, x D? > (€, 2) = ¥(€,(C/p)z) € U C Cx X.
Note that @ is a biholomorphic mapping such that @(£,0) = (&, f(£)) for

any £ € D,.

Let s € (1, 0). There exists € > 0 such that
(21) ’@1(57 Z) - @1(5, 0)| <s—r for 5 € ﬁsv ”|Z||| <e,
where & = (&1, P5) : D' — C x X and ||z|| = max{|z1],..., |za|}.

Consider the holomorphic function
T, ¢ 2)=P1(6,2) = ¢, (¢,§,2) € Cx D, xDj.
Note that T'(§,(,0) = £ — ¢ has a single zero for any fixed { € D,. So, by
Rouché’s theorem (use (2.1)), the function T'(, ¢, z) has a single zero for
any fixed ¢ € D, and z € D?. Hence, for any ((,2) € D, x D? there exists
exactly one £ € Dy (which we denote S((, z)) such that @1(§, z) = (.

Note that TE’(& ¢,0) =1 for any (§,¢) € D, x C. Hence, there exist ¢’ €
(0,€) and o' € (r, o) such that T¢(€, ¢, z) # 0 for any (£, ¢, 2) € Dy xDy xDJ.
By Lemma 2.2 we see that S : D x D, — C is a holomorphic function. Set
F(&, z) = 92(S(€,02),0z), where § > 0 is sufficiently small. =

PROPOSITION 2.3. Let J be a closed subset of the unit circle T in C such
that J # T. Then H = (J xD)U (D x {0}) is a polynomially convex compact
set in C2. Therefore, there exists a smooth plurisubharmonic function o :
C? — [0,00) such that {z € C?: o(z) =0} = H.

Proof. Fix (&,¢y) € C?\ H. We have to show that there exists a poly-
nomial p on C? such that |p(&o, Co)| > |Ipla.

If [6o] > 1 (resp. [Col > 1), put p(€,¢) = € (resp. p(€, ) = C).

Let &y € D\ J. Note that J is a polynomially convex set in C (see e.g. [9]).
Consider a polynomial p,(&,¢) = (¢"(€), n € N, where ¢ is a polynomial
such that |¢(&)| > 1 and ||¢||; = 1. If {p # 0, then for sufficiently large n
we have [pn (0, Co)| = [Col - [¢(§0)[" > 1 = [|pnl &

The existence of a smooth plurisubharmonic function ¢ is well known
(see e.g. [3]). m

PROPOSITION 2.4. Let 2 be a domain in C"™ and let D x {0}cn—1 C £2.
Assume that F : 2 — C"™ is an injective holomorphic mapping such that
F(£,0) = (&,0), £ € D. Then there exist C > 1 and r > 0 such that F' and
F~1 are well defined on Dy, x D" and

1 1

N Il < & Il < E2(E, )l < Cllell < Clizll, (€, 2) € D x Dy,

where || - || denotes the Euclidean norm in C™.
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Proof. There exists a § > 0 such that F(Dy45 x D ™!) € Dy x D" L. For
any (£,z) € Dy4s X ID)g_l we have
Clell = ey 1(2,0) = o1 ((62), (6,0))

> ¢p,spn-1 (F(€,2), F(§,0)) = cpn-1(Fa(§, 2), F2(€,0)) = [[F(E, 2) |,

where ¢}, is the Carathéodory pseudodistance of a domain D (see e.g. [4]).
Hence, [|F2(¢, 2)[| < (1/9)[=]- N

Put 2 = F(§2). Note that F : {2 — (2 is biholomorphic and F~1(¢,0) =
(£,0) for any £ € D. From the first part of the proof there exists a §’ € (0, 9)
such that F~1(Dy 5 xDE 1) € Dyysx DY~ and [|(F1)2(&, 2)|| < (6/8")|2]-
So, [[F2(&, 2)|| > (8"/0)]||z||- Now it suffices to put r =4’. m

3. Proof of Theorem 1.1. First recall the following well known result
(see [1], [6], [8], [10]).

PROPOSITION 3.1. Let X be a complex manifold and let u be an upper
semicontinuous function on X. Then E, is also upper semicontinuous on X.

According to Proposition 3.1 it suffices to show that for any h € O(D, X)

we have e
0
Eu(h(0)) < - §] Eu(h(e)) db.
From [1], [6] we know that for this it suffices to construct a special Stein
neighborhood (see below). The following important result is a main tool in

this construction (see [7, Theorem II]).

THEOREM 3.2. A complex manifold X is a Stein manifold if and only
if there exists a continuous strongly plurisubharmonic function q defined on

X with
Xo={reX:qlx)<a}€X foreach a>0.

Recall that a plurisubharmonic function v defined in a neighborhood
of zg € C" is called strongly plurisubharmonic at zy if there exist r > 0
and o > 0 such that v(z) — aflz — 20| is a plurisubharmonic function on
{z € C" : ||z — z0]| < r}. We say that v is strongly plurisubharmonic in
an open set (2 if it is strongly plurisubharmonic at any point of (2. Note
that strong plurisubharmonicity is a local property. So, we may define it on
a complex manifold via local coordinates. Note that the maximum of two
strongly plurisubharmonic functions is strongly plurisubharmonic.

A C? plurisubharmonic function v is strongly plurisubharmonic at zo €
C™ iff

0%*v(z
Lolzo, X) = az-(GEO)
gh=1 7Tk

The following simple result will be useful in the proof of Theorem 1.1.

X; X, >0 forany X € C"\ {0}.



A note on Rosay’s paper 129

LEMMA 3.3. Let 3 : C — R be a smooth subharmonic function and
let w be a strongly plurisubharmonic function on a domain 2 C C". Then
v(€, 2) = €)% + ePOu(z) is a strongly plurisubharmonic function on C x £2.

Proof. Fix (&9, 20) € C x £2. Since u is strongly plurisubharmonic at zg,
there exist 7 > 0 and a > 0 such that u(z) — al|z — 2o]|? is plurisubharmonic
on {z € C" : ||z — 2| < 7}. So, it suffices to note that v(¢,2) = [£]? +
aeP )|z — z|)? is strongly plurisubharmonic at (&, z). =

Proof of Theorem 1.1. Step 1. Fix an zo € X. Let h be a holomorphic
mapping from a neighborhood of the closed unit disk D into X with A(0)
= xp. We have to show that

2w

Fu(zo) < % § Eu(h(e™)) do.

Let € > 0. Since E, is upper semicontinuous, there exists a continuous
function I" : T — R such that I'(e?) > E,(h(e?)) and

2T 27
1 0 1 0
N d < — 2 .
o é D(e)df < o [S)Eu(h(e ) df + e

By the definition of E,, for any 0 € [0, 27) there exists a holomorphic disk
b0, : Doy — X, 00 > 1, such that ¢g,(0) = h(e?0), and

127r

o §) w(pgy (e™)) dv < I'(e%),

Fix an 7° € (1, g9). By Theorem 2.1, there exists a holomorphic mapping
F°: D0 x D} — X such that

(i) FO(E,0) = 60, (€), € € Dy,

(ii) FO(¢,-) is an injective holomorphic mapping for any & € D,o.

Put GO = FY0,-). Let 70 € (1,7°). We know that G°(0) = h(e').
Hence, there exists a neighborhood w® C Do of €% such that

(G RE))) <10 =7 for any € € u.
We put
T%: w” x Dyo x DY 3 (£,¢,2) = (€, FO(¢, 2+ (G) 71 (h(€)))) € C* x X.
Note that T°(£,0,0) = (£,0,h(€)), € € W, and
T9(e", ¢, 0) = (¢, ¢, 6, (€))-
Let IT : C?> x X — X be the natural projection. Put @ = uo IT. We have

127r

Py S o T, e, 0)dv < I'(e').
™
0
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By the upper semicontinuity of u for 8 ~ 6y we have
1% L .
— S UoTOe? e, 0)dv < I'(e®).
27 0
By a compactness argument there exist disjoint closed arcs Ji,...,Jy on T
and open disks wy, ..., wy in C such that J; C w;, Wy Nw; = O if j # k, and

1 6
o | re?)ydo<e.
T\Uj Jj

Put _Qj =wj; X ]D)r]. X DQ],, Ty > 1, and

Tj: 023 (§,¢,2) — (§,¢ Fi(¢, 2+ G 1 (h(9)) € C* x X.
We have

127r

o S UoTj(e, e, 0)dv < ['(e").
T
0

By Theorem 2.1, there exists a holomorphic mapping Fp : Dy, x Dff) — X
such that Fy(&,0) = h(§) and Fy(&, ) is an injective holomorphic mapping
for any £ € D,,. We may assume that 1 <79 <min{r; : j=1,...,N}. Put
29 =Dy x Dy x Dy and

To: 23 (&,¢2) — (€,¢ Fo(&,z)) € C? x X.

Note that Tp(&,0,0) = (&,0, h(E)).
Set H := U, T((J; x D x {0}cn)) UTo(D x {0}cns1).

Step 2. We claim that H has a Stein neighborhood in Y := Uj'\]:o T;(£2).

Note that Tj_1 0 Tp(&£,0,0) = (£,0,0), £ € Jj, 5 =1,...,N. Hence, by
Proposition 2.4 there exist C' > 1 and § > 0 such that Tj_1 oTy and TO_1 oT;
are well defined on w} x ID)?Jrl forany j=1,...,N, and

(3.1) IS+ 1121%) < [C1P+ [lm o T o To (€, ¢, 2)IIP < CUCP + 11217,

S
where J; C w}; € wj is an open disk and 7 : C"2 3 (£,¢,2) — z € C" is the
natural projection.

Taking even smaller § > 0 we may assume that § < 1/ V/C'. Take open
disks J; C wj’ € wj € w.

Let 8 be a smooth subharmonic function on C such that e®>§2/3 on C,

52 N N
(3.2) e’ =— on @, and €’>1 on U owy.
J

3 77
i—1 j=1

Put M = SUPEGULG} P,
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Let v be a smooth subharmonic function on C such that e¥ > 1/C on C,

N N
1
(3.3) © = o on U @, and & >M+C on U ;.
j=1 j=1
According to Proposition 2.3 there exists a smooth plurisubharmonic
function g : C? — [0, 00) such that
(3.4) {o="0} = (J xD) U (D x {0}),

where J = U;V:]L Jj.

Fixanr € (1,rp). By the smoothness of g and (3.4) there exists a positive
number « with the following property: if (¢, ¢) € D is such that 9(¢,¢) < &
then either £ € Uj\le wj and [(] <7, or [{| <7 and |¢| <.

Now we define a function ¢ on Y as follows. For j =1,..., N we set

00T;(&,¢ 2)
- %5(57 Q)+ % €% + (51_2 (€O +21%)  for £ € wf,

QOT0(£7C7Z) N
1 1 1
=060+ 3 €% + 5—26”(@(@2 +21%)  for £ € Dy, \ UIW}
]:
and

1. 1
00 To(€,¢,2) = —al(&, ¢) + 3¢l
1
t 5 max{e" O + ||m o Tt 0 T (€, ¢, )|, €O (1C° + 12)%)}
for £ € W\ Wf.

For € € U;V:1 Owy, from (3.1)—(3.3) we have

SOUP + [mo T o To(&, ¢ 2) 1 = ("9 = 1)I¢P + é (11 + 11=11%)
> O+ 12)%).
For ¢ € U;V:]L Ow’, again from (3.1)~(3.3) we have
PO+ Imo Ty o To(&, ¢ 2)|1° < (M = D[S+ C(CP + 12]17)
<O + 1207,

Therefore, p is a continuous strongly plurisubharmonic function defined
on Y (use Lemma 3.3). It is easy to see that H C {po < 2/3}. Define
V =UX, Tj(w! x Dp+Y) U Tp(Dp+2). Note that H C V €Y.



132 A. Edigarian

Assume for a while that ¢ > 1 on Y \ V. Then 1/(1 — ) is a contin-
uous strongly plurisubharmonic exhaustion function of {o < 1} C V. By
Theorem 3.2 we see that {o¢ < 1} is a Stein neighborhood of H in Y.

So, we have to show that ¢ > 1 on Y\ V. If § € w7 and either |(| > r or
||| > 4§, then

00Ty(E,6,2) > 86, + g =] > 1.

If € ¢ U] 1UJ ! and either |C| > d or ||z]| > r, then

00Ty(&,¢,2) > —0(£,¢) + 552 H2H2 >1

(recall that 62C < 1 < r).

Step 3. Having constructed a Stein neighborhood of H, one has to pro-
ceed as in Larusson-Sigurdsson’s paper (see [6], and also [1], [8]). m

RIH
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