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Abstract. Let F be a family of meromorphic functions on a plane domain D, all of
whose zeros are of multiplicity at least k ≥ 2. Let a, b, c, and d be complex numbers such
that d 6= b, 0 and c 6= a. If, for each f ∈ F , f(z) = a ⇔ f (k)(z) = b, and f (k)(z) = d ⇒
f(z) = c, then F is a normal family on D. The same result holds for k = 1 so long as
b 6= (m+ 1)d, m = 1, 2, . . . .

1. Introduction. Let f and g be meromorphic functions on a domainD
in C, and let a and b be complex numbers. If g(z) = b whenever f(z) = a, we
write f(z) = a⇒ g(z) = b. If f(z) = a⇒ g(z) = b and g(z) = b⇒ f(z) = a,
we write f(z) = a ⇔ g(z) = b. If f(z) = a ⇔ g(z) = a, then we say that f
and g share a in D.

Mues and Steinmetz [11] proved

Theorem A. Let f be a nonconstant meromorphic function, and let a1,
a2, and a3 be distinct complex numbers. If f and f ′ share a1, a2, and a3,
then f ≡ f ′.

Schwick [15] discovered a connection between normality criteria and
shared values. He proved

Theorem B. Let F be a family of meromorphic functions in a domain
D, and let a1, a2, and a3 be distinct complex numbers. If , for each f ∈ F ,
f and f ′ share a1, a2, and a3 in D, then F is normal in D.
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This result has undergone various extensions [12], [17], [18], culminating
in the following result of Pang and Zalcman [13].

Theorem C. Let F be a family of meromorphic functions in a do-
main D; and let a, b, and c be complex numbers such that b 6= a and c 6= 0.
If , for each f ∈ F , f(z) = 0 ⇔ f ′(z) = a, and f(z) = c ⇔ f ′(z) = b, then
F is normal in D.

It is natural to ask what can be said if f ′ is replaced by f (k) for k ≥ 2
in the above theorems. Frank and Schwick observed that while Theorem A
extends in a natural fashion when f ′ is replaced by f (k) [6], Theorem B does
not admit such an extension [7]. Chen and Fang [4] proved

Theorem D. Let F be a family of meromorphic functions in a domain
D; let k ≥ 2 be an integer ; and let a, b, and c be complex numbers such that
b 6= a. If , for each f ∈ F , f and f (k) share a and b in D, and all zeros of
f − c have multiplicity at least k + 1, then F is normal in D.

In this paper, we extend Theorem C as follows.

Theorem 1. Let F be a family of meromorphic functions in a domain
D; let k be a positive integer ; and let a, b, c, and d be complex numbers
such that b 6= a, 0 and c 6= 0. If , for each f ∈ F , all zeros of f − d have
multiplicity at least k, f(z) = 0⇔ f (k)(z) = a, and f (k)(z) = b⇒ f(z) = c,
then F is normal in D for k ≥ 2, and for k = 1 so long as a 6= (m + 1)b,
m = 1, 2, . . . .

As a consequence, we obtain the following sharpening of Theorem D.

Corollary. Let F be a family of meromorphic functions in a domain
D; let k ≥ 2 be an integer ; and let a, b, and c be complex numbers such that
b 6= a. If , for each f ∈ F , f and f (k) share a and b in D, and all zeros of
f − c have multiplicity at least k, then F is normal in D.

Proof. Since a 6= b, we may assume that b 6= 0. Consider the family of
functions G = {f − a : f ∈ F}. For each g ∈ G, all zeros of g − (c− a) have
multiplicity at least k. Further, if g ∈ G, then g(z) = 0 ⇔ g(k)(z) = a, and
g(z) = b− a⇔ g(k)(z) = b. By Theorem 1, G is normal on D; and hence F
is normal on D.

Example 1. Consider the family F = {a(enz − 1)/n : n = 1, 2, . . .} on
D = {z : |z| < 1}. Then, for every f ∈ F , f(z) = 0 ⇔ f ′(z) = a, and
f ′(z) 6= 0 (and hence f ′(z) = 0⇒ f(z) = c for any c). But F is not normal
in D. This shows that b 6= 0 is necessary in Theorem 1 when k = 1. For
k ≥ 2, Theorem 1 actually holds even when b = 0. However, we shall not
prove that here.



Normal families and shared values 135

Example 2. Let a and b be two nonzero numbers such that a = (m+1)b,
where m is a positive integer. Set

fn(z) = b

(
z − 1

n

)
+

1
m(nz − 1)m

, n = 1, 2, . . . ,

and let F = {fn}, D = {z : |z| < 1}. Then

f ′n(z) = b− n

(nz − 1)m+1 .

Clearly, for every f ∈ F , f(z) = 0 ⇔ f ′(z) = a, and f ′(z) 6= b (hence
f ′(z) = b ⇒ f(z) = c). But F is not normal in D. This means that a 6=
(m+ 1)b (m = 1, 2, . . .) is necessary in Theorem 1 when k = 1.

Example 3. Fix k and let {ω1, . . . , ωk} be the kth roots of unity (with
ωk = 1). Any function of the form

F (z) =
k∑

j=1

cje
ωjz

clearly satisfies F (k) ≡ F. The k × k Vandermonde determinant defined
by ωj , 1 ≤ j ≤ k, does not vanish. Hence, solving k linear equations in k
unknowns, we may choose the cj so that the first k − 1 Taylor coefficients
of F vanish at the origin, i.e., so that F has a zero of exact order k − 1
at 0. Let D = {z : |z| < 1}, and set fn(z) = nF (z), n = 1, 2, . . . . Let
F = {fn}; then F is a family of holomorphic functions on D. Obviously, for
each f ∈ F , f (k) ≡ f, so f and f (k) share every complex value in D. But
F is not normal in D. This shows that the requirement of multiplicity k in
Theorem 1 cannot be dropped in general.

Example 4. Theorem 1 does not hold if the requirement that f (k)(z) =
b⇒ f(z) = c is replaced by f(z) = c⇒ f (k)(z) = b. Indeed, set

fn(z) =
(nz)2

(nz)2 − 1
, n = 1, 2, . . . ,

and let F = {fn}, D = {z : |z| < 1}. Then

f ′n(z) =
−2n2z

[(nz)2 − 1]2
.

Obviously, if f ∈F , then f and f ′ vanish only at 0; also, f(z) 6= 1. Thus,
if we choose k = 1, a = 0, and c = 1, we have f(z) = 0⇔ f ′(z) = 0, and
f(z)=1⇒f ′(z)=b for any b (since f(z) 6=1). However, F is not normal on D.

Theorem 2. Let f be a transcendental meromorphic function, k ≥ 2
an integer , and a ∈ C. If all zeros of f have multiplicity at least k and
f(z) = 0 ⇔ f (k)(z) = a, then f (k) takes on each nonzero finite value b
infinitely many times.
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2. Some lemmas. For the proofs of our theorems, we need the following
lemmas.

Lemma 1 ([14, Lemma 2]). Let F be a family of functions meromorphic
on the unit disc, all of whose zeros have multiplicity at least k, and suppose
that there exists A ≥ 1 such that |f (k)(z)| ≤ A whenever f(z) = 0. Then if
F is not normal , there exist , for each 0 ≤ α ≤ k,

(a) a number 0 < r < 1;
(b) points zn, |zn| < r;
(c) functions fn ∈ F ; and
(d) positive numbers %n → 0

such that %−αn fn(zn + %nζ) = gn(ζ)→ g(ζ) locally uniformly with respect to
the spherical metric, where g is a nonconstant meromorphic function on C,
all of whose zeros have multiplicity at least k, such that g#(ζ) ≤ g#(0) =
kA+ 1. In particular , g has order at most 2.

Here, as usual, g#(ζ) = |g′(ζ)|/(1 + |g(ζ)|2) is the spherical derivative.

Remark. That all zeros of g have multiplicity at least k is immediate
from the argument principle. That g has order at most 2 follows easily from
the fact that g# is bounded; cf. [19, p. 217]. For 0 ≤ α < k, the hypothesis
on f (k)(z) can be dropped, and kA + 1 can be replaced by an arbitrary
positive constant.

Lemma 2 ([3, Corollary 3]). Let g be a meromorphic function with finite
order. If g has only finitely many critical values, then it has only finitely
many asymptotic values.

Lemma 3 ([1, Lemma 2]; cf. [2, Lemma 3]). Let g be a transcendental
meromorphic function such that g(0) 6= ∞ and the set of finite critical and
asymptotic values of g is bounded. Then there exists R > 0 such that

|g′(z)| ≥ |g(z)|
2π|z| log

|g(z)|
R

for all z ∈ C \ {0} which are not poles of g.

Lemma 4 ([8, Theorem 3], [9, Corollary to Theorem 3.5]). Let f be a
transcendental meromorphic function, and let b be a nonzero value. Then,
for each positive integer k, either f or f (k) − b has infinitely many zeros.

Lemma 5. Let f be a transcendental meromorphic function of finite or-
der in the complex plane, k a positive integer , and a and b 6= 0 complex num-
bers. If all zeros of f have multiplicity at least k and f(z) = 0⇔ f (k)(z) = a,
then f (k) − b has infinitely many zeros.

Proof. We consider two cases.
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Case 1: f has only finitely many zeros. In this case, f (k)−b has infinitely
many zeros by Lemma 4.

Case 2: f has infinitely many zeros z1, z2, . . . . We define g(z) =
f (k−1)(z) − bz; then g′(z) = f (k)(z) − b. We have to show that g′ has in-
finitely many zeros. Suppose that g′ has only finitely many zeros; then g
has finitely many critical values. Hence, by Lemma 2, g has only finitely
many asymptotic values. Without loss of generality, we may assume that
f(0) 6=∞ (and hence g(0) 6=∞). Then by Lemma 3 we have

|zjg′(zj)|
|g(zj)|

≥ 1
2π

log
|g(zj)|
R

=
1

2π
log

b|zj|
R

.

In particular,
|zjg′(zj)|
|g(zj)|

→ ∞ as j →∞.

On the other hand,
|zjg′(zj)|
|g(zj)|

=
∣∣∣∣
a− b
b

∣∣∣∣,

a contradiction. It follows that g′(z) = f (k)(z)− b has infinitely many zeros.
This completes the proof of Lemma 5.

Lemma 6 ([16, Lemma 8]). Let f(z) = anz
n + an−1z

n−1 + . . . + a0 +
q(z)/p(z) where a0, a1, . . . , an are constants with an 6= 0 and p and q are
two coprime polynomials, neither of which vanishes identically , with
deg q < deg p; and let k be a positive integer. If f (k)(z) 6= 1, then

f(z) =
zk

k!
+ . . .+ a0 +

1
(αz + β)m

.

Here α 6= 0 and β are constants and m is a positive integer.

Lemma 7. Let f be a meromorphic function of finite order , a and b 6= 0
distinct complex numbers, and k ≥ 2 a positive integer. If all zeros of f have
multiplicity at least k, f(z) = 0 ⇔ f (k)(z) = a, and f (k)(z) 6= b, then f is
constant.

Proof. By Lemma 5, f is a rational function. We assume f(z) = anz
n +

an−1z
n−1 + . . . + a0 + q(z)/p(z), where a0, a1, . . . , an are constants with

an 6= 0, q and p are two coprime polynomials with deg q < deg p, and n is a
positive integer. Without loss of generality, we assume that b = 1. Suppose
that q does not vanish identically. Then by Lemma 6,

f(z) =
1
k!
zk + . . .+ a0 +

1
(αz + β)m

, f (k)(z) = 1 +
A

(αz + β)k+m ,

where A 6= 0, α 6= 0 and β are constants. Since the zeros of f all have
multiplicity at least k, the set {z ∈ C : f(z) = 0} has at most (k + m)/k



138 M. L. Fang and L. Zalcman

distinct elements, while the set {z ∈ C : f (k)(z) = a} has k + m distinct
elements. This contradicts the assumptions that f(z) = 0 ⇔ f (k)(z) = a
and k ≥ 2.

It follows that f is a polynomial. In this case, one checks easily that f
is constant. The lemma is proved.

Using Lemmas 5 and 6, we obtain, after a simple calculation, the follow-
ing result.

Lemma 8 (cf. [13, Lemma 6]). Let f be a nonconstant meromorphic
function of finite order , and let a and b 6= 0 be complex numbers. If f(z) = 0
⇔ f ′(z) = a, and f ′(z) 6= b in C, then

f(z) = b(z − d) +
A

m(z − d)m
, a = (m+ 1)b,

for some d ∈ C and some positive integer m.

Lemma 9 ([5], [10]; cf. [2]). Let f be a nonconstant meromorphic func-
tion on the plane and k ≥ 2 a positive integer. Suppose that f(z) 6= 0 and
f (k)(z) 6= 0 for all z ∈ C. Then either f(z) = eAz+B or f(z) = 1

(Az+B)m ,

where A 6= 0 and B are constants and m is a positive integer.

3. Proof of Theorem 1. We may assume that D = ∆, the unit disc.
Suppose that F is not normal on ∆. We consider separately the cases d = 0
and d 6= 0.

Case I. Suppose d = 0. Then by Lemma 1, we can find fn ∈ F , zn ∈ ∆,
and %n → 0+ such that gn(ζ) = %−kn fn(zn+%nζ) converges locally uniformly
with respect to the spherical metric to a nonconstant meromorphic function
g on C, all of whose zeros have multiplicity at least k, which satisfies g#(ζ) ≤
g#(0) = k(|a|+ 1) + 1. In particular, g is of order at most 2.

We claim that

(i) g(ζ) = 0⇔ g(k)(ζ) = a, and
(ii) g(k)(ζ) 6= b on C.

Suppose that g(ζ0) = 0. Then by the Hurwitz Theorem, there exist ζn,
ζn → ζ0, such that (for n sufficiently large) 0 = gn(ζn) = fn(zn+%nζn)/%kn.
Thus fn(zn + %nζn) = 0. Hence f (k)

n (zn + %nζn) = a, so that g(k)
n (ζn) =

f
(k)
n (zn + %nζn) = a. Since g(k)(ζ0) = limn→∞ g

(k)
n (ζn) = a, we have shown

that g(ζ) = 0⇒ g(k)(ζ) = a.
Suppose now that g(k)(ζ0) = a. We claim that g(k) 6≡ a. Indeed, if a = 0,

g would be a polynomial of degree less than k and so could not have zeros of
multiplicity at least k. If a 6= 0, g must be a polynomial of exact degree k.
Since each zero of g has multiplicity at least k, g must have a single zero
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ζ1 of multiplicity k, so that g(ζ) = a(ζ − ζ1)k/k!. A simple calculation then
shows that

g#(0) ≤
{
k/2 if |ζ1| ≥ 1,
|a| if |ζ1| < 1,

so that g#(0) < k(|a| + 1) + 1, a contradiction. Since g(k)(ζ0) = a but
g(k) 6≡ a, there exist ζn, ζn → ζ0, such that f (k)

n (zn + %nζn) = g
(k)
n (ζn) = a

for n sufficiently large. It follows that fn(zn + %nζn) = 0, so that gn(ζn) =
fn(zn + %nζn)/%kn = 0. Since g(ζ0) = limn→∞ gn(ζn) = 0, we have shown
that g(k)(ζ) = a⇒ g(ζ) = 0.

This proves (i).
Next we prove (ii). Suppose g(k)(ζ0) = b. Then g(ζ0) 6= ∞. Further

g(k) 6≡ b, since that would imply g(ζ) = b(ζ − ζ1)k/k!, which is inconsistent
with (i). Thus, by the Hurwitz Theorem, there exist ζn, ζn → ζ0, such that
(for large n) g(k)

n (ζn) = f
(k)
n (zn + %nζn) = b. Since f (k)

n (z) = b⇒ fn(z) = c,
we have fn(zn + %nζn) = c and gn(ζn) = fn(zn + %nζn)/%kn = c/%kn → ∞,
which contradicts limn→∞ gn(ζn) = g(ζ0) 6=∞. That proves (ii).

If k ≥ 2, g is constant by Lemma 7, a contradiction. If k = 1, then by
Lemma 8,

g(ζ) = b(ζ − d) +
A

m(ζ − d)m
, a = (m+ 1)b,

for some positive integer m, a possibility that is ruled out explicitly in the
hypothesis of the theorem. Thus F is normal on D.

Case II. Suppose now that d 6= 0. We may assume that k ≥ 2. By
Lemma 1, we can find fn ∈ F , zn ∈ ∆, and %n → 0+ such that gn(ζ) =
fn(zn + %nζ) − d converges locally uniformly with respect to the spherical
metric to a nonconstant meromorphic function g on C, all of whose zeros
have multiplicity at least k.

We claim that

(iii) g(k)(ζ) 6= 0 on C, and
(iv) g(ζ) 6= −d on C.

Suppose that g(k)(ζ0) = 0. Clearly g(k) 6≡ 0, for otherwise g would be a
polynomial of degree less than k, and so could not have zeros of multiplicity
at least k. Hence, since g(k)

n (ζ) − %kna → g(k)(ζ) on a neighborhood of ζ0,
there exist ζn, ζn → ζ0, such that (for n sufficiently large)

0 = g(k)(ζ0) = g(k)
n (ζn)− %kna = %kn[f (k)

n (zn + %nζn)− a].

Thus f (k)
n (zn+%nζn) = a, so that fn(zn+%nζn) = 0. It follows that gn(ζn) =

fn(zn + %nζn)− d = −d, and so g(ζ0) = limn→∞ gn(ζn) = −d.
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In a similar fashion, considering g(k)
n (ζ)−%knb instead of g(k)

n (ζ)−%kna, we
obtain g(ζ0) = c − d. Thus c = 0, contrary to assumption. This completes
the proof of (iii).

Finally, we prove (iv). Suppose that g(ζ0) = −d. Then there exist ζn,
ζn → ζ0, such that (for n sufficiently large) −d = g(ζ0) = gn(ζn) =
fn(zn + %nζn)− d. Thus fn(zn + %nζn) = 0, and hence f (k)

n (zn + %nζn) = a.

It follows that g(k)
n (ζn) = %knf

(k)
n (zn + %nζn) → 0. Therefore, g(k)(ζ0) =

limn→∞ g
(k)
n (ζn) = 0. But this contradicts (iii). That proves (iv).

Now by Lemma 9, either g(ζ) = −d+eAζ+B or g(ζ) = −d+1/(Az +B)m,
where A 6= 0 and B are constants and m is a positive integer. In either case,
g has a nonempty set of zeros (it is here that we use the assumption d 6= 0),
all of which are obviously simple. This contradicts the fact that all zeros of
g have multiplicity at least k ≥ 2. Thus, in Case II also, F is normal. This
completes the proof of Theorem 1.

4. Proof of Theorem 2. From Theorem 1, we obtain the following
result, which will be used in the proof of Theorem 2.

Lemma 10. Let F be a family of meromorphic functions in a domain
D; let k ≥ 2 be an integer ; and let a and b 6= 0 be distinct complex numbers.
If , for each f ∈ F , all zeros of f have multiplicity at least k, f(z) = 0 ⇔
f (k)(z) = a, and f (k)(z) 6= b, then F is normal in D.

Now we prove Theorem 2.
In case b = a 6= 0, the theorem follows at once from Lemma 4. Suppose

then that b 6= a, 0. If f has finite order, the theorem then follows from
Lemma 5. So suppose that f has infinite order. Then f# is unbounded on C,
so there exist wn →∞ such that f#(wn)→∞. Let fn(z) = f(z +wn) and
consider the family F = {fn} on the unit disc ∆. Clearly, for each n, all
zeros of fn have multiplicity at least k and fn(z) = 0 ⇔ f

(k)
n (z) = a. Since

f#
n (0) = f#(wn)→∞, no infinite subfamily of F is normal on ∆. Suppose

now that f (k)(z) = b has only finitely many solutions. Then, since wn →∞,
there exists N such that no function in FN = {fn : n ≥ N} takes on the
value b in ∆. By Lemma 10, FN is normal on ∆, a contradiction.
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