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An extension theorem for separately holomorphic
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Dedicated to Professor Józef Siciak in honour of his 70th birthday

Abstract. Let Dj ⊂ Ckj be a pseudoconvex domain and let Aj ⊂ Dj be a locally
pluriregular set, j = 1, . . . , N . Put

X :=
N⋃

j=1

A1 × . . .× Aj−1 ×Dj × Aj+1 × . . .×AN ⊂ Ck1+...+kN .

Let U be an open connected neighborhood of X and let M  U be an analytic subset.
Then there exists an analytic subset M̂ of the “envelope of holomorphy” X̂ of X with
M̂ ∩X ⊂M such that for every function f separately holomorphic on X \M there exists
an f̂ holomorphic on X̂ \ M̂ with f̂ |X\M = f . The result generalizes special cases which

were studied in [Ökt 1998], [Ökt 1999], [Sic 2001], and [Jar-Pfl 2001].

1. Introduction. Main theorem. Let N ∈ N, N ≥ 2, and let

∅ 6= Aj ⊂ Dj ⊂ Ckj ,
where Dj is a domain, j = 1, . . . , N . We define an N -fold cross

X := X(A1, . . . , AN ;D1, . . . ,DN )(1)

:=
N⋃

j=1

A1 × . . .×Aj−1 ×Dj × Aj+1 × . . .× AN ⊂ Ck1+...+kN .

Observe that X is connected.
Let Ω ⊂ Cn be an open set and let A ⊂ Ω. Put

hA,Ω := sup{u : u ∈ PSH(Ω), u ≤ 1 on Ω, u ≤ 0 on A},

2000 Mathematics Subject Classification: 32D15, 32D10.
Key words and phrases: separately holomorphic, pluriregular, holomorphic extension.
Research of M. Jarnicki partially supported by the KBN grant No. 5 P03A 033 21.
Research of P. Pflug partially supported by the Niedersächsisches Ministerium für
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where PSH(Ω) denotes the set of all functions plurisubharmonic on Ω.
Define

ωA,Ω := lim
k→∞

h∗A∩Ωk,Ωk ,

where (Ωk)∞k=1 is a sequence of relatively compact open setsΩk⊂Ωk+1⊂⊂Ω
with

⋃∞
k=1 Ωk = Ω, and h∗ denotes the upper semicontinuous regularization

of h. Observe that the definition is independent of the exhausting sequence
(Ωk)∞k=1 chosen. Moreover, ωA,Ω ∈ PSH(Ω).

For an N -fold cross X = X(A1, . . . , AN ;D1, . . . ,DN ) put

X̂ :=
{

(z1, . . . , zN ) ∈ D1 × . . .×DN :
N∑

j=1

ωAj ,Dj (zj) < 1
}

;

notice that X̂ may be empty. Observe that X̂ is pseudoconvex if D1, . . . ,DN

are pseudoconvex domains.
We say that a subset ∅ 6= A ⊂ Cn is locally pluriregular if h∗A∩Ω,Ω(a) = 0

for any a ∈ A and for any open neighborhood Ω of a (in particular, A ∩Ω
is non-pluripolar).

Note that if A1, . . . , AN are locally pluriregular, then X ⊂ X̂ and, more-
over, X̂ is connected (Lemma 4).

Let U be a connected neighborhood of X and let M  U be an analytic
subset (M may be empty). We say that a function f : X\M → C is separately
holomorphic (f ∈ Os(X \M)) if for any (a1, . . . , aN ) ∈ A1 × . . .× AN and
j ∈ {1, . . . , N} the function f(a1, . . . , aj−1, ·, aj+1, . . . , aN ) is holomorphic
in the domain {zj ∈ Dj : (a1, . . . , aj−1, zj , aj+1, . . . , aN ) 6∈M}.

The main result of our paper is the following extension theorem for
separately holomorphic functions (1).

Main Theorem. Let Dj ⊂ Ckj be a pseudoconvex domain and let
Aj ⊂ Dj be a locally pluriregular set , j = 1, . . . , N . Let M  U be an an-
alytic subset of an open connected neighborhood U of X = X(A1, . . . , AN ;
D1, . . . ,DN ) (M may be empty). Then there exists a pure one-codimensional
analytic subset M̂ ⊂ X̂ such that :

• M̂ ∩ U0 ⊂M for an open neighborhood U0 of X, U0 ⊂ U ,
• for every f ∈ Os(X \M) there exists exactly one f̂ ∈ O(X̂ \ M̂) with

f̂ |X\M = f .

Moreover , if U = X̂, then we can take M̂ := the union of all one-
codimensional irreducible components of M .

The proof will be given in Sections 3 (the case U = X̂) and 4 (the general
case).

(1) We thank Professor Józef Siciak for turning our attention to this problem.
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Remark. Notice that the Main Theorem may be generalized to the case
where Dj is a Riemann–Stein domain over Ckj , j = 1, . . . , N .

Observe that in the case M = ∅, N = 2, the Main Theorem is nothing
else than the following cross theorem.

Theorem 1 (cf. [Ale-Zer 2001]). Let D ⊂ Cp, G ⊂ Cq be pseudocon-
vex domains and let A ⊂ D, B ⊂ G be locally pluriregular. Put X :=
X(A,B;D,G). Then for any f ∈ Os(X) there exists exactly one f̂ ∈ O(X̂)
with f̂ = f on X.

Remark. (a) Let M = ∅. There is a long list of papers discussing the
case N = 2 (under various assumptions): [Sic 1969], [Zah 1976], [Sic 1981],
[Shi 1989], [Ngu-Zer 1991], [Ngu 1997], [Ale-Zer 2001]. The case N ≥ 2,
k1 = . . . = kN = 1 can be found in [Sic 1981]. The general case N ≥ 2,
k1, . . . , kN ≥ 1 was solved in [Ngu-Zer 1995] (2).

(b) Let M 6= ∅. J. Siciak [Sic 2001] solved the case: N ≥ 2, k1 = . . . =
kN = 1, D1 = . . . = DN = C, M = P−1(0), where P is a non-zero polyno-
mial of N complex variables. The special subcase N = 2, P (z, w) := z − w
had been studied in [Ökt 1998]. The general case for N = 2, k1 = k2 = 1
was solved in [Jar-Pfl 2001]; see also [Ökt 1999] for a partial discussion of
the case N = 2, k1, k2 ≥ 1.

The case where the singular set M is a pluripolar relatively closed subset
of U is studied in [Jar-Pfl 2003].

2. Auxiliary results. The following lemma gathers a few standard
results, which will be frequently used in what follows.

Lemma 2 (cf. [Kli 1991], [Jar-Pfl 2000, §3.5]). (a) Let Ω ⊂ Cn be a
bounded open set and let A ⊂ Ω. Then:

• If P ⊂ Cn is pluripolar , then h∗A\P,Ω = h∗A,Ω.
• h∗Ak∩Ωk,Ωk ↘ h∗A,Ω (pointwise on Ω) for any sequence of open sets

Ωk ↗ Ω and any sequence Ak ↗ A.
• ωA,Ω = h∗A,Ω.
• The following conditions are equivalent : for any connected compo-

nent S of Ω the set A ∩ S is non-pluripolar , and h∗A,Ω(z) < 1 for any
z ∈ Ω.
• If A is non-pluripolar , 0 < α < 1, and Ωα := {z ∈ Ω : h∗A,Ω(z) < α},

then for any connected component S of Ωα the set A ∩ S is non-pluripolar
(in particular , A ∩ S 6= ∅).
• If A is locally pluriregular , 0 < α ≤ 1, and Ωα is as above, then

h∗A,Ω = αh∗A,Ωα on Ωα.

(2) We thank Professor Nguyen Thanh Van for calling our attention to that paper.
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(b) Let Ω ⊂ Cn be an open set and let A ⊂ Ω. Then:

• ωA,Ω ∈ PSH(Ω).
• If A is locally pluriregular , then ωA,Ω(a) = 0 for any a ∈ A.
• If P ⊂ Cn is pluripolar , then ωA\P,Ω = ωA,Ω.
• If A is locally pluriregular and P ⊂ Cn is pluripolar , then A \ P is

locally pluriregular.

Moreover, we get:

Lemma 3. (a) Let Aj ⊂ Ckj be locally pluriregular , j = 1, . . . , N . Then
A1 × . . .× AN is locally pluriregular.

(b) Let Aj ⊂ Ωj b Ckj , Ωj a domain, Aj locally pluriregular , j =
1, . . . , N , N ≥ 2. Put

Ω :=
{

(z1, . . . , zN ) ∈ Ω1 × . . .×ΩN :
N∑

j=1

h∗Aj ,Ωj (zj) < 1
}

(observe that A1 × . . .× AN ⊂ Ω). Then

h∗A1×...×AN ,Ω =
N∑

j=1

h∗Aj ,Ωj on Ω.

Proof. (a) is an immediate consequence of the product property for the
relatively extremal function

h∗B1×...×BN ,Ω1×...×ΩN = max{h∗Bj ,Ωj : j = 1, . . . , N};
cf. [Ngu-Sic 1991].

(b) First observe that

N∑

j=1

h∗Aj ,Ωj ≤ h∗A1×...×AN ,Ω on Ω.

To get the opposite inequality we proceed by induction on N ≥ 2.
Let N = 2. The proof of this step is taken from [Sic 1981]. For the

reader’s convenience we repeat the details.
Put u := h∗A1×A2,Ω

∈ PSH(Ω) and fix a point (a1, a2) ∈ Ω. If a1 ∈ A1

(thus h∗A1,Ω1
(a1) = 0), then u(a1, ·) ∈ PSH(Ω2) with u(a1, ·) ≤ 1 and

u(a1, ·) ≤ 0 on A2. Therefore,

u(a1, ·) ≤ h∗A2,Ω2
= h∗A1,Ω1

(a1) + h∗A2,Ω2
on Ω2.

In particular, u(a1, a2) ≤ h∗A1,Ω1
(a1) + h∗A2,Ω2

(a2).
Observe that the same argument shows that if a2 ∈ A2, then u(·, a2) ≤

h∗A1,Ω1
on Ω1.
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If a1 6∈ A1, then h∗A1,Ω1
(a1) + h∗A2,Ω2

(a2) < 1 and therefore α := 1 −
h∗A1,Ω1

(a1) ∈ (0, 1]. Put

(Ω2)α := {z2 ∈ Ω2 : h∗A2,Ω2
(z2) < α}.

It is clear that A2 ⊂ (Ω2)α 3 a2. Put

v :=
1
α

(u(a1, ·)− h∗A1,Ω1
(a1)) ∈ PSH((Ω2)α).

Then v ≤ 1 and v ≤ 0 on A2. Therefore, by Lemma 2(a),

v ≤ h∗A2,(Ω2)α(a2) =
1
α
h∗A2,Ω2

(a2) on (Ω2)α.

Consequently, u(a1, a2) ≤ h∗A1,Ω1
(a1) + h∗A2,Ω2

(a2), which finishes the proof
for N = 2.

Now, assume that the formula is true for N − 1 ≥ 2. Put

Ω̃ :=
{

(z1, . . . , zN−1) ∈ Ω1 × . . .×ΩN−1 :
N−1∑

j=1

h∗Aj ,Ωj (zj) < 1
}

and fix an arbitrary z = (z̃, zN ) ∈ Ω. Obviously, z̃ ∈ Ω̃. By the inductive
hypothesis, we conclude that

(2) h∗
A1×...×AN−1,Ω̃

(z̃ ) =
N−1∑

j=1

h∗Aj ,Ωj (zj).

Now we apply the case N = 2 to the following situation:

Ω′ := {(w̃, wN ) ∈ Ω̃ ×ΩN : h∗
A1×...×AN−1,Ω̃

(w̃) + h∗AN ,ΩN (wN ) < 1}.
So

h∗
A1×...×AN−1,Ω̃

(w̃) + h∗AN ,ΩN (wN )

= h∗A1×...×AN ,Ω′(w̃, wN ), (w̃, wN ) ∈ Ω′.
Note that Ω′ = Ω. Hence

h∗A1×...×AN ,Ω(z̃, zN ) = h∗
A1×...×AN−1,Ω̃

(z̃ )+hAN ,ΩN (zN )
(2)
=

N∑

j=1

h∗Aj ,Ωj (zj).

Lemma 4. Let X = X(A1, . . . , AN ;D1, . . . ,DN ) be an N -fold cross as
in (1). If A1, . . . , AN are locally pluriregular , then X̂ is a domain.

Proof. Using exhaustion by bounded domains we may assume that the
Dj ’s are bounded.

We know that X ⊂ X̂. Let z0 = (z0
1 , . . . , z

0
N ) ∈ X̂ be an arbitrary point.

If
∑N
j=2 h

∗
Aj ,Dj

(z0
j ) = 0, then D1×{(z0

2 , . . . , z
0
N )} ⊂ X̂. Therefore, z0 can

be joined inside D1 × {(z0
2 , . . . , z

0
N )} to (a1, z

0
2 , . . . , z

0
N ) for some a1 ∈ A1.
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If
∑N
j=2 h

∗
Aj ,Dj

(z0
j ) =: ε > 0, put

(D1)1−ε := {z1 ∈ D1 : h∗A1,D1
(z1) < 1− ε}.

Then, by Lemma 2(a), the connected component S of (D1)1−ε that contains
z0

1 intersects A1. Therefore, z0 can be joined inside S × {(z0
2 , . . . , z

0
N )} ⊂ X̂

to (a1, z
0
2 , . . . , z

0
N ) for some a1 ∈ A1.

Now we repeat the above argument for the second component of the point
(a1, z

0
2 , . . . , z

0
N ). Finally, the point z0 can be joined inside X̂ to (a1, . . . , aN )

∈ A1 × . . .× AN ⊂ X. Since X is connected, the proof is complete.

Lemma 5 (Identity theorems). (a) Let Ω ⊂ Cn be a domain and let
A ⊂ Ω be non-pluripolar. Then any f ∈ O(Ω) with f |A = 0 vanishes
identically on Ω.

(b) Let D ⊂ Cp, G ⊂ Cq be domains, let A ⊂ D, B ⊂ G be locally
pluriregular sets, and let X := X(A,B;D,G). Let M  U be an analytic
subset of an open connected neighborhood U of X. Assume that A′ ⊂ A,
B′ ⊂ B are such that :

• A \A′ and B \B′ are pluripolar (in particular , A′, B′ are also locally
pluriregular),
• Mz := {w ∈ G : (z, w) ∈M} 6= G for any z ∈ A′,
• Mw := {z ∈ D : (z, w) ∈M} 6= D for any w ∈ B′.

Then:

(b1) If f ∈ Os(X \M) and f = 0 on A′ × B′ \M (3), then f = 0 on
X \M .

(b2) If g ∈ O(U \M) and g = 0 on A′ ×B′ \M , then g = 0 on U \M .

Proof. (a) is obvious.
(b1) Take a point (a0, b0) ∈ X \ M . We may assume that a0 ∈ A.

Since A \ A′ is pluripolar, there exists a sequence (ak)∞k=1 ⊂ A′ such that
ak → a0. The set Q :=

⋃∞
k=0Mak is pluripolar. Consequently, the set B′′ :=

B′ \Q is non-pluripolar. We have f(ak, w) = 0, w ∈ B′′, k = 1, 2, . . . Hence
f(a0, w) = 0 for any w ∈ B′′. Finally, f(a0, w) = 0 on G \Ma0 3 b0.

(b2) Take an a0 ∈ A′. Since Ma0 6= G, there exists a b0 ∈ B′ \Ma0 .
Let P = ∆a0(r)×∆b0(r) ⊂ U \M (∆z0(r) ⊂ Cp denotes the polydisc with
center z0 ∈ Cp and radius r > 0). Then g(·, w) = 0 on A′ ∩∆a0(r) for any
w ∈ B′ ∩ ∆b0(r). The set A′ ∩ ∆a0(r) is non-pluripolar. Hence g(·, w) = 0
on ∆a0(r) for any w ∈ B′ ∩∆b0(r). By the same argument for the second
variable we get g = 0 on P and, consequently, on U \M .

(3) Here and below, to simplify notation we write P ×Q \M instead of (P ×Q) \M .
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3. Proof of the Main Theorem in the case where U = X̂. We
proceed by several reduction steps. First observe that, by Lemma 5(a), the
function f̂ is uniquely determined (if it exists).

Step 1. To prove the Main Theorem for M 6= ∅ it suffices to consider
the case where M is pure one-codimensional.

Proof. Since X̂ is pseudoconvex, the arbitrary analytic set M ⊂ X̂ can
be written as

M = {z ∈ X̂ : g1(z) = . . . = gk(z) = 0},
where gj ∈ O(X̂), gj 6≡ 0, j = 1, . . . , k. Then Mj := g−1

j (0) is pure one-
codimensional.

Take an f ∈ Os(X \M). Observe that fj := f |X\Mj
∈ Os(X \Mj). By

the reduction assumption there exists an f̂j ∈ O(X̂ \Mj) such that f̂j = f

on X \Mj . In view of Lemma 5(a), gluing the functions (f̂j)kj=1 leads to an

f̂ ∈ O(X̂ \M) with f̂ = f̂j on X̂ \Mj , j = 1, . . . , k. Therefore, f̂ = f on
X \M .

Finally, since codim(M \M̂) ≥ 2, the function f̂ extends holomorphically
across M \ M̂ .

From now on we assume that M is empty or pure one-codimensional.

Step 2. To prove the Main Theorem it suffices to consider the case
where M is empty or pure one-codimensional and D1, . . . ,DN are bounded
pseudoconvex.

Proof. Let D1, . . . ,DN be arbitrary pseudoconvex domains, and let
Dj,k ↗ Dj , Dj,k b Dj , where Dj,k are pseudoconvex domains with Aj,k :=
Aj ∩Dj,k 6= ∅. Observe that all the Aj,k’s are locally pluriregular. Put

Xk := X(A1,k, . . . , AN,k;D1,k, . . . ,DN,k) ⊂ X;

note that X̂k ↗ X̂.
Let f ∈ Os(X \M) be given. By the reduction assumption, for each k

there exists an f̂k ∈ O(X̂k \M) with f̂k = f on Xk \M . By Lemma 5(a),
f̂k+1 = f̂k on X̂k\M . Therefore, gluing the f̂k’s, we obtain an f̂ ∈ O(X̂ \M)
with f̂ = f on X \M .

From now on we assume that M is empty or pure one-codimensional and
D1, . . . ,DN are bounded pseudoconvex.

Step 3. To prove the Main Theorem it suffices to consider the case
N = 2.

Remark. By Theorem 1, Step 3 finishes the proof of the Main Theorem
for M = ∅.
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Proof of Step 3. We proceed by induction on N ≥ 2. Suppose that the
Main Theorem is true for N − 1 ≥ 2. We have to discuss the case of an N -
fold cross X = X(A1, . . . , AN ;D1, . . . ,DN ), where D1, . . . ,DN are bounded
pseudoconvex. Let M ⊂ X̂ be empty or pure one-codimensional.

Let f ∈ Os(X \M). Observe that

X = (Y × AN ) ∪ (Â×DN ),

where

Y := X(A1, . . . , AN−1;D1, . . . ,DN−1), Â := A1 × . . .× AN−1.

We also mention that for any aN ∈ AN we have

{(z1, . . . , zN−1) ∈ Ck1 × . . .× CkN−1 : (z1, . . . , zN−1, aN ) ∈ X̂} = Ŷ .

Now fix an aN ∈ AN such that

MaN := {(z1, . . . , zN−1) ∈ Ŷ : (z1, . . . , zN−1, aN ) ∈M}  Ŷ ;

in particular, MaN is empty or one-codimensional (in Ŷ ). Recall that A1,
. . . , AN−1 are locally pluriregular. By the inductive assumption there exists
an f̂aN ∈ O(Ŷ \MaN ) with f̂aN = f(·, aN) on Y \MaN .

To continue define the following 2-fold cross:

Z := X(Â, AN ; Ŷ ,DN ).

Notice that Z satisfies all the properties for the case N = 2: Ŷ ,DN are
bounded pseudoconvex domains, Â ⊂ Ŷ , AN ⊂ DN are locally pluriregular.

By Lemma 3, we have

Ẑ = {(ẑ, zN ) ∈ Ŷ ×DN : h∗
Â,Ŷ

(ẑ) + h∗AN ,DN (zN ) < 1} = X̂.

Define f̃ : Z \M → C by

f̃(z) = f̃(ẑ, zN ) :=
{
f̂zN (ẑ) if z ∈ Ŷ ×AN ,
f(z) if z ∈ Â×DN .

Obviously, f̃ is well defined and therefore f̃ ∈ Os(Z \M).
Using the case N = 2, we find another function f̂ ∈ O(Ẑ \ M) with

f̂ = f̃ on Z \M . Recall that Ẑ = X̂. Hence f̂ = f on X \M .

What remains is to prove the case N = 2 and M 6= ∅. From now on we
simplify our notation and consider the following configuration:

Let A ⊂ D b Cp, B ⊂ G b Cq, where D, G are bounded pseudoconvex
domains, A,B are locally pluriregular. Put , as always,

X := X(A,B;D,G), X̂ := {(z, w) ∈ D ×G : h∗A,D(z) + h∗B,G(w) < 1}.

Moreover , let M be a pure one-codimensional analytic subset of X̂.
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We want to show that any f ∈ Os(X \M) extends holomorphically to
X̂ \M .

Step 4. Let X, M , and f be as above. Let (Dj)∞j=1, (Gj)∞j=1 be sequences
of pseudoconvex domains, Dj b D, Gj b G, with Dj ↗ D, Gj ↗ G.
Moreover , let A′ ⊂ A, B′ ⊂ B be such that A \ A′, B \ B′ are pluripolar ,
and A′ ∩ Dj 6= ∅, B′ ∩ Gj 6= ∅, j ∈ N. For each j ∈ N assume that for
any (a, b) ∈ (A′ ∩ Dj) × (B′ ∩ Gj) there exist polydiscs ∆a(ra,j) ⊂ Dj ,
∆b(sb,j) ⊂ Gj with (∆a(ra,j) × Gj) ∪ (Dj × ∆b(sb,j)) ⊂ X̂, and functions
fa,j ∈ O(∆a(ra,j)×Gj \M), f b,j ∈ O(Dj ×∆b(sb,j) \M) such that

• fa,j = f on (A′ ∩∆a(ra,j))×Gj \M ,
• f b,j = f on Dj × (B′ ∩∆b(sb,j)) \M .

Then there exists an f̂ ∈ O(X̂ \M) with f̂ = f on X \M .

Proof. Fix a j ∈ N. Put

Ũj :=
⋃

a∈A′∩Dj
b∈B′∩Gj

(∆a(ra,j)×Gj) ∪ (Dj ×∆b(sb,j)),

Xj := ((A ∩Dj)×Gj) ∪ (Dj × (B ∩Gj)).
Note that

X ′j := ((A′ ∩Dj)×Gj) ∪ (Dj × (B′ ∩Gj)) ⊂ Ũj .
We wish to glue the functions (fa,j)a∈A′∩Dj and (f b,j)b∈B′∩Gj to obtain a
global holomorphic function fj on Ũj \M . Let a ∈ A′ ∩ Dj , b ∈ B′ ∩ Gj .
Observe that

fa,j = f on (A′ ∩∆a(ra,j))×Gj \M,

f b,j = f on Dj × (B′ ∩∆b(sb,j)) \M.

Thus fa,j = f b,j on (A′ ∩∆a(ra,j))× (B′ ∩∆b(sb,j)) \M . Applying Lemma
5(a), we conclude that

fa,j = f b,j on (∆a(ra,j)×∆b(sb,j)) \M.

Now let a′, a′′ ∈ A′ ∩Dj be such that ∆a′(ra′,j) ∩∆a′′(ra′′,j) 6= ∅. Fix a
b ∈ B′∩Gj . We know that fa′,j = f b,j = fa′′,j on (∆a′(ra′,j)∩∆a′′(ra′′,j))×
∆b(rb,j)\M . Hence, by the identity principle, we conclude that fa′,j = fa′′,j
on (∆a′(ra′,j)∩∆a′′(ra′′,j))×Gj \M . The same argument works for b′, b′′ ∈
B′ ∩ Gj . Consequently, we obtain a function fj ∈ O(Ũj \M) with fj = f
on X ′j \M .

Let Uj be the connected component of Ũj ∩ X̂ ′j with X ′j ⊂ Uj . Thus we
have fj ∈ O(Uj \M) with fj = f on X ′j \M .
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Recall that X ′j ⊂ Uj ⊂ X̂ ′j . We claim that the envelope of holomorphy

of Uj coincides with X̂ ′j . In fact, let h ∈ O(Uj); then h|X′j ∈ Os(X ′j). So,

by Theorem 1, there exists an ĥ ∈ O(X̂ ′j) with ĥ = h on X ′j . Lemma 5(b2)

implies that ĥ = h on Uj .
Applying the Grauert–Remmert theorem (cf. [Jar-Pfl 2000, Th. 3.4.7]),

we find a function f̂j ∈ O(X̂ ′j \M) with f̂j = fj on Uj \M . In particular,

f̂j = f on X ′j \M .
Since A \ A′, B \B′ are pluripolar, we get

X̂ ′j = {(z, w) ∈ Dj ×Gj : h∗A′∩Dj ,Dj (z) + h∗B′∩Gj ,Gj (w) < 1}
= {(z, w) ∈ Dj ×Gj : h∗A∩Dj ,Dj (z) + h∗B∩Gj ,Gj (w) < 1} = X̂j .

So, in fact, f̂j ∈ O(X̂j \M). Using Lemma 5(b1), we even see that f̂j = f
on Xj \M .

Observe that
⋃∞
j=1 Xj = X, X̂j ⊂ X̂j+1, and

⋃∞
j=1 X̂j = X̂. Using again

Lemma 5(a), by gluing the f̂j ’s, we get a function f̂ ∈ O(X̂ \M) with f̂ = f
on X \M .

To apply Step 4 we introduce the following condition (∗). Let % > 0,
0 < r < R. Put

Ω := ∆a0(%)×∆b0(R) ⊂ Cp × Cq, Ω̃ := ∆a0(%)×∆b0(r) ⊂ Cp × Cq.
Let A ⊂ ∆a0(%) ⊂ Cp be locally pluriregular, a0 ∈ A, and let M be a pure
one-codimensional analytic subset of Ω with M ∩ Ω̃ = ∅. Put Ma := {w ∈
∆b0(R) : (a,w) ∈M}, a ∈ A. Condition (∗) reads:

(∗) For any R′ ∈ (r,R) there exists %′ ∈ (0, %) such that for any function
f ∈ O(Ω̃) with f(a, ·) ∈ O(∆b0(R) \ Ma), a ∈ A, there exists an
extension f̂ ∈ O(∆a0(%′) × ∆b0(R′) \M) with f̂ = f on ∆a0(%′) ×
∆b0(r).

Step 5. If condition (∗) holds, then the assumptions of Step 4 are sat-
isfied.

Proof. Take X, M , f ∈ Os(X \M) as is in Step 4. Define

A′ := {a ∈ A : Ma 6= G}, B′ := {a ∈ B : M b 6= D},
where Ma := {w ∈ G : (a,w) ∈M}, M b := {z ∈ D : (z, b) ∈M}. It is clear
that A \A′, B \B′ are pluripolar.

Let (Dj)∞j=1, (Gj)∞j=1 be approximation sequences: Dj b Dj+1 b D,
Gj b Gj+1 b G, Dj ↗ D, Gj ↗ G, A′ ∩Dj 6= ∅, and B′ ∩Gj 6= ∅, j ∈ N.
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Fix j ∈ N, a ∈ A′∩Dj and letΩj be the set of all b ∈ Gj+1 such that there
exist a polydisc ∆(a,b)(rb) ⊂ Dj×Gj+1 and a function f̃b ∈ O(∆(a,b)(rb)\M)
with f̃b = f on (A ∩∆a(rb))×∆b(rb) \M .

It is clear that Ωj is open. Observe that Ωj 6= ∅. Indeed, as B ∩Gj \Ma

6= ∅, we can choose a point b ∈ B ∩ Gj \Ma. Therefore there is a polydisc
∆(a,b)(r) ⊂ Dj ×Gj \M . Put

Y := X(A ∩∆a(r), B ∩∆b(r);∆a(r),∆b(r)).

By Theorem 1, we find rb ∈ (0, r) and f̃b ∈ O(∆(a,b)(rb)) with f̃b = f on
∆(a,b)(rb) ∩ Y ⊃ (A ∩∆a(rb))×∆b(rb). Consequently, b ∈ Ωj .

Moreover, Ωj is relatively closed in Gj+1. Indeed, let c be an accu-
mulation point of Ωj in Gj+1 and let ∆c(3R) ⊂ Gj+1. Take a point b ∈
Ωj ∩∆c(R)\Ma and let r ∈ (0, rb], r < 2R, be such that ∆(a,b)(r)∩M = ∅.
Observe that f̃b ∈ O(∆(a,b)(r)) and f̃b(z, ·) = f(z, ·) ∈ O(∆b(2R) \Mz) for
any z ∈ A ∩∆a(r). Hence, by (∗) (with R′ := R), there exists an extension
̂̃
fb ∈ O(∆a(%′) × ∆b(R) \M) (%′ ∈ (0, r)) such that ̂̃fb = f̃b on ∆(a,b)(r).

Take an rc > 0 so small that ∆(a,c)(rc) ⊂ ∆a(%′)×∆b(R) and put f̃c := ̂̃
fb

on ∆(a,c)(rc) \M . Obviously f̃c = ̂̃
fb = f on (A ∩ ∆a(rc)) × ∆c(rc) \M .

Hence c ∈ Ωj .
Thus Ωj = Gj+1. There exists a finite set T ⊂ Gj such that

Gj ⊂
⋃

b∈T
∆b(rb).

Define ra,j := min{rb : b ∈ T}. Take b′, b′′ ∈ T with ∆b′(rb′) ∩∆b′′(rb′′) 6= ∅.
Then f̃b′ = f = f̃b′′ on (A′ ∩∆a(ra,j))× (∆b′(rb′) ∩∆b′′(rb′′)) \M . Conse-
quently, by Lemma 5(a), f̃b′ = f̃b′′ on ∆a(ra,j)× (∆b′(rb′) ∩∆b′′(rb′′)) \M .
In particular, by gluing the functions (f̃b)b∈T , we get a function fa,j ∈
O(∆a(ra,j)×Gj \M) such that fa,j = f on (A′ ∩∆a(ra,j))×Gj \M .

Changing the roles of z and w, we get f b,j , b ∈ B′ ∩Gj .
Thus the assumptions of Step 4 are satisfied.

It remains to check (∗).
Step 6. Condition (∗) is always satisfied , i.e. the Main Theorem is true.

Proof. Fix a function f ∈ O(Ω̃) such that f(a, ·) ∈ O(∆b0(R) \Ma) for
any a ∈ A with Ma 6= ∆b0(R). Define

(3) R∗0 := sup{R′ ∈ [r,R) : ∃%′∈(0,%] ∃f̂∈O(∆a0 (%′)×∆b0 (R′)\M) :

f̂ = f on ∆a0(%′)×∆b0(r)}.
It suffices to show that R∗0 = R.
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Suppose that R∗0 < R. Fix R∗0 < R′0 < R0 < R and choose R′, %′, f̂

as in (3) with R′ ∈ [r,R∗0), q

√
R′q−1R′0 > R∗0. Write w = (w′, wq) ∈ Cq =

Cq−1 × C. Put Ã := A ∩∆a0(%′).
Let A′ denote the set of all (a, b′) ∈ Ã × ∆b′0(R′) which satisfy the

following condition:

(∗∗) There exist R′′ ∈ (R0, R), δ > 0, m∈N, c1, . . . , cm ∈∆b0,q(R
′′), ε>0,

and holomorphic functions φµ: ∆(a,b′)(δ) → ∆cµ(ε), µ = 1, . . . ,m,
such that:

• ∆(a,b′)(δ) ⊂ ∆a0(%′)×∆b′0(R′),
• ∆cµ(ε) b ∆b0,q(R

′′), µ = 1, . . . ,m,
• ∆cµ(ε) ∩∆cν (ε) = ∅ for µ 6= ν, µ, ν = 1, . . . ,m,

• H̃ := ∆b0,q(R
′) ∩H 6= ∅, where H := ∆b0,q(R

′′) \⋃mµ=1 ∆cµ(ε),
• (∆(a,b′)(δ) × ∆b0,q (R

′′)) ∩M =
⋃m
µ=1{(z, w′, φµ(z, w′)) : (z, w′) ∈

∆(a,b′)(δ)}.
For any (a, b′) ∈ A′ define a new cross

Y := X((A ∩∆a(δ))×∆b′(δ), H̃;∆(a,b′)(δ),H).

Notice that Y does not intersect M . In particular, f̂ |Y ∈ Os(Y ). Hence,
by Theorem 1, there exists an f̂1 ∈ O(Ŷ ) with f̂1 = f̂ on Y . Take R′′′ ∈
(R0, R

′′) and ε′′ > ε′ > ε (ε′′ ≈ ε) such that

• ∆cµ(ε′′) b ∆b0,q (R
′′′), µ = 1, . . . ,m,

• ∆cµ(ε′′) ∩∆cν (ε′′) = ∅ for µ 6= ν, µ, ν = 1, . . . ,m.

Then there exists δ′ ∈ (0, δ] such that

• ∆(a,b′)(δ′)×H ′ ⊂ Ŷ , where H ′ := ∆b0,q(R
′′′) \⋃mµ=1 ∆cµ(ε′).

In particular, f̂1 ∈ O(∆(a,b′)(δ′)×H ′).
Fix µ ∈ {1, . . . ,m}. Then f̂1 ∈ O(∆(a,b′)(δ′)× (∆cµ(ε′′) \∆cµ(ε′))) and

f̂1(z, w′, ·) ∈ O(∆cµ(ε′′)\{φµ(z, w′)}) for any (z, w′) ∈ (A∩∆a(δ′))×∆b′(δ′).
Using the biholomorphic mapping

Φµ: ∆(a,b′)(δ
′)× C→ ∆(a,b′)(δ

′)× C,
Φµ(z, w′, wq) := (z, w′, wq − φµ(z, w′)),

we see that the function g := f̂1 ◦ Φ−1
µ is holomorphic in ∆(a,b′)(δ′′) ×

(∆0(η′′) \ ∆0(η′)) for some δ′′ ∈ (0, δ′] and ε′ < η′ < η′′ < ε′′. Moreover,
g(z, w′, ·) ∈ O(∆0(η′′)\{0}) for any (z, w′) ∈ (A∩∆a(δ′′))×∆b′(δ′′). Using
Theorem 1 for the cross

X((A ∩∆a(δ′′))×∆b′(δ′′),∆0(η′′) \∆0(η′);∆(a,b′)(δ
′′),∆0(η′′) \ {0})
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shows that g extends holomorphically to ∆(a,b′)(δ′′)×(∆0(η′′)\{0}) (because
h∗
∆0(η′′)\{0},∆0(η′′)\∆0(η′)

≡ 0).

Translating the above information back via Φµ for all µ, we conclude that
the function f̂1 extends holomorphically to ∆(a,b′)(δ′′′)×∆b0,q(R

′′′)\M for
some δ′′′ ∈ (0, δ′′]; in particular, f̂1 extends holomorphically to ∆(a,b′)(δ′′′)
×∆b0,q(R0) \M .

Now we prove that (Ã×∆b′0(R′)) \A′ is pluripolar. Write

M ∩ (∆a0(%′)×∆b′0(R′)×∆b0,q (R)) =
∞⋃

ν=1

{ζ ∈ Pν : gν(ζ) = 0},

where Pν b ∆a0(%′)×∆b′0(R′)×∆b0,q(R) is a polydisc and gj ∈ O(Pj) is a
defining function for M ∩ Pj ; cf. [Chi 1989, §2.9]. Define

Sν :=
{
ζ = (ζ̃, ζp+q) ∈ Pν : gν(ζ) =

∂gν
∂ζp+q

(ζ) = 0
}

and observe that, by the implicit function theorem, any point from

(Ã×∆b′0(R′)) \
∞⋃

ν=1

prζ̃(Sν)

satisfies (∗∗). It is enough to show that each set prζ̃(Sν) is pluripolar. Fix ν.
Let S be an irreducible component of Sν . We have to show that prζ̃(S) is
pluripolar. If S has codimension ≥ 2, then prζ̃(S) is contained in a countable
union of proper analytic sets (cf. [Chi 1989, §3.8]). Consequently, prζ̃(S) is
pluripolar. Thus we may assume that S is pure one-codimensional. The
same argument as above shows that prζ̃(Sing(S)) is pluripolar. It remains
to prove that prζ̃(Reg(S)) is pluripolar. Since gν is a defining function, for
any ζ ∈ Reg(S) there exists a k ∈ {1, . . . , p+ q − 1} such that

∂gν
∂ζk

(ζ) 6= 0.

Thus

Reg(S) =
p+q−1⋃

k=1

Tk,

where

Tk :=
{
ζ ∈ Reg(S) :

∂gν
∂ζk

(ζ) 6= 0
}
.

We only need to prove that each set prζ̃(Tk) is pluripolar, k = 1, . . . , p+q−1.
Fix k. To simplify notation, assume that k = 1. Observe that, by the implicit
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function theorem, we can write

T1 =
∞⋃

l=1

{ζ ∈ Ql : ζ1 = ψl(ζ2, . . . , ζp+q)},

where Ql ⊂ Pν is a polydisc, Ql = Q′l×Q′′l ⊂ C×Cp+q−1, and ψl: Q′′l → Q′l
is holomorphic, l ∈ N. It suffices to prove that the projection of each set
T1,l := {ζ ∈ Ql : ζ1 = ψl(ζ2, . . . , ζp+q)} is pluripolar. Fix l. Since

gν(ψl(ζ2, . . . , ζp+q), ζ2, . . . , ζp+q) = 0, (ζ2, . . . , ζp+q) ∈ Q′′l ,
we conclude that ∂ψl/∂ζp+q ≡ 0 and consequently ψl is independent of ζp+q.
Thus prζ̃(T1,l) = {ζ1 = ψl(ζ2, . . . , ζp+q−1)} and therefore the projection is

pluripolar. The proof that (Ã×∆b′0(R′)) \A′ is pluripolar is complete.

Using Step 4, we conclude that f̂ extends holomorphically to the domain
Ŷ \M , where

Ŷ := {(z, w′, wq) ∈ ∆a0(%′)×∆b′0(R′)×∆b0,q(R0) :

h∗A′,∆a0 (%′)×∆b′0 (R′)(z, w
′) + h∗∆b0,q (R′),∆b0,q (R0)(wq) < 1}

= {(z, w′, wq) ∈ ∆a0(%′)×∆b′0(R′)×∆b0,q(R0) :

h∗
Ã,∆a0 (%′)

(z) + h∗∆b0,q (R′),∆b0,q (R0)(wq) < 1}
(here we have used the product property of the relative extremal function).
Since R′0 < R0, we find a %q ∈ (0, %′] and a function f̃q ∈ O(∆a0(%q) ×
∆b′0(R′)×∆b0,q(R

′
0) \M) such that

f̃q = f̂ on ∆a0(%q)×∆b0(R′) \M.

If q = 1 we get a contradiction (because R′0 > R∗0).
Let q ≥ 2. Repeating the above argument for the coordinates wν , ν =

1, . . . , q − 1, we find a %0 ∈ (0, %′] and a function f̃ holomorphic in

∆a0(%0)×
( q⋃

ν=1

∆(b0,1,...,b0,ν−1)(R
′)×∆b0,ν (R′0)×∆(b0,ν+1,...,b0,q)(R

′)
)
\M

such that f̃ = f̂ on ∆a0(%0) ×∆b0(R′) \M . Let H denote the envelope of
holomorphy of the domain

q⋃

ν=1

∆(b0,1,...,b0,ν−1)(R
′)×∆b0,ν (R′0)×∆(b0,ν+1,...,b0,q)(R

′).

Applying the Grauert–Remmert theorem, we can extend f̃ holomorphically

to ∆a0(%0) × H \ M , i.e. there exists an ̂̃
f ∈ O(∆a0(%0) × H \ M) with

̂̃
f = f on ∆a0(%0)×∆b0(r). Observe that ∆b0( q

√
R′q−1R′0) ⊂ H. Recall that

q

√
R′q−1R′0 > R∗0; a contradiction.
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Remark. Notice that the proof of Step 6 shows that the following
stronger version of (∗) is true: Let % > 0, 0 < r < R, Ω, Ω̃, A, and a
be as in (∗). Let M be a pure one-codimensional analytic subset of Ω (we
do not assume that M ∩ Ω̃ = ∅). Then:

For any R′ ∈ (r,R) there exists %′ ∈ (0, %) such that for any function f ∈
O(Ω̃\M) with f(a, ·) ∈ O(∆b0(R)\Ma), a ∈ A, there exists an extension
f̂ ∈ O(∆a0(%′)×∆b0(R′) \M) with f̂ = f on ∆a0(%′)×∆b0(r) \M .

4. Proof of the Main Theorem in the general case. First observe
that the function f̂ is uniquely determined (cf. §3).

We proceed by induction on N . Let Dj,k ↗ Dj , Dj,k b Dj,k+1 b Dj ,
where Dj,k are pseudoconvex domains with Aj,k := Aj ∩Dj,k 6= ∅. Put

Xk := X(A1,k, . . . , AN,k;D1,k, . . . ,DN,k) ⊂ X.
It suffices to show that for each k ∈ N the following condition (*** ) holds:

(*** ) There exists a domain Uk, Xk ⊂ Uk ⊂ U ∩ X̂k, such that for any f ∈
Os(X \M) there exists an f̃k ∈ O(Uk \M) with f̃k|Xk\M = f |Xk\M .

Indeed, fix k ∈ N and observe that X̂k is the envelope of holomorphy of
Uk (cf. the proof of Step 4). Hence, by the Dloussky theorem (cf. [Jar-Pfl
2000, Th. 3.4.8], see also [Por 2002]), there exists an analytic subset M̃k of
X̂k, M̃k∩Uk ⊂M , such that X̂k\M̃k is the envelope of holomorphy of Uk\M .

In particular, for each f ∈ Os(X \M) there exists an ˜̃fk ∈ O(X̂k \M̃k) with
˜̃fk|Uk\M = f̃k. Let Fk := { ˜̃fk : f ∈ Os(X \M)} ⊂ O(X̂k \ M̃k). It is known
(cf. [Jar-Pfl 2000, Prop. 3.4.5]) that there exists a pure one-codimensional
analytic subset M̂k ⊂ X̂k, M̂k ⊂ M̃k, such that any point of M̂k is singular
with respect to Fk, i.e.

• any function ˜̃fk extends to a function f̂k ∈ O(X̂k \ M̂k), and

• for any a ∈ M̂k and an open neighborhood V of a, V ⊂ X̂k, there exists
an f ∈ Os(X \M) such that f̂k|V \M̂k

cannot be holomorphically extended
to the whole V .

In particular, M̂k+1 ∩ X̂k = M̂k. Consequently, M̂ :=
⋃∞
k=1 M̂k is a pure

one-codimensional analytic subset of X̂, M̂ ∩ ⋃∞k=1 Uk ⊂ M , and for each
f ∈ Os(X \M), the function f̂ :=

⋃∞
k=1 f̂k is holomorphic on X̂ \ M̂ with

f̂ |X\M = f .

It remains to prove (*** ). Fix k ∈ N. For any a = (a1, . . . , aN ) ∈ A1,k ×
. . .×AN,k let % = %k(a) be such that ∆a(%) ⊂ D1,k × . . .×DN,k. If N ≥ 4,
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then we additionally define (N − 2)-fold crosses

Yk,µ,ν := X(A1,k, . . . , Aµ−1,k, Aµ+1,k, . . . , Aν−1,k, Aν+1,k, . . . , AN,k;

D1,k, . . . ,Dµ−1,k,Dµ+1,k, . . . ,Dν−1,k,Dν+1,k, . . . ,DN,k), 1 ≤ µ < ν ≤ N,
and we assume that % is so small that

∆(a1,...,aµ−1,aµ+1,...,aν−1,aν+1,...,aN )(%) ⊂ Ŷk,µ,ν , 1 ≤ µ < ν ≤ N.

Since {(a1, . . . , aj−1)}×Dj,k+1×{(aj+1, . . . , aN )} b U , we may assume that

(4) ∆(a1,...,aj−1)(%)×Dj,k+1 ×∆(aj+1,...,aN )(%) ⊂ U, j = 1, . . . , N.

We define N -fold crosses

Zk,a,j := X(A1 ∩∆a1(%), . . . , Aj−1 ∩∆aj−1(%), Aj,k+1,

Aj+1 ∩∆aj+1(%), . . . , AN ∩∆aN (%);

∆a1(%), . . . ,∆aj−1(%),Dj,k+1,∆aj+1(%), . . . ,∆aN (%))

for j = 1, . . . , N. Note that Ẑk,a,j ⊂ U . Since {(a1, . . . , aj−1)} × Dj,k ×
{(aj+1, . . . , aN )} b Ẑk,a,j , there exists an r = rk(a), 0 < r ≤ %, so small
that

Vk,a,j := ∆(a1,...,aj−1)(r)×Dj,k ×∆(aj+1,...,aN )(r) ⊂ Ẑk,a,j , j = 1, . . . , N.

Put
Vk :=

⋃

a∈A1,k×...×AN,k
j∈{1,...,N}

Vk,a,j .

Note that Xk ⊂ Vk. Let Uk be the connected component of Vk ∩ X̂k that
contains Xk.

In view of (4), the Main Theorem with U = X̂ (which is already proved
in §3) implies that for any f ∈ Os(X \M) there exists an extension f̂k,a,j ∈
O(Ẑk,a,j \M) of f |Zk,a,j\M . It remains to glue the functions

f̃k,a,j := f̂k,a,j |Vk,a,j\M , a ∈ A1,k × . . .×AN,k, j = 1, . . . , N ;

then the function

f̃k :=
( ⋃

a∈A1,k×...×AN,k
j∈{1,...,N}

f̃k,a,j

)∣∣∣
Uk\M

gives the required extension of f |Xk\M .
To check that the gluing process is possible, let a, b ∈ A1,k × . . .× AN,k

and i, j ∈ {1, . . . , N} be such that Vk,a,i ∩ Vk,b,j 6= ∅. We have the following
two cases:
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(a) i 6= j: We may assume that i = N − 1, j = N . Write w = (w′, w′′) ∈
Ck1+...+kN−2 × CkN−1+kN . Observe that

Vk,a,N−1 ∩ Vk,b,N = (∆a′(rk(a))∩∆b′(rk(b)))×∆bN−1(rk(b))×∆aN (rk(a)).

For c = (c′, c′′), let

Mc′ := {w′′ ∈ CkN−1+kN : (c′, w′′) ∈M},
M c′′ := {w′ ∈ Ck1+...+kN−2 : (w′, c′′) ∈M};

Mc′ and M c′′ are analytic subsets of

Uc′ := {w′′ ∈ CkN−1+kN : (c′, w′′) ∈ U},
U c
′′

:= {w′ ∈ Ck1+...+kN−2 : (w′, c′′) ∈ U},
respectively.

We consider the following three subcases:

(a1) N = 2: Then Vk,a,1∩Vk,b,2 = ∆b1(rk(b))×∆a2(rk(a)). Since f̃k,a,1 =
f̃k,b,2 on the non-pluripolar set (A1 ∩∆b1(rk(b)))× (A2 ∩∆a2(rk(a))) \M ,
by the identity principle, f̃k,a,1 = f̃k,b,2 on Vk,a,1 ∩ Vk,b,2 \M .

(a2) N = 3: Then Vk,a,2∩Vk,b,3 = (∆a1(rk(a))∩∆b1(rk(b)))×∆b2(rk(b))
×∆a3(rk(a)). Let C ′′ denote the set of all points c′′ ∈ (A2 ∩∆b2(rk(b)))×
(A3 ∩∆a3(rk(a))) such that the set M c′′ has codimension ≥ 1 (i.e. for any
w′ ∈ M c′′ the codimension of M c′′ at w′ is ≥ 1). Note that C ′′ is non-
pluripolar. We have f̃k,a,2(·, c′′) = f(·, c′′) = f̃k,b,3(·, c′′) on ∆a1(rk(a)) ∩
∆b1(rk(b)) \M c′′ .

Now, let c′ ∈ ∆a1(rk(a))∩∆b1(rk(b)) be such that the set Mc′ has codi-
mension ≥ 1. Then f̃k,a,2(c′, ·) = f̃k,b,3(c′, ·) on C ′′\Mc′ . Hence, by the iden-
tity principle, f̃k,a,2(c′, ·) = f̃k,b,3(c′, ·) on ∆b2(rk(b))×∆a3(rk(a)) \Mc′ . Fi-
nally, f̃k,a,2 = f̃k,b,3 on Vk,a,2 ∩ Vk,b,3 \M .

If N ∈ {2, 3}, then we jump directly to (b) and we conclude that the
Main Theorem is true for N ∈ {2, 3}.

(a3) N ≥ 4: Here is the only place where the induction over N is used.
We assume that the Main Theorem is true for N − 1 ≥ 3.

Similarly to the case N = 3, let C ′′ denote the set of all points c′′ ∈
(AN−1 ∩ ∆bN−1(rk(b))) × (AN ∩ ∆aN (rk(a))) such that the set M c′′ has
codimension ≥ 1; C ′′ is non-pluripolar. The function fc′′ := f(·, c′′) is sep-
arately holomorphic on Yk,N−1,N \M c′′ . By the inductive assumption, fc′′
extends to a function f̂c′′ ∈ O(Ŷk,N−1,N \ M̂(c′′)), where M̂(c′′) is an an-
alytic subset of Ŷk,N−1,N with M̂(c′′) ⊂ M c′′ in an open neighborhood of
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Yk,N−1,N . Recall that

∆a′(rk(a)) ∪∆b′(rk(b)) ⊂ Ŷk,N−1,N .

Since f̃k,a,N−1(·, c′′) = fc′′ on ∆a′(rk(a))∩Yk,N−1,N \M c′′ and f̃k,b,N (·, c′′) =
fc′′ on ∆b′(rk(b))∩Yk,N−1,N \M c′′ , we conclude that f̃k,a,N−1(·, c′′) = f̂c′′ =
f̃k,b,N (·, c′′) on ∆a′(rk(a)) ∩∆b′(rk(b)) \M c′′ .

Let c′ ∈ ∆a′(rk(a)) ∩∆b′(rk(b)) be such that the set Mc′ has codimen-
sion ≥ 1. Then f̃k,a,N−1(c′, ·) = f̃k,b,N (c′, ·) on C ′′ \ Mc′ . Consequently,
by the identity principle, f̃k,a,N−1(c′, ·) = f̃k,b,N (c′, ·) on ∆bN−1(rk(b)) ×
∆aN (rk(a)) \Mc′ and, finally, f̃k,a,N−1 = f̃k,b,N on Vk,a,N−1 ∩ Vk,b,N \M .

(b) i = j: We may assume that i = j = N . Observe that

Vk,a,N ∩ Vk,b,N = (∆(a1,...,aN−1)(rk(a)) ∩∆(b1,...,bN−1)(rk(b)))×DN,k.

By (a) we know that

f̃k,a,N = f̃k,a,N−1 on Vk,a,N ∩ Vk,a,N−1 \M,

f̃k,a,N−1 = f̃k,b,N on Vk,a,N−1 ∩ Vk,b,N \M.

Hence f̃k,a,N = f̃k,b,N on

Vk,a,N ∩ Vk,a,N−1 ∩ Vk,b,N \M
= (∆(a1,...,aN−1)(rk(a)) ∩∆(b1,...,bN−1)(rk(b)))×∆aN (rk(a)) \M,

and finally, by the identity principle,

f̃k,a,N = f̃k,b,N on Vk,a,N ∩ Vk,b,N \M.

The proof of the Main Theorem is complete.
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