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On perturbations of pluriregular sets generated by
sequences of polynomial maps

by Maciej Klimek (Uppsala)

Abstract. It is shown that an infinite sequence of polynomial mappings of sev-
eral complex variables, with suitable growth restrictions, determines a filled-in Julia set
which is pluriregular. Such sets depend continuously and analytically on the generating
sequences, in the sense of pluripotential theory and the theory of set-valued analytic func-
tions, respectively.

1. Introduction. Let R denote the set of all polynomially convex com-
pact pluriregular subsets of CN . For any E,F ∈ R we define the distance
Γ (E,F ) between E and F as the L∞(E ∪ F )-distance between the pluri-
complex Green functions VE and VF of E and F respectively. It was shown
in [14] that (R, Γ ) is a complete metric space. Compactness in the space R
was investigated by Siciak in [25].

One of the most useful properties of Γ is that it turns regular polynomial
mappings into contractions of R. More precisely, let P : CN → CN be
a polynomial mapping of degree d ≥ 2 such that P̂−1(0) = {0}, where
P̂ denotes the homogeneous part of P of degree d. Then the set-mapping
E 7→ P−1(E) is a contraction. By Banach’s Contraction Principle, it has a
unique fixed point, which turns out to be the filled-in Julia set of P . This,
as well as similarities between Γ and the Hausdorff distance, have led to a
number of applications in complex dynamics and yielded new examples of
multivalued analytic functions (see [14]–[18]).

Analytic functions whose values are compact subsets of C were intro-
duced by Oka in 1934 [20]. With the notable exception of Nishino’s paper
[19] and two papers by Yamaguchi ([34], [35]) the subject was dormant for
nearly five decades. In 1981 Słodkowski [26] proposed a different equivalent
definition of such functions, which allowed natural multidimensional gener-
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alization of the concept. In [27] he introduced yet another more restrictive
multidimensional extension of Oka’s definition.

It can be shown that if A is a Banach algebra and f is a holomorphic
function with values in AN , then the mapping z 7→ σ(f(z)) is an analytic
set-valued function, where σ denotes the appropriate type of spectrum (see
[26] if N = 1 and [11], [30] if N ≥ 1). The converse holds locally if N = 1
(see [26]), but is only partially known in higher dimensions (see [29], [30]).

It is of great interest to construct and investigate classes of set-valued
analytic functions whose values are specific types of subsets of CN . The
so-called Scarcity Theorem (see [3], [4] for N = 1 and [11] for N ≥ 1) essen-
tially tells us that analytic multifunctions whose values are finite sets are
“inverses” of proper holomorphic projections of analytic varieties. Moreover,
if a function has infinite sets as some values, then this must be so outside
of a pluripolar set. If z 7→ K(z) is an analytic set-valued function we can
also describe the size of its values in terms of being or not being pluripolar.
It turns out that if the domain of definition of K is connected, then either
all K(z) are pluripolar, or there exists a pluripolar set F such that K(z) is
not pluripolar for z 6∈ F (see [34] if N = 1 and [11] if N ≥ 1). One can also
look at much more specific types of sets K(z). Multifunctions whose values
are line segments or convex polygons were investigated by Baribeau in [5]
and [6].

One reason why analytic set-valued functions with values in a very par-
ticular family of sets are of interest can be explained as follows. Let C denote
a class of compact subsets of CN with some specific properties and let E ∈ C.
Suppose now that z 7→ K(z) is an analytic multifunction whose values are
subsets of CN . If E = K(z0) for some z0, then for z close to z0 the set K(z)
can be viewed as an analytic perturbation of E. It is natural to ask if the
function K perturbs E in such a way that the deformed version of E remains
within the class C. Alternatively, we may want to characterize all or at least
some multifunctions K with this property. A canonical approach is to look
closely at the way the set E is defined. If the construction of E involves
some quantities that could be regarded as parameters, we can try to see
if the dependence of E on these parameters defines an analytic set-valued
function.

Let P = (Pn)n≥1 be a sequence of polynomial mappings such that each
Pn : CN → CN . For every point z0 ∈ CN we define its P -orbit as the
sequence zn = Pn(zn−1) for n ≥ 1. We also define K+[P ] as the set of all
points in CN whose P -orbits are bounded. By analogy to the case when
N = 1 and P1 = P2 = . . . , we will call K+[P ] the filled-in Julia set of P .

The goal of this paper is to establish natural conditions under which the
mapping K+ : P → K+[P ] has values in R, is well defined on an open subset
of an infinite-dimensional Banach space, is continuous and is analytic in the
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sense of the theory of analytic set-valued functions. Theorem 1 contains the
main result. Examples of applications of Theorem 1 are given in the form of
Theorems 2 and 3. The former is just a strengthened version of Theorem 2
from [16], whereas the latter provides a natural construction of an analytic
set-valued function whose values fail to satisfy Markov’s inequality. Recall
that the first example of a pluriregular set without Markov’s property was
discovered by Pleśniak in [21].

The paper is organized as follows. In the next two sections we describe
the domain of definition of K+ and review some basic definitions concerning
analytic set-valued functions. This is followed by the statement and proof
of the main result. In the closing section we describe several applications of
the main theorem and its relationship to other results in the literature.

2. A Banach space of sequences of polynomials. Let d ≥ 2 be an
integer. We denote by Pd the space of all polynomial mappings P : CN →
CN such that deg(P ) ≤ d. We will view Pd as a Banach space with the norm

‖P‖ =
d∑

n=0

‖Hn‖,

where P = H0 +H1 + . . .+Hd, Hn is homogeneous of degree n and

‖Hn‖ = sup
‖z‖=1

‖Hn(z)‖.

If N = 1, then Pd is simply Cd+1 furnished with the `1 norm. Given P ∈ Pd
it will be convenient to have the following symbols:

P̂ = Hd, P̃ = H0 + . . .+Hd−1, bP c = inf
‖z‖=1

‖P̂ (z)‖.

We call bP c the floor of P . Note that
∣∣bP c − bQc

∣∣ ≤ ‖P −Q‖.(1)

We say that P is regular if P̂−1(0) = {0}. The subset of all regular
mappings in Pd is denoted by P∗d . It is easy to see that all regular mappings
are proper.

Throughout the paper BR denotes the closed Euclidean ball in CN with
center at the origin and radius R > 0. We say that R > 0 is an escape radius
for P if for each z ∈ CN \BR,

lim
n→∞

‖(P ◦ . . . ◦ P︸ ︷︷ ︸
n times

)(z)‖ =∞.

For a regular mapping P , the formula

r(P ) =
1 + bP c+ ‖P̃‖

bP c
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gives an escape radius that depends continuously on P (see [16]).
Since dimPd <∞, for every R > 0 there exists MR > 0 such that

‖P‖BR = sup
z∈BR

‖P (z)‖ ≤MR‖P‖, P ∈ Pd.(2)

If E is a complex Banach space and Λ = (λj)j≥1 is a sequence of positive
numbers, then

`∞Λ (E) =
{
x = (ξn)n∈N : ξn ∈ E and sup

n∈N

‖ξn‖
λn

<∞
}

endowed with the norm

‖x‖Λ = sup
n∈N

‖ξn‖
λn

is a Banach space. It can be called the weighted `∞ space over E with
weights Λ.

We will be primarily interested in the space `∞Λ (Pd). For P = (Pn) ∈
`∞Λ (Pd) define the floor of P :

bP cΛ = inf
n∈N
bPnc
λn

.

We also define
ΩΛ = {P ∈ `∞Λ (Pd) : bP cΛ > 0}.

Since P 7→ bP cΛ is continuous (see (1)), the set ΩΛ is open. Another useful
property of the set ΩΛ is that the function

P 7→ sup
n≥1

r(Pn), P = (Pn) ∈ ΩΛ,(3)

is locally bounded from above, provided that c = infn∈N λn > 0. This is so
because of the estimate

sup
n≥1

r(Pn) ≤ 1/c+ ‖P‖Λ
bP cΛ

and continuity of the right-hand side.

3. Analytic set-valued functions. Let Comp(CN ) denote the family
of all compact subsets of CN and let Ω be an open subset of a Banach space
E. If K : Ω → Comp(CN ) is a function, we define the graph of K as the set

Graph(K) = {(z, w) ∈ Ω × CN : w ∈ K(z)}.
We say that the function K is upper semicontinuous if for every z0 ∈ Ω and
every open set V such that K(z0) ⊂ V ⊂ CN , there exists a neighborhood
U ⊂ Ω of z0 such that K(z) ⊂ V for all z ∈ U . Equivalently, K is upper
semicontinuous if and only if the graph of K is closed in Ω × CN and the
natural projection π : Graph(K) → Ω is proper. If Ω is locally compact,
instead of assuming that π is proper, it suffices to assume that each a ∈ Ω
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has a neighborhood U such that π−1(U) is relatively compact in the graph
of K (see e.g. [9]).

Another concept we need is that of a q-plurisubharmonic function. For
smooth functions the definition was already given in the early 1960’s by
Andreotti and Grauert (see [1], [2]), but its modern more general version is
due to Hunt and Murray and appeared much later in 1978 (see [10]).

Let D ⊂ Cn be an open set. For any q ∈ {0, 1, . . . , n − 1} an upper
semicontinuous function u : D → [−∞,∞) is said to be q-plurisubharmonic
if it is subplurisuperharmonic on the intersection of D with every (q + 1)-
dimensional affine subspace of Cn. It can be shown that the word “sub-
plurisuperharmonic” can be replaced by “subpluriharmonic” (see Lemma 4.4
in [31]). Obviously 0-plurisubharmonic functions are the same as plurisub-
harmonic functions.

Here are some fundamental properties of q-plurisubharmonic functions.

Properties. 1. A C2 function is q-plurisubharmonic if and only if at
each point its complex Hessian has at least (n− q) non-negative eigenvalues
(see [10]).

2. If F ⊂ Cn is compact and u : F → [−∞,∞) is upper semicontinuous
and q-plurisubharmonic in the interior of F, then supu(F ) = supu(∂F ) (see
[10]).

3. Being q-plurisubharmonic is a local property, invariant with respect to
biholomorphic changes of coordinates.

4. The maximum of two q-plurisubharmonic functions is q-plurisubhar-
monic.

5. The limit of a decreasing sequence of q-plurisubharmonic functions is
q-plurisubharmonic.

6. If u and v are q- and r-plurisubharmonic respectively, then u + v is
(q+ r)-plurisubharmonic and min(u, v) is (q+ r+ 1)-plurisubharmonic (see
[28], [31]).

7. Every q-plurisubharmonic function can be approximated on any com-
pact subset F of its domain by a decreasing sequence of continuous q-pluri-
subharmonic functions defined on a neighborhood of F (see [28], [8]).

8. The upper semicontinuous regularization of the upper envelope of a
family of q-plurisubharmonic functions is q-plurisubharmonic provided it is
locally bounded from above (see [28], [33]).

9. A closed locally complete pluripolar set is a removable singularity for
q-plurisubharmonic functions which are locally bounded from above (see [33]).

There are several ways in which analytic set-valued functions can be
defined. Assume that K : Ω → Comp(CN ) is an upper semicontinuous
function. We are going to state three versions of the definition of strong
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analyticity (which are equivalent in the overlapping cases) and one definition
of weak analyticity.

• If N = 1, we say that K is strongly analytic if the open set (Ω × C) \
Graph(K) is pseudoconvex (see [20] and [24]).
• If N ≥ 1, we say that K is strongly analytic if for any (N + 1)-

dimensional complex affine subspace L of E×CN , the set Y = L∩Graph(K)
has the local maximum property :

there is no holomorphic function f : U → C, where U ⊂ E×CN , such
that |f |

∣∣
Y

has a strict local maximum at a point in U ∩ Y .

• If dimE = q and N ≥ 1, we say that K is strongly analytic if for
every open set ω ⊂ Ω and every smooth function u which is (q − 1)-
plurisubharmonic in a neighborhood of Graph(K|ω), the function

v(z) = supu({z} ×K(z)), z ∈ ω,
is (q−1)-plurisubharmonic. (This definition and the previous one were given
in [27].)
• If E is arbitrary and N ≥ 1, we say that K is weakly analytic if for every

open set ω ⊂ Ω and every function u plurisubharmonic in a neighborhood
of Graph(K|ω), the function

v(z) = supu({z} ×K(z)), z ∈ ω,
is plurisubharmonic (see [26]).

The adverb weakly was added in [27]. In this article we need to deal with
both concepts of analyticity and hence the adverb strongly has been added
here to facilitate our discussion. In most of the literature only one type of
multifunctions is studied at a time and thus the term analytic is sufficient.

If E = C and N ≥ 1, the concepts of strong and weak analyticity are
identical (see [29] and [26]). If dimE > 1, then strong analyticity implies
weak analyticity, but the converse is not true as shown in the examples
below. In the finite-dimensional case several equivalent definitions of strong
analyticity can be found in the literature (see [27], [29], [30], [32]).

Example 1. Define

D : [0,∞)→ Comp(C), D(r) = {ζ ∈ C : |ζ| ≤ r}.
If u : Ω → [−∞,∞) is a function, then D ◦ eu is weakly analytic if and only
if u is plurisubharmonic. This is one of the standard examples of weakly
analytic set-valued functions exemplifying the fact that such functions gen-
eralize plurisubharmonic functions.

Example 2. Another standard example of a weakly analytic function
goes back to Yamaguchi [34] (see also [22]). We say that K has local holo-
morphic selections if for any z0 ∈ Ω and any w0 ∈ ∂K(z0) there exists a
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neighborhood U of z0 and a holomorphic function f : U → CN such that

f(z0) = w0 and f(z) ∈ K(z) for all z ∈ U.
If K has local holomorphic selections and is upper semicontinuous, then it
is weakly analytic.

In [29] Słodkowski gave a very simple example of a weakly analytic func-
tion which is not strongly analytic:

S : (z1, z2) 7→
{
{ζ ∈ C : |ζ| = 1} if (z1, z2) ∈ C2 \ {(0, 0)},
{ζ ∈ C : |ζ| ≤ 1} if (z1, z2) = (0, 0).

Note that despite this, the function has local holomorphic selections.

The choice between weak and strong analyticity is sometimes dictated
by the context. If some kind of analytic structure of the graph of a mul-
tifunction is of primary interest, strong analyticity seems to be the right
choice. The key reason was provided in [32], where it was shown that any
strongly analytic function is a decreasing limit of locally trivial strongly
analytic functions, that is, functions which are locally unions of graphs of
families of holomorphic functions. On the other hand, if properties related
to plurisubharmonic functions are in focus—as in this paper—weak analyt-
icity seems to be somewhat more appropriate. An excellent exposition of the
theory of weakly analytic multifunctions is given in [22] (see also [23]).

4. The main result. In the statement of the main result we use the
notation from the introduction.

Theorem 1. Let Λ = (λj)j≥1 be a sequence of numbers such that
infn∈N λn > 0 and

∞∑

n=1

λn
dn

<∞.(4)

Then the set-valued mapping

K+ : P 7→ K+[P ], ΩΛ →R,
is well defined , continuous and weakly analytic.

Proof. According to (3) for each point in ΩΛ we can choose a neighbor-
hood ω and a number R > 1 such that if P = (Pn) ∈ ω, then R is an escape
radius common to all Pn’s. Since the conclusion of the theorem is local we
can work with such a neighborhood ω instead of ΩΛ. Moreover, we may also
suppose that there exists a constant L > 1 such that ‖Pn(z)‖ ≥ L‖z‖ for all
P = (Pn) ∈ ω and z ∈ CN \BR. In what follows, MR is defined as in (2).

For P = (Pn) ∈ ω define

EPn = (Pn ◦ Pn−1 ◦ . . . ◦ P1)−1(BR), n ∈ N.
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Note that EPn+1 ⊂ EPn , because P−1
n+1(BR) ⊂ BR. Furthermore

K+[P ] =
⋂

n∈N
EPn .

Hence in order to show thatK+[P ] ∈ R, it suffices to check that the sequence
(EPn ) is convergent in R (see e.g. Corollary 5.1.2 in [13]). In view of Theorem
5.3.1 in [13],

Γ (EPn+1, E
P
n ) ≤ Γ (P−1

n+1(BR), BR)
dn

(5)

=
log+(‖Pn+1‖BR/R)

dn+1

≤ MR‖P‖Λλn+1

Rdn+1

and so (EPn ) is a Cauchy sequence because of (4) and the triangle inequality.
To show continuity of K+ we proceed as follows. First, if P,Q ∈ ω, the

estimate in (5) implies that

Γ (EPn+1, E
Q
n+1) = Γ (EPn+1, E

P
n ) + Γ (EPn , E

Q
n ) + Γ (EQn , E

Q
n+1)

≤ 2
MR max{‖P‖Λ, ‖Q‖Λ}λn+1

Rdn+1 + Γ (EPn , E
Q
n )

for all n. Consequently,

Γ (EPn+m, E
Q
n+m) ≤ 2

MR max{‖P‖Λ, ‖Q‖Λ}
R

n+m∑

k=n+1

λk
dk

(6)

+Γ (EPn , E
Q
n ).

Take ε > 0 and fix P ∈ ω. Choose r > 0 so that if ‖P − Q‖Λ < r, then
Q ∈ ω. By choosing a sufficiently large n and letting m→∞ in (6) we get
(because of (4))

Γ (K+[P ],K+[Q]) ≤ ε

2
+ Γ (EPn , E

Q
n ).

But

Γ (EPn , E
Q
n ) =

1
dn

sup
z∈BR

∣∣∣∣log+ ‖(Pn◦ . . . ◦P1)(z)‖
R

− log+ ‖(Qn◦ . . . ◦Q1)(z)‖
R

∣∣∣∣

≤ ‖(Pn ◦ . . . ◦ P1)− (Qn ◦ . . . ◦Q1)‖BR
dnR

and the right-hand side can be made smaller than ε/2 if Q is sufficiently
close to P .

If E ∈ R, then the sets {z ∈ CN : VE(z) < ε}, where ε > 0, form a
base of neighborhoods of E (see e.g. [14]). Hence, if (X, d) is a metric space
and a mapping F : (X, d) → (R, Γ ) is continuous, then F is also upper
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semicontinuous. In particular, we have shown that K+ : ΩΛ → R is upper
semicontinuous.

The next objective is to show that K+ is actually analytic. To this end
we will prove four statements which are also interesting in their own right.

Remark 1. Let r > 0. The mapping P 7→ P−1(Br), from P∗d to R, is
continuous. In particular, it is upper semicontinuous.

As above, this is so because

|VP−1(Br)(z)− VQ−1(Br)(z)| ≤ 1
dr
‖P (z)−Q(z)‖, z ∈ CN .

Remark 2 (see also [16]). Let a ∈ CN . The set-valued mapping P 7→
P−1(a) defined on P∗d is strongly analytic.

Without loss of generality we may suppose that a = 0. It is easy to check
that the set

A = {(P, z) ∈ P∗d × CN : P (z) = 0}
is a closed analytic submanifold of P∗d × CN of dimension dimPd. Let π :
A → P∗d denote the natural projection (P, z) 7→ P . Given P0 ∈ P∗d , let
r > 0 be chosen so that if Q ∈ KP0,r = {P ∈ P∗d : ‖P − P0‖ ≤ r}, then
r(Q) ≤ r(P0) + 1. Then π−1(KP0,r) ⊂ KP0,r × Br(P0)+1. This implies that
the natural projection π is proper. Because of this, for any neighborhood
U of P−1(0) we can find s > 0 such that P−1(Bs) ⊂ U . Hence, in view of
Remark 1, P 7→ P−1(0) is upper semicontinuous. Finally, since π : A →
P∗d is a branched covering, we get strong analyticity, because the relevant
properties of q-plurisubharmonic functions are virtually the same as in the
plurisubharmonic case.

Remark 3 (see also [16]). Let r > 0. The mapping P 7→ P−1(Br), from
P∗d to R, is strongly analytic.

We already have upper semicontinuity. Let q = dimPd. If u is (q − 1)-
plurisubharmonic in a neighborhood V of {P} × P−1(Br), the conclusion
follows directly from Remark 2 and the equality

supu({Q} ×Q−1(Br)) = sup
a∈Br

supu({Q} ×Q−1(a)), Q ∈ V.

Remark 4. Let Ω be an open subset in a complex Banach space E.
Suppose that Kn : Ω → R, for n ≥ 1, is a sequence of weakly analytic
multifunctions which is pointwise convergent to an upper semicontinuous
set-valued function K : Ω →R. Then K is also weakly analytic.

Weak analyticity of an upper semicontinuous set-valued function is
equivalent to weak analyticity on complex affine lines. Hence in view of
Theorem 1 in [12], in order to prove the above statement it is enough to
check that for any function u ∈ PSH(E × CN ) with logarithmic growth at
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infinity the function z 7→ supu({z} ×K(z)) is plurisubharmonic in Ω. But
this is true because this function is upper semicontinuous and for z ∈ Ω we
have the estimate

|supu({z} ×Kn(z))− supu({z} ×K(z))| ≤ Γ (Kn(z),K(z)).

We complete the proof of the theorem by applying Remarks 3 and 4 to
the set-valued functions P 7→ EP

n .

5. Applications. Special cases of the analyticity part of Theorem 1
can be found in the literature. In the case of N = 1, weak analyticity of the
mapping P 7→ K+[(P,P, . . .)] which is defined on the set of all polynomials
of degree d of one complex variable follows from a result of Baribeau and
Ransford [7] combined with the upper semicontinuity property shown by
Douady [9]. In this instance K+[(P,P, . . .)] is simply the filled-in Julia set
associated with the polynomial P . Douady’s paper also contains a discussion
of discontinuity of this mapping if the distance between two compact sets
in C is measured in the sense of the Hausdorff metric.

For N ≥ 1, weakly analytic dependence of the composite Julia set gen-
erated by a finite family of polynomials on these polynomials was shown
in [16]. Let

Σk = {1, . . . , k}N.
It is convenient to define the auxiliary function

seqσ : (P∗d)k → (P∗d)N

by the formula
seqσ(P1, . . . , Pk) = (Pσ(n))n∈N,

where σ ∈ Σk.
If d ≥ 2, then the composite Julia set generated by the polynomials

P1, . . . , Pk ∈ P∗d is defined to be

Kc
+[P1, . . . , Pk] =

( ⋃

σ∈Σk
K+[seqσ(P1, . . . , Pk)]

)∧
∈ R,

where the “hat” denotes the operation of taking the polynomially convex
hull of the expression in parentheses (see [15]).

Theorem 2. Let d ≥ 2. The set-valued mappings

K+ ◦ seqσ : (P∗d)k →R, σ ∈ Σk,
and

Kc
+ : (P∗d)k → R
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are continuous. Moreover the mappings K+ ◦ seqσ are strongly analytic and
Kc

+ is weakly analytic.

Proof. Theorem 1 yields continuity of the functions K+◦seqσ and hence
also their upper semicontinuity.

Using the same argument as in the proof of Theorem 1 we check that
given ε > 0 and P ∈ (P∗d)k, there exists a neighborhood ω ⊂ (P∗d)k of P
such that

Γ (K+[seqσ(P )],K+[seqσ(Q)]) ≤ ε
for all Q ∈ ω and all σ ∈ Σk. Thus

Γ (Kc
+[P ],Kc

+[Q]) = Γ
( ⋃

σ∈Σk
K+[seqσ(P )],

⋃

σ∈Σk
K+[seqσ(Q)]

)

≤ sup
σ∈Σk

Γ (K+[seqσ(P )],K+[seqσ(Q)] ≤ ε

for all Q ∈ ω. Consequently, Kc
+ is Γ -continuous and hence also upper

semicontinuous.
Fix σ ∈ Σk. Let q = dim(Pd)k and let u be a smooth (q − 1)-plurisub-

harmonic function in a neighborhood U × V ⊂ (P∗d)k × CN of the set

{(P1, . . . , Pk)} ×K+(seqσ(P1, . . . , Pk)).

By choosing a smaller U if necessary, we can ensure that there exist R > 0
and L > 1 such that for each (Q1, . . . , Qk) ∈ U :

(a) R is a radius of escape for Q1, . . . , Qk;
(b) ‖Qn(z)‖ ≥ L‖z‖ for n = 1, . . . , k and z ∈ CN \BR.

For (Q1, . . . , Qk) ∈ U we define EQn , where Q = seqσ(Q1, . . . , Qk), just as
in the proof of Theorem 1. In view of Remark 3,

(Q1, . . . , Qk) 7→ EQn

is strongly analytic in U , the sequence (EQ
n )n∈N is decreasing with respect

to inclusion and
K+[seqσ(Q1, . . . , Qk)] =

⋂

n∈N
EQn .

Since

supu({(Q1, . . . , Qk)} ×EQn )

↘ supu({(Q1, . . . , Qk)} ×K+[seqσ(Q1, . . . , Qk)])

we get strong analyticity of K+ ◦ seqσ.
Weak analyticity of Kc

+ was shown in [16].

Theorem 1 also yields a significant generalization of examples of plurireg-
ular sets on which Markov’s inequality fails, which were given in [16]. Recall
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that a compact set E ⊂ CN has Markov’s property if there exist positive
constants M, r such that

‖gradP‖E ≤M(degP )r‖P‖E
for every complex polynomial P of N complex variables.

Suppose now that N = 1. LetMk be the set of all complex matrices with
infinitely many rows and k columns. By identifying polynomials with their
coefficients we can identify Pd with Cd+1 (with the `1 norm) and we can
view `∞Λ (Cd+1) as a subset of Md+1. Let Λ ∈ Md+1 have positive entries.
Then `∞Λ (C) is well defined. If Λ consists of d+ 1 identical columns and Λ′

denotes any of them, then of course

`∞Λ (C) = `∞Λ′(C
d+1),

where Cd+1 is equipped with the `∞ norm. Our earlier choice of the norm
in Pd was the most natural in the case of polynomials of several variables.
In the one-variable case we can just as well identify Pd with Cd+1 with the
`∞ norm.

Theorem 3. Let d ≥ 2 and let Λ = (λj)j≥1 be a sequence of numbers
such that infn∈N λn > 0,

∑∞
n=1 λn/d

n <∞ and

lim
n→∞

(λ1 · . . . · λn)1/n =∞.(7)

Let

ωΛ =
{

[aij ] ∈ `∞Λ (Cd) : inf
i∈N
|aid|
λi

> 0 and sup
i∈N

∣∣∣∣
ai1
λi
− 1

∣∣∣∣ <
1
2

}
.

For A = [aij ] ∈ ωΛ define

K+[A] = K+[(P1, P2, . . .)],

where Pi(z) = ai1z + ai2z
2 + . . . + aidz

d for i ≥ 1. Then ωΛ is open in
`∞Λ (Cd), the multifunction A 7→ K+[A] is weakly analytic and all of its
values are pluriregular sets without Markov’s property.

Proof. Openness of ωΛ is obvious. It is also clear that the mapping

(ai1, . . . , aid) 7→ (0, ai1, . . . , aid)

embeds ωΛ into ΩΛ, and thus weak analyticity of A 7→ K+[A] follows from
Theorem 1. To show that K+[A] does not have Markov’s property for a
given A, define

Qn = Pn ◦ . . . ◦ P1,

where Pi are as in the statement of Theorem 3. Note that 0 ∈ K+[A] because
0 is a fixed point of all Pi’s. Note also that Q′n(0) = an,1 · an−1,1 · . . . · a1,1.
If R > 1 is a common escape radius for all Pi’s, then |Qn(z)| ≤ R for all
z ∈ K+[A]. If Markov’s inequality were satisfied, we would have

|an,1 · an−1,1 · . . . · a1,1| ≤MdnrR(8)
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for some M, r > 0 and for all n ∈ N. But since A ∈ ωΛ we have the estimate
|ai,1| > λi/2. Therefore (8) would contradict (7).
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Reçu par la Rédaction le 4.12.2001
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