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On roots of polynomials with power series coefficients

by Rafał Pierzchała (Kraków)

Abstract. We give a deepened version of a lemma of Gabrielov and then use it to
prove the following fact: if h ∈ K[[X]] (K = R or C) is a root of a non-zero polynomial
with convergent power series coefficients, then h is convergent.

This article is inspired by Lemma 1.2 of Gabrielov [2]. Roughly speak-
ing, it states the following: if A is an integral domain, P (Z, T ) = T p +
a1(Z)T p−1 + . . . + ap(Z) ∈ A[[Z]][T ], f =

∑∞
ν=0 fνZ

ν ∈ A[[Z]] is a formal
power series for which P (Z, f(Z)) = 0 and (∂P/∂T )(Z, f(Z)) 6= 0, then
there exists a non-negative integer ν0 such that for ν ≥ ν0, fν has a polyno-
mial expresion in the coefficients of ai, 1 ≤ i ≤ p, and fk, k ≤ ν0, and some
constant g ∈ A depending on f and P . Moreover some good estimates hold
for the degrees of these polynomials. However, nothing is said about esti-
mates of the coefficients, except that they are integers, and unfortunately
no reasonable conclusions about these coefficients can be easily derived from
the proof. That is the reason why we formulate and prove a deepened version
of Gabrielov’s result (Theorem 1).

Throughout this paper K denotes either the field R of real numbers or
the field C of complex numbers. Fix m ∈ N. We will denote (X1, . . . ,Xm)
by X, and Y, Z, T will always signify single indeterminates. Take a multi-
index α = (α1, . . . , αm) ∈ Nm. We will write Xα instead of the formal
monomial Xα1

1 . . .Xαm
m . Moreover |α| signifies the sum α1 + . . . + αm. In

Km we will consider the Euclidean norm ‖ · ‖. Recall that a formal power
series

∑
α∈Nm aαX

α, aα ∈ K, is called convergent if it is convergent in some
neighbourhood of the origin. This is the case if and only if there are some
constants M,R > 0 such that |aα| ≤ MR|α|. The ring of convergent power
series will be denoted by K{X}. Finally, for p ∈ N we put Ip := {n ∈ N :
n ≤ p}.
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Theorem 1. Let A be an integral domain and p a positive integer. Sup-
pose P (Z, T ) =

∑p
j=0 cp−j(Z)T j ∈ A[[Z]][T ] is a polynomial of degree p,

cj(Z) =
∑∞
i=0 ci,jZ

i, j ∈ Ip. Let f(Z) =
∑∞
ν=0 fνZ

ν ∈ A[[Z]] be a for-
mal series such that P (Z, f(Z)) = 0 and (∂P/∂T )(Z, f(Z)) 6= 0 (1). Put
(∂P/∂T )(Z, f(Z)) =

∑∞
l=0 glZ

l and let l0 := inf{l : gl 6= 0}, g := −gl0 .
Then for each l > l0 we have

g2(l−l0)−1fl = Gl[{ci,j}(i ∈ Il+l0 , j ∈ Ip), {fν} (ν ∈ Il0), g],

where Gl is a polynomial with non-negative integral coefficients such that

(i) the degree of Gl with respect to g is not greater than 2(l − l0)− 2;
(ii) the degree of Gl with respect to the group of indeterminates fν is

not greater than 2p(l − l0)− p;
(iii) if we introduce a new indeterminate Y and replace each ci,j by Y i,

then the degree of Gl with respect to Y is not greater than (2l0 + 1)(l − l0);
(iv) there exists a constant R > 0 such that the sum of the coefficients

of Gl is not greater than Rl.

Proof. The proof of (i)–(iii) is exactly as in [2]. We recall it for the
convenience of the reader.

The equality P (Z, f(Z)) = 0 implies that for each l ∈ N,

cl,p +
l∑

j=0

p∑

s=1

∑

ν1+...+νs=j

fν1 . . . fνscl−j,p−s = 0.

Take l > l0. We have

cl+l0,p +
l+l0∑

j=0

p∑

s=1

∑

ν1+...+νs=j

fν1 . . . fνscl+l0−j,p−s = 0.

A simple calculation gives

cl+l0,p +
l+l0∑

j=0

p∑

s=1

∑

ν1+...+νs=j
ν1,...,νs≤l−1

fν1 . . . fνscl+l0−j,p−s +
l0∑

i=0

gifl+l0−i = 0.

Hence g2(l−l0)−1fl is equal to

(1) g2(l−l0)−2cl+l0,p +
l+l0∑

j=0

p∑

s=1

∑

ν1+...+νs=j
ν1,...,νs≤l−1

g2(l−l0)−2fν1 . . . fνscl+l0−j,p−s.

(1) By the classical Newton–Puiseux theorem (cf. [1]) all roots of the polynomial P are
of the form (1/Zm/n)u(Z1/n), where m,n ∈ N, n > 0 and u(Z) =

∑∞
ν=0 uνZ

ν ∈ B[[Z]]
is a power series with coefficients in some integral domain B ⊃ A.
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We put

Gl0+1 := c2l0+1,p +
2l0+1∑

j=0

p∑

s=1

∑

ν1+...+νs=j
ν1,...,νs≤l0

fν1 . . . fνsc2l0+1−j,p−s.

Suppose that we have defined Gk for each k such that l0 + 1 ≤ k ≤ l − 1.
We obtain Gl by replacing in (1) each g2(νi−l0)−1fνi with Gνi whenever
l0 + 1 ≤ νi ≤ l − 1. One only needs to note that for r ∈ Ip \ {0} we have

2(l − l0)− 2 ≥
r∑

i=1

[2(νi − l0)− 1],

where ν1 + . . .+ νr ≤ l + l0 and l0 + 1 ≤ νi ≤ l − 1, i ∈ Ir \ {0}.
Now we will prove (i)–(iii) by induction on l ≥ l0 + 1. The case l = l0 + 1

is clear. Suppose that l > l0 +1 and the given estimates of the degrees of Gk
are true for l0 + 1 ≤ k ≤ l − 1. Let Q denote one of the summands of the
sum in (1).

Case 1: Q = g2(l−l0)−2cl+l0,p. Clearly, the polynomial Q satisfies the
degree estimates in (i)–(iii).

Case 2: Q = g2(l−l0)−2fν1 . . . fνscl+l0−j,p−s, where ν1 + . . . + νs = j,
ν1, . . . , νs ≤ l0, s ∈ Ip \ {0}, j ∈ Il+l0 . In this case the estimates are trivial
as well.

Case 3: Q = g2(l−l0)−2fν1 . . . fνscl+l0−j,p−s, where ν1 + . . . + νs = j,
ν1 . . . , νs ≤ l− 1, s ∈ Ip \ {0}, j ∈ Il+l0 and νi ≤ l0 for exactly s− r indices
i ∈ Is \ {0}, where r ∈ Is \ {0}. We may assume that νi ≤ l0 for i ≥ r + 1.
Note that Q = gαGν1 . . .GνrQ

′, where Q′ = fr+1 . . . fscl+l0−j,p−s, α =
2(l− l0)− 2−∑r

i=1[2(νi− l0)− 1]. As noticed before, α ≥ 0. Now we apply
the induction hypothesis to the polynomials Gν1 , . . . , Gνr and easily obtain
the required estimates for Q.

Now we will prove (iv). Denote by bl the sum of the coefficients of the
polynomial Gl, where l ≥ l0 + 1. Put additionally bi := 1 for i ∈ Il0 . By (1)
we get

bl = 1 +
l+l0∑

j=0

p∑

s=1

∑

ν1+...+νs=j
ν1,...,νs≤l−1

bν1 . . . bνs

whenever l ≥ l0 + 1. Note that for l ≥ l0 + 2,

bl = abl−1 +
p∑

s=1

∑

ν1+...+νs=l+l0
ν1,...,νs≤l−1

bν1 . . . bνs ,
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where a is some constant. One easily verifies that

bl − abl−1 +
l0∑

i=0

aibl+l0−i =
p∑

s=1

∑

ν1+...+νs=l+l0

bν1 . . . bνs ,

where a0 =
∑p−1
s=0(s+ 1)bs0, and for i ≥ 1,

ai =
p−1∑

s=1

∑

ν1+...+νs=i

(s+ 1)bν1 . . . bνs .

Let f denote the formal power series
∑∞
j=0 bj+l0+1Z

j and let F :=
∑l0
i=0 biZ

i. Define also polynomials H(Z) and G(Z, T ) as follows:

H(Z) :=
2l0+1∑

j=0

p∑

s=1

∑

ν1+...+νs=j

bν1 . . . bνsZ
j −

∑

i+j≤l0
aibj+l0+1Z

i+j+l0+1,

G(Z, T ) := (T − bl0+1)Z2l0+1 − aTZ2l0+2 +
l0∑

i=0

aiTZ
i+l0+1.

Then

G(Z, f(Z))−
p∑

j=1

[F (Z) + fZl0+1]
j

+H(Z) = 0.

Note first that f is the only formal series which satisfies the identity above.
One checks next that

p∑

j=1

[F (Z) + TZl0+1]
j

=
l0∑

i=0

aiTZ
i+l0+1 +H(Z) + Z2l0+2P (Z, T ),

where P (Z, T ) is a polynomial. Hence W (Z, f(Z)) = 0, where

W (Z, T ) := T − bl0+1 − aTZ − P (Z, T )Z.

Since W (0, bl0+1) = 0 and (∂W/∂T )(0, bl0+1) 6= 0, it follows that there is a
convergent power series h such that W (Z, h(Z)) = 0. On the other hand, as
mentioned before, the coefficients of h are uniquely determined, so f = h
as formal power series. Therefore f is convergent and there is a positive
constant R such that bl ≤ Rl for l ≥ l0 + 1. The proof of the theorem is now
complete.

Remark 1. It follows from the proof that g is a polynomial in ci,j and
fν (i ∈ Il0 , j ∈ Ip, ν ∈ Il0) with integral coefficients.

Lemma 1. Consider a formal series A =
∑∞
n=0AnY

n ∈ K[[X]][[Y ]].
Then A is convergent if and only if there are constants r,R,M > 0 such that
the series An is convergent in the open ball {‖x‖ < 2r} and sup{|An(x)| :
‖x‖ ≤ r} ≤MRn for each n ∈ N.
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Proof. Write An =
∑
α∈Nm A

(n)
α Xα, A(n)

α ∈ K, and suppose A is conver-

gent. There are positive constants C,R such that |A(n)
α | ≤ CR|α|+n. Take

r := (4R)−1. Clearly, each An is convergent in {‖x‖ < 2r} and for ‖x‖ ≤ r
we have |An(x)| ≤ ∑α∈Nm CR

n4−|α| = MRn. The reverse implication fol-
lows from the Weierstrass criterion of convergence.

For m ≥ 2 let ϕm denote the following map:
ϕm : Km 3 (x1, . . . , xm) 7→ (x1xm, . . . , xm−1xm, xm) ∈ Km.

Lemma 2. A power series A ∈ K[[X,Y ]] is convergent if and only if
A(ϕm(X), Y ) is convergent.

Proof. Suppose the power series A(ϕm(X), Y ) is convergent. Since

A(ϕm(X), Y ) =
∑

α∈Nm+1

aαX
α1
1 . . .Xαm

m Xα1+...+αm−1
m Y αm+1 ,

where aα ∈ K are the coefficients of A, then there are positive constants
M, R such that |aα| ≤ MR|α|+α1+...+αm−1 . We may assume that R > 1
and then |aα| ≤ MR2|α|. This implies the convergence of A. The reverse
implication is trivial.

Lemma 3. Suppose that a non-zero formal power series G ∈ K[[X]] and
a formal power series H(X,Y ) =

∑∞
n=0 Fn(X)Gn(X)Y n are convergent ,

where Fn(X) ∈ K[[X]]. Then F (X,Y ) =
∑∞
n=0 Fn(X)Y n is convergent as

well.

Proof. We may assume that m ≥ 2, because any power series in one vari-
able can be treated as a power series in two variables. Write G =

∑∞
ν=ν0

Gν
as the sum of homogeneous polynomials of degree ν, where Gν0 6= 0. Take
a ∈ Km \ {0} such that Gν0(a) 6= 0. There is a linear automorphism
L : Km → Km such that L((0, 0, . . . , 1)) = a. Then

(G ◦ L ◦ ϕm)(X) =
∞∑

ν=ν0

Gν(L(X1, . . . ,Xm−1, 1))Xν
m = Xν0

m P (X),

where P (X) is an invertible convergent power series. Since L is an auto-
morphism, it is enough to show that F (L(ϕm(X)), Y ) is convergent (cf.
Lemma 2). Write Fn(L(ϕm(X)) =

∑
α∈Nm b

(n)
α Xα, b

(n)
α ∈ K. We need to

show that there are some constants M,R > 0 such that |b(n)
α | ≤ MR|α|+n,

where α ∈ Nm, n ∈ N. Clearly, the formal power series

H(L(ϕm(X)), P−1(X)Y ) =
∞∑

n=0

[ ∑

α∈Nm
b(n)
α Xα

]
Xν0n
m Y n

is convergent. Therefore there are positive constants M, C such that |b(n)
α | ≤

MC |α|+ν0n+n. We may assume that C ≥ 1 and then |b(n)
α | ≤ MR|α|+n,

where R := Cν0+1.
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We have the following consequence of Lemma 3:

Corollary. Suppose A(X)B(X) = C(X), where A,B,C ∈ K[[X]] and
B,C are convergent. Then A is convergent.

Proof. We apply Lemma 3 to H(X,Y ) = A(X)B(X)Y, G(X) = B(X)
and F (X,Y ) = A(X)Y .

Though we will not apply this corollary in our paper, we have stated it
to show that the idea of using the map ϕm gives a very short and elementary
proof of it.

Now we will give a new elementary proof of a certain theorem, proved
in [3] as a consequence of Artin’s Approximation Theorem:

Theorem 2. Let m and p be positive integers. Suppose that S(X,T ) =∑p
j=0 ap−j(X)T j ∈ K{X}[T ] is a non-zero polynomial. Assume as well that

h ∈ K[[X]] satisfies the identity S(X,h(X)) = 0. Then h is convergent.

Proof. We may assume that S is of the lowest possible degree. Hence
(∂S/∂T )(X,h(X)) 6= 0. Moreover we may assume that m ≥ 2. Write
h =

∑∞
ν=0 hν as the sum of homogeneous polynomials hν of degree ν. It fol-

lows from Lemma 2 that it suffices to prove that the power series f = h◦ϕm
is convergent. Put fν(X1, . . . ,Xm−1) := hν(ϕm(X1, . . . ,Xm−1, 1)). Obvi-
ously, f(X) =

∑∞
ν=0 fν(X1, . . . ,Xm−1)Xν

m. Let P (X,T ) := S(ϕm(X), T )
and cj := aj◦ϕm for j ∈ Ip. Clearly, P (X, f(X)) = 0 and (∂P/∂T )(X, f(X))
6= 0. Write cj(X) =

∑∞
i=0 ci,j(X1, . . . ,Xm−1)Xi

m. There is a neighbourhood
of the origin in Km−1 in which each ci,j is convergent; we may assume
that |c0,j(x)| ≤ 1 for each x in that neighbourhood. Now we apply The-
orem 1 to f and the polynomial P putting A := K[[X1, . . . ,Xm−1]]. We
obtain a convergent power series g (cf. Remark 1), an integer l0 and poly-
nomials Gl, l ≥ l0 + 1. It follows from Theorem 1 and Lemma 1 that∑∞
l=l0+1 g

2(l−l0)−1flX
l
m is convergent, and so is the formal power series∑∞

l=l0+1 flg
2lX l

m. Therefore by Lemma 3, f is convergent.
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