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Nagata submaximal curves on P1 × P1

by Wioletta Syzdek (Kraków)

Dedicated to Professor Józef Siciak on his seventieth birthday

Abstract. The aim of this paper is to show that on P1 × P1 with a polarization of
type (2, 1) there are no R-R expected submaximal curves through any 10 ≤ r ≤ 15 points.

1. Introduction. The Nagata Conjecture has attracted a lot of atten-
tion recently [1], [3], [4]. It was originally formulated for P2. Recent work of
Biran [1], [2] suggests that it should hold for a much broader class of algebraic
varieties. In fact the Nagata Conjecture can be viewed as a statement on Se-
shadri constants at generic points. We adopt this point of view in this paper.

Even if the conjecture itself seems to demand new methods, it is reason-
able to ask if there are some obvious counterexamples for a small number of
points on a given surface. In the classical case of P2 the existence of coun-
terexamples for r ≤ 9 points follows from the Riemann–Roch theorem. In
this paper we show that, somewhat unexpectedly, this need not be the case
even on a variety as simple as P1 × P1.

Notation. For simplicity we denote the Néron–Severi group of a variety
X tensored by Q by NS(X). By a polarization of type (a, b) or by a curve
of type (a, b) in the product P1 × P1 we mean a curve of bidegree a, b. We
work throughout over the field C of complex numbers.

2. Seshadri constants and the Nagata–Biran Conjecture. Recall
that a polarized variety is a pair (X,L) consisting of a smooth variety X
and an ample line bundle L on X.

We assume that X is a smooth projective variety, L is a nef line bundle
on X (that is, for all curves C ⊂ X we have L.C ≥ 0) and x1, . . . , xr ∈ X
are fixed points.
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Definition 1. The Seshadri constant of L at x1, . . . , xr is the real num-
ber

ε(L;x1, . . . , xr) = inf
C∩{x1,...,xr}6=∅

L.C∑r
i=1 multxi C

,

where the infimum is taken over all (irreducible) curves C passing through
at least one of the points x1, . . . , xr.

It follows from Kleiman’s nefness criterion that ε(L;x1, . . . , xr)≤ n
√
Ln/r,

where n = dimX. If ε(L;x1, . . . , xr) = n
√
Ln/r then we say that the Se-

shadri constant is maximal , otherwise, i.e. if ε(L;x1, . . . , xr) < n
√
Ln/r, it

is submaximal.

Definition 2. We say that a curve C computes the Seshadri constant
if

ε(L;x1, . . . , xr) =
L.C∑r

i=1 multxi C
.

Note that if C computes ε(L;x1, . . . , xr) then necessarily

L.C∑
multxi C

≤ n

√
Ln

r

by the above upper bound. This justifies the following

Definition 3. We say that a curve C ⊂ X is L-submaximal at the
points x1, . . . , xr (or simply submaximal) if

L.C∑r
i=1 multxi C

<
n

√
Ln

r
.

Let C ⊂ X be a curve passing through the points x1, . . . , xr with multi-
plicities m1, . . . ,mr, respectively. To the curve C we assign its multiplicity
vector MC = (m1, . . . ,mr) ∈ Zr.

Definition 4. Let C ⊂ X be a curve with multiplicity vector MC =
(m1, . . . ,mr). We say that C is Riemann–Roch expected (for short, R-R
expected) if

h0(OX(C))−
r∑

i=1

(
mi + 1

2

)
> 0.

This simply means that a curve C is R-R expected if its existence follows
from the naive dimension count (note that it takes at most

(
m+1

2

)
indepen-

dent linear conditions on a linear system to guarantee the existence of a
member of this system passing through a given point with multiplicity at
least m).

Now we are in a position to formulate
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Nagata–Biran Conjecture. Let (X,L) be a polarized surface. Let
k0 be the smallest integer such that in the linear system |k0L| there exists a
smooth non-rational curve and let N0 = k2

0L
2. With the above assumptions

ε(L;x1, . . . , xr) =

√
L2

r

for general x1, . . . , xr ∈ X and r ≥ N0.

Remark 1. (1) On (P2,O(1)) we have N0 = 9 and the curves computing
the Seshadri constant for r ≤ N0 points are R-R expected.

(2) On P1 × P1 with a polarization of type (1, 1) we have N0 = 8 and
again all curves computing the Seshadri constant for at most 8 points are
R-R expected.

3. Submaximal curves on P1 × P1. In this paper we show that on
P1×P1 with a polarization of type (2, 1) the curves computing the Seshadri
constant for r ≤ 9 points are R-R expected and submaximal unless r = 4
or 9. We do not know if for r = 10, . . . , 16 submaximal curves exist, but if
they do, we show that they are not R-R expected.

Let (X,L) be a polarized surface with Picard number %. Let L1, . . . , L%
be a fixed basis of the Néron–Severi group NS(X) and let x1, . . . , xr be fixed
points on X. To a curve C ⊂ X we assign a vector

vC = (l1, . . . , l%,m1, . . . ,mr) ∈ NS(X)×Qr

such that C ≡ l1L1 + . . .+ l%L% and MC = (m1, . . . ,mr).
The following lemma extends Propositions 1.8 and 4.5 of [4].

Proposition 1. Let (X,L) be a polarized surface with Picard number %.
Let x1, . . . , xr ∈ X be such that the Seshadri constant ε(L;x1, . . . , xr) is sub-
maximal. Then there exist at most %+r irreducible and reduced submaximal
curves passing through x1, . . . , xr.

Proof. Let C1, . . . , Cs be irreducible and reduced submaximal curves.
Each of them has a vector vCi = vi = (l(i)1 , . . . , l

(i)
% ,m

(i)
1 , . . . ,m

(i)
r ) ∈ NS(X)

×Qr for i = 1, . . . , s.
If s > %+ r then the equation

(1)
s∑

i=1

λivi = 0 where λi ∈ Q

has a non-trivial solution. We may in fact assume that λi ∈ Z (because we
can multiply both sides of this equation by the common denominator).
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Now we define curves C+ and C− in the following way:

C+ :=
s∑

i=1

βiCi, where βi =
{
λi if λi ≥ 0,
0 if λi < 0,

C− :=
s∑

i=1

γiCi, where γi =
{

0 if λi ≥ 0,
−λi if λi < 0.

Then of course

(2) C+ ≡ C−
and in particular the multiplicity vectors

M+ = (m+
1 , . . . ,m

+
r ), M− = (m−1 , . . . ,m

−
r )

are equal.
Let M = (m1, . . . ,mr) be the multiplicity vector at x1, . . . , xr of both

curves. The curves C+ and C− are submaximal (as combinations of sub-
maximal curves with non-negative integer coefficients). Hence

(3)
L.C+∑r
i=1 mi

<

√
L2

r

and

(4)
L.C−∑r
i=1 mi

<

√
L2

r

By their definition, C+ and C− have no common components, thus

C2
− = C+.C− ≥

r∑

i=1

m2
i ≥

1
r

( r∑

i=1

mi

)2
=

1√
r

r∑

i=1

mi ·
1√
r

r∑

i=1

mi

>
L.C+√
L2
· L.C−√

L2
=

(L.C−)2

L2 ≥ C2
−,

where the last inequality follows from the Hodge index theorem. This is a
contradiction, so s can be at most %+ r.

Before proceeding, we need some more notation. For a vector M =
(m1, . . . ,mr) ∈ Zr we define

|M | :=
r∑

i=1

mi,

α(M) := max{|mi −mj | : i, j = 1, . . . , r},

l(M) :=
r∑

i=1

(
mi + 1

2

)
.
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Lemma 1. If M1,M2 ∈ Zr are of the form M1 = (m, . . . ,m,m,m+ 2)
and M2 = (m, . . . ,m,m+ 1,m+ 1) then l(M2) < l(M1).

Proof. This is a simple computation:

l(M2)− l(M1) = 2
(
m+ 2

2

)
−
[(
m+ 3

2

)
+
(
m+ 1

2

)]

= (m+ 2)(m+ 1)− 1
2

[(m+ 3)(m+ 2) + (m+ 1)m] = −1.

An obvious consequence of this lemma is

Corollary 1. Let Mp = {M ∈ Zr : |M | = p}. If not all multiplicities
are equal then vectors which impose the least theoretical number of conditions
on a curve C (see remark after Definition 4) are the ones with α(M) = 1.

Hence if M is a vector in Mp, then up to a permutation

M = (m, . . . ,m︸ ︷︷ ︸
i

,m+ δ, . . . ,m+ δ︸ ︷︷ ︸
r−i

),

where δ ∈ {−1, 1}. Obviously l(M) is independent of the way the mul-
tiplicities are ordered, i.e. l((m1, . . . ,mr)) = l((mσ(1), . . . ,mσ(r))) for any
permutation σ ∈ Sr.

Corollary 2. If p = rm+ (r − i)δ then

#{M ∈ Zr : |M | = p and α(M) = 1} =
(
r

i

)
.

We proved in Proposition 1 that the number of curves computing the
submaximal Seshadri constant is at most %+r. Then analyzing the inequality(
r
i

)
≤ % + r for % = 2 we conclude that i = 0, 1, r − 1 or r, hence we have

the following:

Corollary 3. Let (X,L) be a polarized surface with Picard number % =
2 and let x1, . . . , xr ∈ X be fixed generic points. If M = (m1, . . . ,mr) ∈ Zr
is the multiplicity vector of a submaximal reduced and irreducible curve C
at x1, . . . , xr, then M is almost homogeneous, i.e. up to a permutation M
is of the form (m, . . . ,m,m+ δ) with δ ∈ {−1, 0, 1}.

Now we can formulate the main result of this paper:

Theorem. Let X = P1 × P1. If L is a polarization of type (2, 1) then
there are no R-R expected submaximal curves on X through 10 ≤ r ≤ 15
points.

Proof. Fix r and suppose to the contrary that C ⊂ X of type (a, b) is
R-R expected and submaximal. We can assume that the multiplicity vector



228 W. Syzdek

of C is M = (m, . . . ,m,m+δ), where δ ∈ {−1, 0, 1}, m ∈ Z (by Corollary 3).
Hence the number of conditions imposed by M is

l(M) = (r − 1)
(
m+ 1

2

)
+
(
m+ δ + 1

2

)

=
1
2

[rm2 + rm+ 2mδ + δ2 + δ].

Since h0(OP1×P1(a, b)) = ab + a + b + 1 and C is R-R expected, and by
Proposition 1 there is no continuous family of submaximal curves, we must
have

ab+ a+ b =
1
2

[rm2 + rm+ 2mδ + δ2 + δ],

or equivalently,

(5) 2b =
rm2 + rm+ 2mδ + δ2 + δ − 2a

a+ 1
.

The submaximality of C means that

(6)
a+ 2b∑r
i=1 mi

<
2√
r
.

Conditions (5) and (6) give the inequality
√
r a2 − (

√
r+ 2rm+ 2δ)a+

√
r(rm2 + rm+ 2mδ+ δ2 + δ)− 2rm− 2δ < 0.

We view it as an inequality in the variable a. We know that the set of
solutions is non-empty, hence

r + 12r
√
rm+ 12

√
r δ + 4δ2 − 4r2m− 4rδ2 − 4rδ > 0.

Substituting
√
r = t we obtain

(7) −4t4m+ 12t3m+ (1− 4δ2 − 4δ)t2 + 12δt+ 4δ2 > 0.

This inequality has the simplest form for δ = 0. In this case we have

−4t4m+ 12t3m+ t2 > 0,

or equivalently,
4tm(3− t) + 1 > 0,

which of course implies that t ≤ 3. So we have shown that if δ = 0 then
r ∈ [1, 9] ∩ Z.

It remains to check (7) for δ ∈ {−1, 1}. More precisely, we try to esti-
mate m. Obviously

(8) m(−4t4 + 12t3) > (4δ2 + 4δ − 1)t2 − 12δt− 4δ2.

Since t > 3 by assumption, the inequality (8) yields

m <
(4δ2 + 4δ − 1)t2 − 12δt− 4δ2

−4t4 + 12t3
.
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For δ = 1 we obtain

m <
7t2 − 12t− 4
−4t4 + 12t3

< 0,

a contradiction; for δ = −1,

m <
t2 − 12t+ 4
4t4 − 12t3

<
1

4t2 − 12t
< 1,

and again there is no m such that (8) holds.

Remark 2. Observe that if 0 < t ≤ 3, then from (8) we have

m >
(4δ2 + 4δ − 1)t2 − 12δt− 4δ2

−4t4 + 12t3
,

which for δ = 1 gives a lower bound for m:

(9) m >
7t2 − 12t− 4
−4t4 + 12t3

,

and for δ = −1,

(10) m >
−t2 + 12t− 4
−4t4 + 12t3

.

Analyzing the sign of the numerator in (9) and (10) it is not difficult to
check that we can take m and t such that for individual values of δ the
inequality becomes true. Thus if there exists an R-R expected submaximal
curve with a multiplicity vector M = M̃σ (where M̃ = (m, . . . ,m,m + δ),
σ ∈ Sr,m ∈ Z+, δ ∈ {−1, 0, 1}) then necessarily r ∈ {1, . . . , 9}.

More exactly we have the following curves and Seshadri constants:

r Type of the curve ε(L;x1, . . . , xr)
√
L2/2 Remarks

1 (1, 0) 1 2
2 (2, 0) 1

√
2

3 (3, 0) 1 2
√

3/3
4 (4, 0) 1 1 R-R expected but not submaximal
5 (2, 1) 4/5 2

√
5/5

6 (2, 1) 4/5
√

6/3
7 (3, 1) 5/7 2

√
7/7

8 (6, 3) 12/17
√

2/2
9 (4, 1) 2/3 2/3 R-R expected but not submaximal

It might seem that on rational surfaces the lower bound for the number
of points for which the Nagata–Biran Conjecture holds is N = 9. This is not
the case, as the following example shows.

Example 1. Let X = P1×P1 with a polarization L of type (k, 1). Then
for any r = 2k+ 4 points there exists an R-R expected submaximal curve C
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of type (k2 + k, k+ 1) with multiplicity vector MC = (k, . . . , k, k+ 1). This
is an easy computation.
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Révisé le 15.5.2002 (1395)


