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A generalization of Radó’s theorem

by E. M. Chirka (Moscow)

Dedicated to Prof. J. Siciak on the occasion of his 70th birthday

Abstract. If Σ is a compact subset of a domain Ω ⊂ C and the cluster values on ∂Σ
of a holomorphic function f in Ω \Σ, f ′ 6≡ 0, are contained in a compact null-set for the
holomorphic Dirichlet class, then f extends holomorphically onto the whole domain Ω.

1. The classical Radó theorem says that a continuous function f in a
domain Ω ⊂ C which is holomorphic outside its zero-set f−1(0) is holomor-
phic everywhere in the domain Ω. It is known that f−1(0) can be replaced
by f−1(E) where E is a compact subset of zero capacity in C (see [3]). There
is a more general result in [3]: if f is holomorphic and not locally constant
outside a closed subset Σ ⊂ Ω, and the cluster values of f on the boundary
of Σ are contained in a compact polar set E ⊂ C, then f extends holo-
morphically onto Ω. In this paper we enlarge the class of “images” E still
admitting such a continuation and show that this larger class is essentially
maximal possible.

We say that a closed set E ⊂ Ĉ = C∪∞ is a null-set for the holomorphic
Dirichlet class (briefly, E ∈ ND) if every holomorphic function h in Ĉ \ E
with finite Dirichlet integral

�
C\E |h′|2 dS is constant. Geometrically, the

Dirichlet integral equals the area of the image h(Ĉ \E) counted with multi-
plicities, so it is invariant with respect to conformal transformations of Ĉ\E.

This invariant class of sets was introduced and investigated by Ahlfors
and Beurling [1]. It follows easily from the definition that every set E ∈ ND
is totally disconnected and, for an arbitrary domain G ⊂ Ĉ, every holomor-
phic function h in G \ E with finite Dirichlet integral

�
G\E |h′|2 dS extends

holomorphically onto G (see [1]).
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Theorem. Let Σ be a relatively closed subset of a domain Ω ⊂ Ĉ such
that all the connected components of Σ are compact. Let f : Ω \Σ → Ĉ be a
meromorphic function such that all the cluster values of f at the boundary
points of Σ are contained in a closed set E ∈ ND. Assume also that f is
not constant in some connected component of Ω \ Σ. Then f extends to a
function meromorphic in Ω.

For f holomorphic in Ω \Σ and for E compact, the extended meromor-
phic function in Ω is locally bounded, hence holomorphic.

The compactness of the components of Σ is essentially used in the proof
below. The opposite case, when each component of Σ has cluster points
on ∂Ω, is of quite different nature related to the boundary properties of
holomorphic functions. Nevertheless, the author does not know whether the
theorem is false without the compactness assumption.

The present formulation of the theorem is due to Prof. Don Marshall
who attracted the attention of the author to the paper [1] and pointed out
that the proof given originally for singularities E of zero analytic capacity
is valid almost literally for singularities of the essentially larger class ND.

The class ND contains all closed polar sets, all sets of zero analytic
capacity, but also many other sets. The metric (Hausdorff) dimension of
polar sets equals zero, for sets of zero analytic capacity it does not exceed
one, while the metric dimension of sets in ND can be two. (Simple examples
are the direct products of Cantor sets of zero length on the coordinate axes,
see [1].)

The class ND in our considerations is maximal possible. Indeed, by [1], a
compact set E ⊂ C is not contained in ND if and only if there is a conformal
map g of Ĉ \ E into Ĉ, g(∞) = ∞, which is not fractional-linear. Take
Ω = Ĉ, Σ = Ĉ \ g(Ĉ \E) and f = g−1. Then the cluster values of f on ∂Σ
are contained in E. Assume that f extends meromorphically onto Ω; then it
is rational. As E is compact in C, this rational function has only one simple
pole at infinity, hence, it is linear. Thus, g is fractional-linear, contrary to
E 6∈ ND. This shows that f has no meromorphic extension onto Ω.

I would like to express my gratitude to Don Marshall, Lee Stout and
Alex Volberg for fruitful discussions.

2. Here we prove the theorem.

Step 1. Reduction to a proper map. If the function f is constant in
a component Ω′ of Ω \ Σ then ∂Ω′ ⊂ Σ ∪ ∂Ω intersects Σ (otherwise
∂Ω′ ⊂ ∂Ω, hence Ω′ = Ω because Ω is connected, hence f ≡ const); thus,
this constant value is contained in E. It follows that, for a ∈ C \ E, the
zero-set of the function f − a in Ω \Σ is discrete, and its closure does not
intersect Σ. Thus, substituting f by 1/(f−a) and removing from Ω a closed
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neighbourhood of this discrete set which does not intersect Σ either, we can
assume further that f is holomorphic in Ω \Σ and E ⊂ C is compact.

Next, we can assume that ∞ ∈ Ω \ Σ and f is not constant in the
unbounded component of Ω\Σ. It follows from the definition of components
(of Σ) that there is an increasing sequence of subdomains Ων ⊂ Ω such that⋃
Ων = Ω and Σ ∩Ων is compact for each ν. Thus, we can assume further

that Σ is compact in C.
Denote by Ω̃ the union of Ω and the polynomially convex hull Σ̂ of Σ.

Then Ω̃ is a domain in Ĉ and Ω̃ \ Σ̂ ⊂ Ω \Σ. If we could prove the theorem
for Ω̃, Σ̂ and f |Ω̃ \ Σ̂ (instead of Ω,Σ and f) then it would follow also that
Σ̂ is totally disconnected (being contained in the preimage of the totally
disconnected set E under the meromorphic map extending f), hence, Σ̂ = Σ

and Ω̃ = Ω. Thus, we reduce the proof to the case when Σ is a polynomially
convex compact set in C. Then Ω\Σ is connected (has only one component)
and f is not constant in this domain.

As E is totally disconnected, the set f−1(E) ≡ {z ∈ Ω \Σ : f(z) ∈ E} is
also totally disconnected. Hence, there is a subdomain Ω0 b Ω containing
Σ and such that ∂Ω0 does not intersect f−1(E) and Ω0 ∩ (Σ ∪ f−1(E)) is a
(polynomially convex) compact set. Then f(∂Ω0) is a compact set disjoint
from E, hence there is a neighbourhood U0 ⊃ E such that U0 ∩ f(∂Ω0) is
empty. Set V0 = (Ω0 ∩ f−1(U0 \ E)) ∪ Σ. Then V0 is a relatively compact
open subset of Ω containing Σ and

f : V0 \Σ → U0 \ E
is a proper holomorphic mapping. It is enough to show that f extends holo-
morphically in V0, i.e., in each connected component of V0. If V is such
a component then f(V \ Σ) is connected and f(∂V ) ⊂ ∂U0. Hence, there
is a component U of U0 such that f(V \ Σ) is contained in U , the map
f : V \ Σ → U \ E is proper, and it is enough to show that f extends
holomorphically onto V .

Step 2. Extension of the graph. As f |V \Σ is proper and its cluster values
on ∂Σ are contained in E, the graph A = {(z, w) : z ∈ V \ Σ, w =
f(z)} of the function f over V \ Σ is closed in (V × U) \ (Σ × E). Let
m be the multiplicity (degree) of the proper map f |V \Σ . Then A is an
m-sheeted analytic cover over U \E, hence, it is represented as the zero-set
of a Weierstrass polynomial P (z, w),

A : P (z, w) ≡ zm + a1(w)zm−1 + . . .+ am(w) = 0, w ∈ U \ E,
with coefficients aj holomorphic in U \E (see, e.g., [2]). The construction of
this P is the following. If the value w0 is not critical for f then the roots of
the equation f(z) = w with respect to z are holomorphic functions αν(w)
in a neighbourhood of w0. By the Vieta formulas, the coefficients aj(w) are
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homogeneous polynomials of these roots with constant integer coefficients.
As V is compact, it follows that aj are uniformly bounded, hence extend
holomorphically onto the discrete set of critical values of f in U \E.

We show that aj extend holomorphically onto U . By the Newton for-
mulas, each aj is a polynomial with rational coefficients of b1, . . . , bj where
bs :=

∑m
ν=1 α

s
ν . As E ∈ ND, it is enough to show that bs(w) have finite

Dirichlet integrals in U \ E. As b′s = s
∑
αs−1
j α′j and αj(w) are uniformly

bounded in U \E, we have
�

U\E
|b′s|2 dSw ≤ C

�

U\E

m∑

j=1

|α′j |2 dSw = C
�

V \Σ
dSz = C mes2(V \Σ) <∞

because α′j(f(z)) = 1/f ′(z), being the derivative of the inverse map.

Let ãj be holomorphic extensions of aj on U, P̃ (z, w) := zm+ã1(w)zm−1

+ . . .+ ãm(w) and Ã = {(z, w) : P̃ (z, w) = 0, w ∈ U}. Then Ã is a purely
one-dimensional complex analytic subset of C× U containing A.

Step 3. Extension of f . As E is nowhere dense in C and the projection
of Ã onto U is proper, the set Ã∩ (C×E) is nowhere dense in Ã. As P̃ = P

in U \E, one has Ã \ (C×E) = A \ (C×E), hence the set Ã is the closure
of A in C× U . Thus, Ã ⊂ A ∪ (Σ × E). It follows that the projection of Ã
into the z-plane is proper, hence it is an analytic covering over V . As the
number of sheets over V \ Σ equals one (A is a graph), it follows that it
equals one everywhere in V , hence Ã is a graph w = f̃(z) over V , f̃ = f

in V \ Σ. As Ã is complex-analytic, the function w − f̃(z) is a Weierstrass
polynomial (see [2, Th. 2.8]), i.e. the function f̃ is holomorphic in V .

It is not difficult to rewrite the proof of the theorem without this lifting
to C2, analytic sets etc., but we wanted to emphasize the geometry of the
elimination of singularities, having in mind some generalizations to Riemann
surfaces and complex analytic sets of finite area.
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Reçu par la Rédaction le 30.1.2002
Révisé le 8.4.2002 (1388)


