ANNALES POLONICI MATHEMATICI 80 (2003)

On the removal of subharmonic singularities of plurisubharmonic functions

by E. M. Chirka (Moscow)

Dedicated to Prof. J. Siciak on the occasion of his 70th birthday

Abstract. It is proved that any subharmonic function in a domain $\Omega \subset \mathbb{C}^n$ which is plurisubharmonic outside of a real hypersurface of class C^1 is indeed plurisubharmonic in Ω .

1. Let E be a closed nowhere dense subset of a domain Ω in \mathbb{C}^n and u be a subharmonic function in Ω , which is plurisubharmonic (psh) in $\Omega \setminus E$. The question is what conditions on E guarantee the plurisubharmonicity of u in the whole domain Ω . For the question to be nontrivial, we consider the sets E which are nonremovable for general bounded psh functions in $\Omega \setminus E$. The simplest class of such singularities is given by smooth hypersurfaces in Ω , so the following theorem can be considered as a first step towards the solution of the general problem.

THEOREM. Let Γ be a C^1 -hypersurface in a domain $\Omega \subset \mathbb{C}^n$ and u be a subharmonic function in Ω which is plurisubharmonic in $\Omega \setminus \Gamma$. Then u is plurisubharmonic in Ω .

Note that we do not assume any smoothness of u in Ω . If Γ divides Ω into two components Ω_{\pm} and $u \in C^2(\Omega \setminus \Gamma) \cap C^1(\overline{\Omega}_{\pm})$ is continuous in Ω , the condition of subharmonicity of u in Ω means that $\Delta u \geq 0$ in $\Omega \setminus \Gamma$ and $\partial u/\partial n_+ + \partial u/\partial n_- \geq 0$ on Γ where $\partial u/\partial n_{\pm}$ are the (inner) normal derivatives of $u|\Omega_{\pm}$ at points of Γ . This case of "classical" smoothness of u was considered by P. Blanchet [1] who proved the theorem under these additional assumptions. The general case needs another technique, even for C^{∞} -hypersurfaces and u piecewise smooth. On the other hand, our proof

²⁰⁰⁰ Mathematics Subject Classification: 32U30, 32U40.

Key words and phrases: plurisubharmonic function, removal of singularities.

Research supported by the Russian FBR, grant 02-01-01291.

114 E. M. Chirka

does not work already in the case of Lipschitz graphs (the C^1 -smoothness of Γ is essential). The following question remains open:

Let E be a closed subset of $\Omega \subset \mathbb{C}^n$ with locally finite Hausdorff (2n-1)measure and let a function u be subharmonic in Ω and psh in $\Omega \setminus E$. Does
it follow that u is plurisubharmonic in Ω ?

2. The proof of the theorem is based on the notion of positive currents (see [3, 2]). Recall that $v \in \operatorname{psh}(\Omega)$ if and only if the current $dd^cv = i\sum v_{jk}dz_j \wedge d\overline{z}_k$ of bidegree (1,1) in Ω is positive, that is, $(dd^cv, \Phi) \geq 0$ for each positive (n-1,n-1)-form Φ of class $C_0^{\infty}(\Omega)$. (Here $d^c = i(\overline{\partial} - \partial)$; the class of test forms Φ can be reduced to Φ of the type $\varphi \prod_{\nu=1}^{n-1} (i \, dl_{\nu} \wedge d\overline{l}_{\nu})$ where $\varphi \in C_0^{\infty}(\Omega)$, $\varphi \geq 0$ and l_{ν} are \mathbb{C} -linear functions in \mathbb{C}^n , see [2].) As is well known (see [3]), the coefficients v_{jk} of the current dd^cv for $v \in \operatorname{psh}(\Omega)$ are (locally finite, complex-valued) measures in Ω , $v_{jj} \geq 0$ and $|v_{jk}| \leq \sum v_{ll} = \frac{1}{2}\Delta v$, $j, k = 1, \ldots, n$.

STEP 1. The theorem is local, so we can assume that Γ is the zero-set of a function $\varrho \in C^1(\Omega)$ with $d\varrho \neq 0$ on Γ . By the Whitney extension theorem, we can also assume that $\varrho \in C^\infty(\Omega \setminus \Gamma)$. Set $\lambda_\varepsilon = \chi_\varepsilon \circ \varrho$, where $\chi_\varepsilon \in C^\infty(\mathbb{R})$, $0 \leq \chi_\varepsilon \leq 1$, $\chi_\varepsilon = 0$ in a neighbourhood of 0 and $\chi_\varepsilon(t) = 1$ for $|t| \geq \varepsilon > 0$. Then $dd^c u = \mu_\varepsilon + \sigma_\varepsilon$ where $\mu_\varepsilon = \lambda_\varepsilon dd^c u$ and

(1)
$$\sigma_{\varepsilon} = (1 - \lambda_{\varepsilon}) dd^{c} u = d((1 - \lambda_{\varepsilon}) d^{c} u) + (\chi_{\varepsilon}' \circ \varrho) d\varrho \wedge d^{c} u$$

(2)
$$= -(1 - \lambda_{\varepsilon})d^{c}du = -d^{c}((1 - \lambda_{\varepsilon})du) - (\chi_{\varepsilon}' \circ \varrho)d^{c}\varrho \wedge du.$$

STEP 2. As $u \in psh(\Omega \setminus \Gamma)$ and $\lambda_{\varepsilon} = 0$ in a neighbourhood of Γ , the currents

$$\mu_{\varepsilon} := \lambda_{\varepsilon} dd^c u = \lambda_{\varepsilon} i \sum u_{jk} dz_j \wedge d\overline{z}_k$$

are well defined and positive in Ω . As u is subharmonic in Ω , the measure Δu is nonnegative and locally bounded in Ω . As $|u_{jk}| \leq \Delta u$, $j,k \leq n$, it follows that

$$\lim_{\varepsilon \to 0} \mu_{\varepsilon} =: \mu = i \sum_{k} \mu_{jk} dz_{j} \wedge d\overline{z}_{k} \text{ exists and is a positive current in } \Omega,$$

and its coefficients μ_{jk} are locally finite measures in Ω . By the construction, μ is carried by $\Omega \setminus \Gamma$, i.e., $\mu_{jk}(E) = 0$, $j, k \leq n$, for any set $E \subset \Gamma$. Moreover, $dd^c u = \mu + \sigma$, where

$$\sigma = \lim_{\varepsilon \to 0} (1 - \lambda_{\varepsilon}) dd^{c} u$$

is a current in Ω supported on Γ .

STEP 3. As $u \in \operatorname{sh}(\Omega)$, the 1-currents du, d^cu have coefficients in $L^1_{\operatorname{loc}}(\Omega)$ (this follows obviously from the Riesz decomposition). Thus for every (2n-3)-form Ψ of class $C^1_0(\Omega)$ (the coefficients belong to $C^1(\Omega)$ and have

compact supports) we see, according to (1), that the value

$$(dd^{c}u, d\varrho \wedge \Psi) := \lim_{\delta \to 0} (dd^{c}u, d\varrho_{\delta} \wedge \Psi)$$

$$= \lim_{\delta \to 0} ((\mu_{\varepsilon}, d\varrho_{\delta} \wedge \Psi) + ((\chi'_{\varepsilon} \circ \varrho) d\varrho \wedge d^{c}u, d\varrho_{\delta} \wedge \Psi)$$

$$+ ((1 - \lambda_{\varepsilon}) d^{c}u, d\varrho_{\delta} \wedge d\Psi))$$

$$= (\mu_{\varepsilon}, d\varrho \wedge \Psi) + o_{\varepsilon}(1) = (\mu, d\varrho \wedge \Psi)$$

is well defined. (Here the index δ means δ -regularization, that is, convolution with a nonnegative function in $C_0^{\infty}(\mathbb{C}^n)$ supported in the ball $|z| < \delta$ and having Lebesgue integral 1.)

In the same way, using (2) we find that the values $(dd^c u, d^c \varrho \wedge \Psi)$ are well defined and $(dd^c u, d^c \varrho \wedge \Psi) = (\mu, d^c \varrho \wedge \Psi)$, which implies that

(3)
$$(\sigma, d\varrho \wedge \Psi) := \lim_{\delta \to 0} (\sigma, d\varrho_{\delta} \wedge \Psi) = 0,$$

(3')
$$(\sigma, d^c \varrho \wedge \Psi) := \lim_{\delta \to 0} (\sigma, d^c \varrho_\delta \wedge \Psi) = 0.$$

STEP 4. Let $\varphi \in C_0(\Omega)$, $\varphi \geq 0$, and let $\omega = \frac{1}{4}dd^c|z|^2$ be the fundamental form in \mathbb{C}^n . Then

$$(dd^{c}u,\varphi\omega^{n-1}):=\lim_{\delta\to 0}(dd^{c}u,\varphi_{\delta}\omega^{n-1})=4(n-1)!(\Delta u,\varphi)\geq 0,$$

hence.

$$\lim_{\delta \to 0} (\mu + \sigma, (1 - \lambda_{\varepsilon})\varphi_{\delta}\omega^{n-1}) = (\mu, (1 - \lambda_{\varepsilon})\varphi\omega^{n-1}) + \lim_{\delta \to 0} (\sigma, \varphi_{\delta}\omega^{n-1})$$

is nonnegative. As μ is carried by $\Omega \setminus \Gamma$ and $1 - \lambda_{\varepsilon} \to 0$ there, we can pass to the limit as $\varepsilon \to 0$ and obtain

(4)
$$(\sigma, \varphi \omega^{n-1}) := \lim_{\delta \to 0} (\sigma, \varphi_{\delta} \omega^{n-1}) \ge 0.$$

STEP 5. Let Φ be an arbitrary (n-1,n-1)-form of class $C_0^{\infty}(\Omega)$ and Φ_{τ} be its projection onto the complex tangent planes T_z^c to the levels $\{\varrho(z) = \text{const}\}$. (Representing $\Phi = \sum_{j,k=1}^n \Phi_{jk} \prod_{\alpha \neq j} dz_\alpha \wedge \prod_{\beta \neq k} dz_\beta$ and assuming that $T_a^c = \{z_n = 0\}$, which can be done by a unitary transform, we see that $\Phi_{\tau}|_a$ is the same sum from 1 to n-1 at the point a.) It is obvious that Φ_{τ} is a (2n-2)-form of class $C_0(\Omega)$. Moreover, $\Phi = \Phi_{\tau} + \Phi_{\nu}$, where Φ_{ν} is in the same class and $\Phi_{\nu}(\tau_1 \wedge \ldots \wedge \tau_{n-1}) = 0$ for any vector fields $\tau_1, \ldots, \tau_{n-1}$ which are complex orthogonal to $\nabla \varrho$.

By the Wirtinger theorem, the restrictions $\omega^{n-1}/(n-1)!|T_z^c$ coincide with the usual volume form on the planes T_z^c , hence

$$\Phi|T_z^c = \Phi_\tau|T_z^c = \varphi\omega^{n-1}|T_z^c$$

for some $\varphi \in C_0(\Omega)$. Moreover, $\varphi \geq 0$ if the form Φ is positive (because T_z^c are complex planes).

116 E. M. Chirka

Decomposing $\omega^{n-1} = (\omega^{n-1})_{\tau} + (\omega^{n-1})_{\nu}$, we obtain, for arbitrary Φ , the decomposition $\Phi = \varphi \omega^{n-1} + \Phi_0$, where Φ_0 is orthogonal to T_z^c in the sense that $\Phi_0(\tau_1 \wedge \ldots \wedge \tau_{n-1}) = 0$ for any fields τ_j as above. As $d\varrho, d^c\varrho$ constitute a basis of 1-covectors annihilating all such τ_j , the form Φ_0 is represented as a sum $d\varrho \wedge \Psi_1 + d^c\varrho \wedge \Psi_2$ with continuous Ψ_1, Ψ_2 in Ω . Finally, we have the decomposition

(5)
$$\Phi = \varphi \omega^{n-1} + \Phi_0 = \varphi \omega^{n-1} + d\varrho \wedge \Psi_1 + d^c \varrho \wedge \Psi_2,$$

where all the terms belong to the class $C_0(\Omega)$, and $\varphi \geq 0$ if Φ is a positive form of bidegree (n-1, n-1).

Step 6. Let now

$$\Phi^{\delta} := \varphi_{\delta}\omega^{n-1} + \Phi_{0}^{\delta} := \varphi_{\delta}\omega^{n-1} + d\varrho \wedge (\Psi_{1})_{\delta} + d^{c}\varrho \wedge (\Psi_{2})_{\delta}$$

for a positive Φ of class $C_0^{\infty}(\Omega)$ and bidegree (n-1,n-1). Then

$$(dd^{c}u, \Phi^{\delta}) = (\mu, \Phi^{\delta}) + (\sigma, \varphi_{\delta}\omega^{n-1}),$$

according to (3) and (3'). As $\varphi \geq 0$, we have $(\sigma, \varphi_{\delta}\omega^{n-1}) \geq 0$ by (4). Thus

$$(dd^cu, \Phi) = \lim_{\delta \to 0} (dd^cu, \Phi^\delta) \geq \lim_{\delta \to 0} (\mu, \Phi^\delta) = (\mu, \Phi) \geq 0,$$

as Φ has bidegree (n-1,n-1) and μ,Φ are positive.

The theorem is proved.

References

- P. Blanchet, On removable singularities of subharmonic and plurisubharmonic functions, Complex Variables 26 (1995), 311–322.
- [2] R. Harvey, Holomorphic chains and their boundaries, in: Proc. Sympos. Pure Math. 30, Part 1, Amer. Math. Soc., 1977, 307–382.
- [3] P. Lelong, Fonctions plurisousharmoniques et formes différentielles positives, Gordon and Breach, New York, 1968.

Steklov Mathematical Institute

Gubkin st. 8

Moscow, Russia

E-mail: chirka@mi.ras.ru