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Einstein-Hermitian and anti-Hermitian 4-manifolds

by Włodzimierz Jelonek (Kraków)

Abstract. We study 4-dimensional Einstein-Hermitian non-Kähler manifolds admit-
ting a certain anti-Hermitian structure. We also describe Einstein 4-manifolds which are
of cohomogeneity 1 with respect to an at least 4-dimensional group of isometries.

0. Introduction. Einstein-Hermitian non-Kähler surfaces are recently
a subject of intensive investigation (see [LeB], [G-M], [C-S-V], [P-P],
[A-G-2]). LeBrun has proved that every such compact surface is a blow-up of
CP 2 in at least three points and has necessarily a positive scalar curvature.
He also showed that the only Einstein-Hermitian metric on the blow-up of
CP 2 at one point is D. Page’s metric. Earlier Grantcharov and Muskarov
[G-M] investigated compact Hermitian surfaces which are ∗-Einstein. They
proved that every such non-Kähler surface is conformal to an extremal
Kähler metric with non-constant positive scalar curvature and has positive
(clearly constant) scalar curvature. After the works of LeBrun [LeB], Apos-
tolov and Gauduchon [A-G-1] and Cho, Sekigawa and Vanhecke [C-S-V] it
is clear that every Einstein-Hermitian surface must be ∗-Einstein. Plebański
and Przanowski [P-P] have given a local classification of Einstein-Hermitian
surfaces which admit a Killing vector field.

With every Hermitian non-Kähler 4-manifold (M,g, J) there are related
two natural distributions D = {X ∈ TM : ∇XJ = 0}, D⊥ = {Y ∈ TM :
g(Y,X) = 0 for all X ∈ D} defined in the open set U = {x : |∇Jx| 6= 0}.
These distributions are J-invariant and on U we can define the opposite
almost Hermitian structure J by JX = JX if X ∈ D⊥ and JX = −JX if
X ∈ D; we call it the natural opposite almost Hermitian structure. It is not
difficult to check that for the famous Einstein-Hermitian manifold CP 2]CP 2

with D. Page’s metric (see [P], [B], [K]) the opposite structure J is Hermitian
and this structure extends to a global opposite Hermitian structure.
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Natural questions arise for general Einstein-Hermitian non-Kähler man-
ifolds: When is J Hermitian? Under what conditions does it extend to
a global opposite Hermitian structure? The first question in the case of
self-dual Einstein-Hermitian 4-manifolds was recently answered by Apos-
tolov and Gauduchon [A-G-2]. We give the answers to these questions for
compact Einstein-Hermitian manifolds and partial answers for arbitrary
Einstein-Hermitian surfaces. Our method is based on introducing a special
orthonormal frame naturally related to the Hermitian structure J and the
metric g. We show that for Einstein 4-manifolds the set U is dense and the
set {x : |∇Jx| = 0} is a totally geodesic submanifold of (M,g). We prove
that the opposite almost Hermitian structure J of an Einstein-Hermitian
non-ASD surface is Hermitian if and only if the metric g is of cohomogene-
ity 1. We also give a local description of non-Kähler non-locally symmetric
Einstein-Hermitian surfaces admitting an opposite Hermitian structure as
products R× P0 where P0 is a 3-dimensional naturally reductive manifold,
and prove that they are always of cohomogeneity 1 with the group of local
isometries of dimension at least 4. We show that if (M,g, J) is a compact
Einstein-Hermitian non-Kähler manifold for which J is integrable then J
extends to a global structure and (M,g, J) is isometrically biholomorphic to
CP 2 ]CP 2 with D. Page’s metric. From the result of LeBrun it easily follows
that every Hermitian non-Kähler Einstein manifold which admits an oppo-
site Hermitian structure must be biholomorphic to CP 2]CP 2 with D. Page’s
metric so the above result for compact surfaces is a simple consequence of
[LeB].

1. Hermitian 4-manifolds. Let (M,g, J) be an almost Hermitian
manifold , i.e. J is an almost complex structure orthogonal with respect
to g, i.e. g(X,Y ) = g(JX, JY ) for all X,Y ∈ X(M). We say that (M,g, J)
is a Hermitian manifold if its almost Hermitian structure J is integrable. Set∧2

M =
∧2

T ∗M . In what follows we identify the bundle TM with T ∗M
by means of g, so we also write

∧2
M =

∧2
TM . The Hodge star opera-

tor ∗ (which depends on the orientation of M) defines an endomorphism
∗ :

∧2
M → ∧2

M with ∗2 = id and we denote by
∧+

,
∧− its eigensub-

bundles corresponding to 1,−1 respectively.
In what follows we consider 4-dimensional Hermitian manifolds (M,g, J)

which we also call Hermitian surfaces. Such manifolds are always oriented
and we choose an orientation in such a way that the Kähler form Ω(X,Y ) =
g(JX, Y ) is self-dual (i.e. Ω ∈ ∧+

M). The vector bundle of self-dual forms
admits a decomposition

(1.1)
∧+

M = RΩ ⊕ LM,

where LM denotes the bundle of real J-skew invariant 2-forms (i.e. LM =
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{Φ ∈ ∧M : Φ(JX, JY ) = −Φ(X,Y )}). The bundle LM is a complex line
bundle over M with the complex structure J defined by (JΦ)(X,Y ) =
−Φ(JX, Y ). For a 4-dimensional Hermitian manifold the covariant deriva-
tive of the Kähler form Ω is locally expressed by

(1.2) ∇Ω = a⊗ Φ+ J a⊗ JΦ,
where J a(X) = −a(JX). The Lee form θ of (M,g, J) is defined by the
equality dΩ = θ∧Ω. We have θ = −δΩ ◦J . By % we denote the Ricci tensor
of a Riemannian manifold (M,g) and by τ the scalar curvature of (M,g),
i.e. τ = trg%. A Hermitian manifold (M,g, J) is said to have Hermitian
Ricci tensor if %(X,Y ) = %(JX, JY ) for all X,Y ∈ X(M). An involutive
distribution is called a foliation. A foliation D is called minimal if each of
its leaves is a minimal submanifold of (M,g), i.e. the trace of its second
fundamental form (the mean curvature) vanishes. A Hermitian 4-manifold
(M,g, J) is said to have an opposite Hermitian structure if it admits an
orthogonal Hermitian structure J with anti-self-dual Kähler form Ω. We
then call (M,g, J) an anti-Hermitian manifold with anti-Hermitian struc-
ture J . For any almost Hermitian 4-manifold the following formula holds
(see [G-H]):

(1.3) 1
2 (%(X,Y ) + %(JX, JY ))− 1

2 (%∗(X,Y ) + %∗(Y,X))

= 1
4 (τ − τ∗)g(X,Y ),

where %∗ is the ∗-Ricci tensor defined by

(1.4) %∗(X,Y ) = 1
2 tr{Z 7→ R(X,JY )JZ},

where R(X,Y )Z = ([∇X ,∇Y ]−∇[X,Y ])Z and τ∗ = trg %∗. By D we denote
the nullity distribution of (M,g, J) defined by D = {X ∈ TM : ∇XJ = 0}.
For a Hermitian manifold it follows from (1.2) that D is J-invariant. Con-
sequently, dimD = 2 in M0 = {x ∈ M : ∇Jx 6= 0}. We call the nullity
distribution involutive if D|M0 is involutive. We denote by D⊥ the orthogo-
nal complement of D in M0.

The curvature tensor R of a 4-dimensional manifold (M,g) determines
an endomorphism R of the bundle

∧2
M defined by g(R(X ∧Y ), Z ∧W ) =

R(X ∧ Y,Z ∧W ) = −R(X,Y,Z,W ) = −g(R(X,Y )Z,W ). Note that %∗ =
JR(Ω) and τ∗ = 2R(Ω,Ω). Set R∧+ M = p∧+ M ◦ R|∧+ M where p∧+ M :∧
M → ∧+

M is the orthogonal projection. Then trR∧+ M = τ/4. We also
have (see [C-S-V, p. 16])

(1.5)
τ − τ∗

2
= δθ + 2α2,

where α2 = |∇J |2/8. The conformal scalar curvature κ is defined by (see



10 W. Jelonek

[A-G-1, p. 425])

(1.6) κ = τ − 3
2 (|θ|2 + 2δθ) = 1

2 (3τ∗ − τ).

We say that an almost Hermitian manifold (M,g, J) satisfies the second
condition (G2) of A. Gray if its curvature tensor R satisfies

(G2) R(X,Y,Z,W )−R(JX, JY, Z,W )

= R(JX, Y, JZ,W ) +R(JX, Y, Z, JW )

for all X,Y,Z,W ∈ X(M). We say that it satisfies the condition (G3) of
A. Gray if

(G3) R(JX, JY, JZ, JW ) = R(X,Y,Z,W )

for all X,Y,Z,W ∈ X(M). Define B = 1
2 (R− ∗R∗);W = 1

2 (R + ∗R∗)0 =
1
2 (R+ ∗R∗)− τ

12 Id;W+ = 1
2 (W + ∗W );W− = 1

2 (W − ∗W ). Then

R =
τ

12
Id +B +W+ +W−.

The tensor W is called the Weyl tensor and its components W+,W− are
called the self-dual and anti-self-dual Weyl tensors.

In what follows we use the following result of A. Derdziński (see [S-V,
p. 219, Prop. 5] or [D-V, p. 476, Cor. 7.2]).

Proposition 1. Let (M,g) be a 4-dimensional Einstein manifold such
that W ∈ End(

∧2
M) has constant eigenvalues. Then (M,g) is locally sym-

metric.

2. Hermitian surfaces with Hermitian Ricci tensor. Note that
for every manifold satisfying condition (G3) we have R(LM) ⊂ ∧+

M , its
Ricci tensor % is J-invariant and its ∗-Ricci tensor is symmetric. Indeed, since
R(j(X ∧ Y ), j(Z ∧W )) = R(X ∧ Y,Z ∧W ) where j(X ∧ Y ) = JX ∧ JY ,
we have R(ker(j − id), ker(j + id)) = 0. Since ker(j − id) =

∧−
M ⊕ RΩ

and ker(j + id) = LM we get g(R(LM),
∧−

M ⊕ RΩ) = 0. Consequently,
R(LM) ⊂ LM ⊂ ∧+

M . In fact the condition R(LM) ⊂ ∧+
M holds if

and only if the Ricci tensor % of (M,g) is J-invariant (see [D, p. 5, (i)]) and
an almost Hermitian 4-manifold (M,g, J) with J-invariant Ricci tensor and
symmetric ∗-Ricci tensor satisfies (G3).

Lemma A. Let (M,g, J) be a Hermitian 4-manifold. Assume that |∇J |
6= 0 on M . Then for any local orthonormal oriented basis {E1, E2} of D⊥
there exists a global oriented orthonormal basis {E3, E4} of D independent
of the choice of {E1, E2} such that

(2.1) ∇Ω = α(θ1 ⊗ Φ+ θ2 ⊗ Ψ),
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where Φ = θ1 ∧ θ3 − θ2 ∧ θ4, Ψ = θ1 ∧ θ4 + θ2 ∧ θ3, α = 1
2
√

2
|∇J | and

{θ1, θ2, θ3, θ4} is a cobasis dual to {E1, E2, E3, E4}. What is more, δΩ =
−2αθ3, θ = −2αθ4.

Proof. Let {E1, E2} be any orthonormal basis of D⊥, E2 = JE1. Then
(1.2) holds where a = αθ1. Choose any orthonormal basis {E′3, E′4 = JE′3}
in D. Define Φ′ = θ1 ∧ θ′3 − θ2 ∧ θ′4, Ψ ′ = θ1 ∧ θ′4 + θ2 ∧ θ′3. Then {Φ′, Ψ ′} is
an oriented orthonormal local basis in LM . Thus we have

Φ = (cosφ)Φ′ − (sinφ)Ψ ′, Ψ = (sinφ)Φ′ + (cosφ)Ψ ′

for some local function φ. Then

∇Ω = α{θ1((cosφ)Φ′ − (sinφ)Ψ ′) + θ2((sinφ)Φ′ + (cosφ)Ψ ′)}.
Define E3 = (cosφ)E′3 − (sinφ)E′4, E4 = (sinφ)E′3 + (cosφ)E′4. Then
{E3, E4} is the basis we are looking for. From (2.1) it is easy to get δΩ =
−2αθ3, θ = −2αθ4.

Any frame {E1, E2, E3, E4} constructed as above will be called standard
(or special).

The following lemma is well known (it means that for a Hermitian surface
the component W+

3 of the positive Weyl tensor vanishes).

Lemma B. Let (M,g, J) be a Hermitian surface. Then for any local or-
thonormal basis {Φ, Ψ} of LM we have R(Φ,Φ) = R(Ψ, Ψ) and R(Φ, Ψ) = 0.

It is known that a Hermitian manifold (M,g, J) satisfies the second con-
dition of Gray if and only if its Ricci tensor is J-invariant, it has symmetric
∗-Ricci tensor and the component W+

3 of the positive Weyl tensor vanishes
(i.e. RLM = a idLM where RLM = pLM ◦ R|LM and pLM is the orthogonal
projection pLM :

∧
M → LM). It is well known that any almost Hermitian

manifold satisfying (G2) satisfies (G3) and that any Hermitian manifold sat-
isfying (G3) satisfies (G2) (i.e. for Hermitian manifolds these two conditions
are equivalent).

Lemma C. Let (M,g, J) be a Hermitian surface with J-invariant Ricci
tensor (i.e. R(LM) ⊂ ∧+

M). Let {E1, E2, E3, E4} be a local orthonormal
frame such that (2.1) holds. Then

Γ 3
11 = Γ 3

22 = E3 lnα,(a)

Γ 3
44 = Γ 4

21 = −Γ 4
12 = −E3 lnα,(b)

Γ 3
21 = −Γ 3

12, Γ 4
11 = Γ 4

22,(c)

−Γ 3
21 + Γ 4

22 = α,(d)

Γ 4
33 = −E4 lnα+ α,(e)

where ∇XEi =
∑
ωji (X)Ej and Γ ikj = ωij(Ek).
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Proof. Note that Γ ikj = −Γ jki. We have

(2.2)
g(∇E1JX, Y ) = αΦ(X,Y ), g(∇E2JX, Y ) = −αΨ(X,Y ),

∇E3J = 0, ∇E4J = 0.

Write p(X) = 1
2g(∇XΦ, Ψ) = ω2

1(X) + ω4
3(X). Then

∇XΩ = αθ1(X)Φ+ αθ2(X)Ψ,

∇XΦ = −αθ1(X)Ω + p(X)Ψ,

∇XΨ = −αθ2(X)Ω − p(X)Φ.

Consequently, using (2.2) we get

(2.3a) g(R(E1, E3).JX, Y ) = −∇[E1,E3]Ω − E3αΦ− αp(E3)Ψ,

(2.3b) g(R(E1, E4).JX, Y ) = −∇[E1,E4]Ω − E4αΦ− αp(E4)Ψ,

(2.3c) g(R(E2, E3).JX, Y ) = −∇[E2,E3]Ω + E3αΨ − αp(E3)Φ,

(2.3d) g(R(E4, E2).JX, Y ) = −∇[E4,E2]Ω − E4αΨ + αp(E4)Φ,

(2.3e) g(R(E1, E2).JX, Y )

= −∇[E1,E2]Ω + (E1α− αp(E2))Ψ − (αp(E1) + E2α)Φ,

where as usual R(X,Y ).J = ∇X(∇Y J)−∇Y (∇XJ)−∇[X,Y ]J . Recall that

R(X,Y ).J = R(X,Y ) ◦ J − J ◦R(X,Y ),

i.e. R(X,Y ) acts on the tensor J as a derivation. Since R(LM) ⊂ ∧+
M it

is clear that

g(R(E1, E3).JX, Y ) = g(R(E4, E2).JX, Y ),(2.4a)

g(R(E3, E2).JX, Y ) = g(R(E4, E1).JX, Y ).(2.4b)

Consequently, from (2.3) and (2.4), using the condition R(LM) ⊂ ∧+
M ,

we get

1
2R(Φ, Ψ) = −g(R(E1, E3).JE1, E3) = E3α+ αθ1([E1, E3])(2.5a)

= E3α− αΓ 3
11,

1
2R(Φ, Ψ) = g(R(E2, E3).JE3, E2) = −(E3α+ αθ2([E2, E3]))(2.5b)

= −E3α+ αΓ 3
22,

1
2R(Φ,Φ) = −g(R(E4, E2).JE3, E2) = E4α− αθ2([E4, E2])(2.5c)

= E4α− αΓ 4
22,

1
2R(Ψ, Ψ) = −g(R(E1, E4).JE1, E3) = −(−E4α− αθ1([E1, E4]))(2.5d)

= E4α− αΓ 4
11.
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1
2R(Φ, Ψ) = −g(R(E1, E4).JE1, E4) = −(αp(E4) + αθ2([E1, E4]))(2.5e)

= αΓ 3
44 − αΓ 2

14,
1
2R(Φ, Ψ) = −g(R(E4, E2).JE1, E3) = αp(E4) + αθ1([E4, E2])(2.5f)

= −αΓ 1
24 − αΓ 3

44,
1
2R(Φ,Φ) = g(R(E1, E3).JE1, E4) = −αθ2([E1, E3])− αp(E3)(2.5g)

= −αΓ 2
13 − αΓ 4

33,
1
2R(Ψ, Ψ) = −g(R(E2, E3).JE1, E3) = αθ1([E1, E3])− αp(E3)(2.5a)

= αΓ 1
23 − αΓ 4

33.

Note that for a Lee form θ of (M,g, J) we have θ = −2αθ4. Write
X = 2αE3. Then dΩ = −2αθ4 ∧Ω and

LXΩ = d(iXΩ) + iX(dΩ) = 2d(αθ4) = −dθ.
Hence

LXΩ
2 = 2LXΩ ∧Ω = −2dθ ∧Ω.

Since dΩ = θ ∧Ω we have dθ∧Ω = 0. Thus LXΩ2 = 0 and divX = 0. This
means that

(2.6) Γ 3
11 + Γ 3

22 + Γ 3
44 = E3 lnα.

From Lemma B, (2.5) and (2.6) we get (a)–(c) of Lemma C. Since θ =
−δΩ ◦ J we have ∇J(E1, E1) = ∇J(E2, E2) = αE3 and ∇J(E3, E3) =
∇J(E4, E4) = 0. Consequently,

αE3 + J(∇E1E1) = ∇E1E2, αE3 + J(∇E2E2) = −∇E2E1.

Thus Γ 3
12 +Γ 4

11 = α and −Γ 3
21 +Γ 4

22 = α and (d) follows. On the other hand
R(Φ,Φ) +R(Ψ, Ψ) = 4(E4α− αΓ 4

11) = 4(αΓ 1
23 − αΓ 4

33) and (e) follows.

Let us recall that Apostolov and Gauduchon [A-G-1] proved that a Her-
mitian surface with J-invariant Ricci tensor has symmetric ∗-Ricci tensor
(equivalently Ω is an eigenfield of W+). It follows that every Hermitian
surface with J-invariant Ricci tensor satisfies condition (G3) of Gray. Re-
call also that the Ricci tensor % of (M,g) is J-invariant if and only if
R(LM) ⊂ ∧+

M . Note that Lemma D below can also be deduced from
[De-1] and [A-G-1] if we additionally assume that (M,g, J) is l.c.K. (locally
conformally Kähler—since the nullity foliation is then spanned by a holo-
morphic Killing vector field ξ and Jξ and clearly [ξ, Jξ] = 0). In the compact
case (M,g, J) is l.c.K. but in general it may not be l.c.K.

Lemma D. Let (M,g, J) be a Hermitian 4-dimensional manifold whose
curvature tensor R satisfies R(LM) ⊂ ∧+

M . Then the Kähler form Ω of
(M,g, J) is an eigenform of the Weyl positive tensor W+, i.e. W+Ω = λΩ
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for λ ∈ C∞(M) (or equivalently (M,g, J) has symmetric ∗-Ricci tensor)
and the nullity distribution D is involutive.

Proof. Note that it is enough to prove the lemma for (M0, g, J). Thus we
can assume that D is a 2-dimensional J-invariant distribution. Let {E3, E4}
be a local orthonormal basis in D such that E4 = JE3. Hence

∇E3J = 0,(2.7a)

∇E4J = 0.(2.7b)

Consequently, we obtain

∇2
E4E3

J +∇∇E4E3J = 0,(2.8a)

∇2
E3E4

J +∇∇E3E4J = 0.(2.8b)

Thus ∇2
E3E4

J −∇2
E4E3

J +∇[E3,E4]J = 0. Hence

(2.9) R(E3, E4).J = −∇[E3,E4]J.

Choose a local orthonormal basis {E1, E2} of D⊥ such that JE1 = E2 and
(2.1) holds. From (2.7) we obtain

(2.10) R(E3, E4, JX, Y ) +R(E3, E4,X, JY ) = −∇[E3,E4]Ω(X,Y ).

Consequently,

R(E3 ∧ E4, E2 ∧E3 +E1 ∧E4) = R(E3 ∧ E4, Ψ)(2.11a)

= αθ1([E3, E4]),

R(E3 ∧ E4, E1 ∧E3 −E2 ∧E4) = R(E3 ∧ E4, Φ)(2.11b)

= αθ2([E3, E4]).

Set a = R(E3 ∧ E4, Ψ), b = R(E3 ∧ E4, Φ), c = R(E1 ∧ E2, Ψ), d =
R(E1 ∧E2, Φ). Note that the form Ω = E1 ∧ E2 − E3 ∧ E4 is anti-self-dual
(Ω ∈ ∧−M). Thus c − a = 0 = d − b. We also have R(Ω,Φ) = b + d,
R(Ω,Ψ) = a+ c. Consequently,

(2.12) R(Ω,Φ) = 2b = 2αθ2([E3, E4]), R(Ω,Ψ) = 2a = 2αθ1([E3, E4]).

It is clear that Ω is an eigenform of W+ if and only if R(Ω,Φ) = 0,R(Ω,Ψ)
= 0. The last two equations are equivalent to the symmetry of the ∗-Ricci
tensor (it also means that the component W+

2 of the positive Weyl tensor
vanishes). Note also that D is a minimal foliation.

The first part of the next lemma is well known (see [A-G-1]).

Lemma E. Let (M,g, J) be a Hermitian surface with J-invariant Ricci
tensor. Then Γ 4

13 = −E2 lnα, Γ 4
23 = E1 lnα and dθ is anti-self-dual. In

particular if M is compact then (M,g, J) is locally conformally Kähler. In
addition (M,g, J) is l.c.K. if and only if E3α = 0, Γ 1

34 = E2 lnα, Γ 2
34 =

−E1 lnα.
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Proof. From [A-G-1, Th. 2] it follows that Ω is an eigenform of W+. Let
{E1, E2, E3, E4} be a local special frame. From (2.3e) we deduce that the
equationR(Ω,Φ) = 0 is equivalent to −αθ1([E1, E2])−(αp(E1) +E2α) = 0.
Analogously the equation R(Ω,Ψ) = 0 is equivalent to −αθ2([E1, E2]) −
αp(E2) + E1α = 0. We get Γ 4

13 = −E2 lnα, Γ 4
23 = E1 lnα after some easy

computation. Note that

dθ4(E3, E4) = −θ4([E3, E4]) = −E3 lnα,(2.13a)

dθ4(E1, E2) = −θ4([E1, E2]) = −Γ 4
12 + Γ 4

21 = −2E3 lnα,(2.13b)

dθ4(E1, E3) = −θ4([E1, E3]) = −Γ 4
13 + Γ 4

31,(2.13c)

dθ4(E2, E3) = −θ4([E2, E3]) = −Γ 4
23 + Γ 4

32.(2.13d)

We also have dθ = −2dα ∧ θ4 − 2αdθ4. From (2.13) we get

(2.14) − 1
2dθ = 2E3αΩ + (−αΓ 1

34 +E2α)Φ+ (−αΓ 4
32 +E1α)Ψ,

where Φ = θ1 ∧ θ3 + θ2 ∧ θ4, Ψ = θ1 ∧ θ4 − θ2 ∧ θ3. Consequently, dθ is
anti-self-dual.

If (M,g, J) is a Hermitian surface with |∇J | 6= 0 on M then the dis-
tributions D,D⊥ define a natural opposite almost Hermitian structure J
on M . This structure is defined as follows: J |D = −J |D, J |D⊥ = J |D⊥ . In
the special basis we just have JE1 = E2, JE3 = −E4.

Lemma F. Let (M,g, J) be a Hermitian l.c.K. 4-manifold with Hermi-
tian Ricci tensor. Assume that |∇J | 6= 0 on M . Then the following condi-
tions are equivalent :

(a) (M,g, J) is a Hermitian surface.
(b) ∇α ‖ E4 = − 1

2αθ
].

(c) D is a totally geodesic foliation.
(d) D is contained in the nullity of J .
(e) ∇E4E4 = 0 (equivalently ∇θ]θ] ∧ θ] = 0).
(f) d|θ|2 ∧ θ = 0.

Proof. Choose a local orthonormal frame {E1, . . . , E4} such that (2.1)
holds. Since (M,g, J) is l.c.K. we have dθ = 0 and consequently

(2.15) E3 lnα = 0, Γ 1
34 = E2 lnα, Γ 2

34 = −E1 lnα.

From the equalities J(∇E3E3) = ∇E3E4 and J(∇E4E4) = −∇E4E3 we
obtain

(2.16) −Γ 1
33 = Γ 1

44 = −Γ 2
34 = E1 lnα, Γ 2

44 = Γ 1
34 = −Γ 2

33 = E2 lnα.

Note that (we write ∇Xθi = ωji (X)θj , Φ = θ1 ∧ θ3 + θ2 ∧ θ4, Ψ = θ1 ∧ θ4 −
θ2 ∧ θ3)

∇(θ1 ∧ θ2) = 1
2{Φ(ω4

1 + ω3
2) + Ψ(ω1

3 + ω4
2) + Φ(−ω4

1 + ω3
2) + Ψ(−ω1

3 + ω4
2)}.
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Analogously

∇(θ3 ∧ θ4) = 1
2{Φ(ω4

1 + ω3
2) + Ψ(ω1

3 + ω4
2)− Φ(−ω4

1 + ω3
2)− Ψ(−ω1

3 + ω4
2)}.

Note that ∇Ω = a⊗ Φ+ b⊗ Ψ and ∇Ω = a′ ⊗ Φ+ b′ ⊗ Ψ where under our
assumptions a = αθ1 and b = −αθ2. It is clear that (M,g, J) is Hermitian
if and only if

a′ = b′ ◦ J.
On the other hand a = ω4

1 + ω3
2 , b = ω1

3 + ω4
2 and

αθ1 = ω4
1 + ω3

2 , − αθ2 = ω1
3 + ω4

2 ,(2.17a)

a′ = −ω4
1 + ω3

2 , b′ = ω1
3 − ω4

2 .(2.17b)

It is clear from (2.15), (2.16) that D is in the nullity of J if and only if
E1α = E2α = 0. The last condition is also equivalent to D being totally
geodesic. Recall that Γ ikj = ωij(Ek). It is also clear from (2.17) that (M,g, J)
is Hermitian if and only if (b) holds. Since Γ 1

44 = E1 lnα, Γ 2
44 = E2 lnα,

Γ 3
44 = −E3 lnα, (e) is equivalent to (b). Note that |θ|2 = 4α2, thus (f) is

equivalent to (b).

Lemma G. Let (M,g, J) be a Hermitian 4-manifold. Assume that |∇J |
6= 0 on M . If (M,g, J) has Hermitian Ricci tensor then dΩ = 2(Γ 3

12 −
Γ 4

22)θ4 ∧ θ1 ∧ θ2. If δW+ = 0 and |W+| is non-vanishing on M then α =
1
3E4 ln |κ| (equivalently 2α2 = − 1

3θ
] ln |κ|) and if (M,g) is Einstein then

∇τ∗ ‖ E4.

Proof. Note that from the Cartan structure equations, dθi = −∑4
p=1 ω

i
p

∧ θp. Hence using the above results we obtain

d(θ1 ∧ θ2) = −2Γ 4
11θ4 ∧ θ1 ∧ θ2,(2.18a)

d(θ3 ∧ θ4) = −2Γ 3
12θ4 ∧ θ1 ∧ θ2.(2.18a)

Thus

(2.19) dΩ = 2(Γ 3
12 − Γ 4

22)θ4 ∧ θ1 ∧ θ2.

Now assume that δW+ = 0 and |W+| 6= 0 on M . Then (see [A-G-1,
p. 431]) we have

θ = − 2
3d ln |κ| = −df,

where f = 2
3 ln |3τ∗ − τ |. Note that since θ = −2αθ4 we get E1f = E2f =

E3f = 0. Consequently, θ = −2αθ4 = −E4fθ4 and 2α = E4f . If (M,g) is
Einstein then δW = 0 and either κ = 0 on M or |W+| 6= 0 on M . Since
τ is constant it follows that in the first case τ ∗ = 1

3τ is constant, while
E1τ

∗ = E2τ
∗ = E3τ

∗ = 0 in the second case.

Recall that an Einstein-Hermitian 4-manifold is l.c.K. unless it is ASD,
i.e. W+ = 0 (see [De-1] and [A-G-1]).
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Corollary. Let (M,g, J) be an Einstein-Hermitian 4-manifold which
is not ASD. Assume that |∇J | 6= 0 on M . Then the following conditions
are equivalent :

(a) (M,g, J) is a Hermitian surface,
(b) ∆θ = λθ for some λ ∈ C∞(M).

Proof. From (1.6) it follows that dκ = − 3
2 (d|θ|2+2∆θ). Since dκ = − 2

3κθ
we get d|θ|2∧θ = −2∆θ∧θ and the result is a consequence of Lemma F(f).

Lemma H. Let (M,g, J) be a Hermitian 4-manifold with Hermitian
Ricci tensor. If δW+ = 0 and |W+| is non-vanishing on M then κ 6= 0
on M and the field X = J(∇κ−1/3) is a holomorphic Killing vector field for
(M,g, J). What is more, X = 1

2κ
−1/3J(θ]) and |X| = ακ−1/3. In particular

the set α−1(0) is a totally geodesic submanifold of (M,g).

Proof. The first statement can be proved analogously to [De-1, Prop. 4
and Prop. 5] and [A-G-1, Prop. 1]). Note that

X = J(∇κ−1/3) = − 1
3J(∇κ)κ−4/3 = − 1

3J(∇ ln |κ|)κ−1/3 = 1
2κ
−1/3J(θ]).

Since θ] = −2αE4 we get |X| = ακ−1/3.

Since X is a holomorphic vector field and Xx = 0 if and only if α(x) = 0
we obtain

Corollary. Let (M,g, J) be a Hermitian non-Kähler 4-manifold with
Hermitian Ricci tensor. If δW+ = 0 and |W+| is non-vanishing on M then
the set F = {x ∈ M : |∇Jx| = 0} is nowhere dense (i.e. U = M − F is an
open dense subset of M).

Remark. It is easy to see exactly as above that also the following state-
ment holds:

Let (M,g, J) be a Hermitian non-Kähler 4-manifold with Hermitian
Ricci tensor. Assume that (M,g, J) is conformally Kähler and let A be
a smooth function such that dA = 1

2θ. Thus (M,g, J) is Kähler where g =
exp(−2A)g. Then the field X = J(∇ exp(−A)) = eAJ(∇A) = 1

2e
A(δΩ)]

is a holomorphic Killing vector field for (M,g, J) and |X| = eAα. The set
F = {x ∈M : |∇Jx| = 0} is totally geodesic and nowhere dense.

Lemma I. Let (M,g, J) be a compact Hermitian Einstein non-Kähler
4-manifold. Assume that the natural opposite almost Hermitian structure J
defined on the set U = M − α−1(0) is Hermitian. Then J extends smoothly
to a global opposite Hermitian structure J on M .

Proof. Since (M,g) is Einstein it follows that either W− = 0 or W− 6= 0
everywhere. From our assumptions it follows that the scalar curvature τ of
(M,g) is positive (see [G-M, Th. 1.1] and [C-S-V, Th. 2.1] or [LeB]). Thus in
view of [H] and [A-D-M] we get W− 6= 0 on M . On the open dense subset U
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the tensor W− has exactly two eigenvalues. Since trW− = 0 and W− 6= 0
everywhere it is clear that W− has two eigenvalues everywhere. The Kähler
form Ω of (U, g, J) is a simple eigenform of W−|U . In view of the above
results it extends to a global simple eigenform of W−.

For the description of D. Page’s Einstein-Hermitian metric on CP 2 ]

CP 2 we refer to [K] (see also [B]). The Hermitian structure on CP 2 ] CP 2

is given by JH = X/f, JY = Z where X,Y,Z are left invariant vec-
tor fields on SU(2) = S3 and the metric on the open dense subset U =
(0, l) × S3 of CP 2 ] CP 2 is given by g = dt2 + gt where gt = f(t)2θ2

1 +
g(t)2(θ2

2 + θ2
3) where {θ1, θ2, θ3} is the left invariant co-frame on SU(2)

dual to the frame {X,Y,Z}. It is easy to show using the O’Neill formu-
las that ∇J(H,H) = 0, which means that H ∈ D. We also have δΩ ‖
X. Hence we obtain (in Koda’s notation) D = span{H,X} and E4 =
H. Since ∇HH = 0 it follows that the natural opposite almost Hermi-
tian structure J given by JH = −X/f, JY = Z is Hermitian. Clearly
this structure extends to a global opposite Hermitian structure on CP 2 ]

CP 2. From [LeB] it follows that an Eistein-Hermitian non-Kähler surface
(M,g) is a blow-up of CP 2 at one, two or three points in general position.
C. LeBrun also proves that the Einstein-Hermitian metric on CP 2 ] CP 2

is uniquely determined up to isometry. It follows that the only compact
Einstein-Hermitian surface with opposite Hermitian structure is isometri-
cally biholomorphic to CP 2 ]CP 2 with D. Page’s metric. Indeed, if (M,g, J)
is a compact Einstein surface then it satisfies τ(M) ≤ 0 as a blow-up
of CP 2 where τ(M) denotes the signature of (M,g, J). Since (M,g, J)
is also a compact Hermitian surface we have τ(M,J) = −τ(M,J) ≤ 0.
Consequently, τ(M) = 0 and (M,g, J) must be isometrically biholomor-
phic to CP 2 ] CP 2 with D. Page’s metric. Hence we have from [LeB] and
Lemma I:

Proposition 2. Let (M,g, J) be a compact Einstein-Hermitian non-
Kähler 4-manifold. Assume that the natural opposite almost Hermitian
structure J defined on the set U = {x ∈ M : |∇Jx| 6= 0} is Hermitian.
Then (M,g, J) is isometrically biholomorphic to CP 2 ]CP 2 with D. Page’s
metric.

3. Einstein-Hermitian metrics of cohomogeneity 1. Our present
aim is to show how to construct all non-compact examples of Hermitian sur-
faces with Hermitian natural opposite structure. Since an Einstein-Hermi-
tian non-Kähler manifold M satisfies the condition ∇J 6= 0 on an open
dense subset of M we shall assume that a non-Kähler Einstein-Hermitian
manifold M satisfies ∇J 6= 0 on the whole of M . Recall also that a homo-
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geneous Einstein 4-dimensional manifold is locally symmetric and that an
Einstein-Hermitian surface (M,g, J) satisfies one of the two conditions: (1)
(M,g) is ASD, i.e. W+ = 0, or (2) W+ 6= 0 on the whole of M (see [De-1],
[A-G-1]). We shall prove

Theorem 1. Let (M,g, J) be an Einstein-Hermitian non-Kähler 4-
manifold. Assume that W+ is non-vanishing on M . Then the following con-
ditions are equivalent :

(a) (M,g) is (locally) of cohomogeneity 1,
(b) (M,g, J) is a Hermitian surface,
(c) M is locally isometric to the manifold M̃ = R×P0, where (P0, g0) is

a 3-dimensional naturally reductive manifold (the total space of a Rieman-
nian submersion p : P0 → M0 over a Riemannian surface M0 of constant
sectional curvature K ∈ {−1, 0, 1}) with a metric

(∗) g = dt2 + a(t)2θ2 + b(t)2p∗gcan,

where g0 = θ2 + p∗gcan, θ is the connection form of P0 such that p∗dθ =
c volcan, c ∈ R and volcan is the volume form of the canonical metric on M0.

Proof. We shall prove the implications (b)⇒(c)⇒(a)⇒(b). We start with
the proof of (b)⇒(c). Note that J is a global opposite Hermitian structure
on M . Let {E1, E2, E3, E4} be a local standard frame in U . Denote by τ ∗

the ∗-scalar curvature of (M,g, J). Also write β = 1
2
√

2
|∇J |. Then dΩ =

−2εβθ4∧θ1∧θ2 and δΩ = 2εβE3, θ = −2εβθ4 where ε ∈ {−1, 1}, D = {X :
iX(Ω − Ω) = 0}. Consequently, the distribution D⊥ on U also extends to
a globally defined distribution. From Lemma F it follows that ∇E4E4 = 0,
∇α ‖ E4 and the foliation D is totally geodesic. Since R(Ω,Ω) = 1

2τ
∗

and R(Ω,Ω) = 1
2τ
∗ we get R1212 + R3434 = − 1

4 (τ∗ + τ∗). Since (M,g)
is an Einstein space we have R1212 = R3434. Thus we get KD = −R3434 =
1
8 (τ∗+τ∗) where KD denotes the sectional curvature of leaves of the foliation
D. Note that τ∗ is non-constant, the distribution S = span{E1, E2, E3}
is involutive and its leaves are M(c) = τ ∗−1(c). Choose local coordinates
(t, x1, x2, x3) such that E4 = ∂/∂t. Then c = c(t) and we can parameterize
M(c) as M(c(t)) = M(t).

We shall show that every leaf of S is a 3-dimensional naturally reductive
space P0 which is the total space of a Riemannian submersion over a Rie-
mannian surface of constant sectional curvature. Note that P0 is one of the
Lie groups SU(2),H,SL(2,R) with a left invariant metric or is a Rieman-
nian product R ×M0 where H denotes the Heisenberg group and M0 is a
(real) surface of constant curvature K ∈ {−1, 0, 1}. In view of the results
of Pedersen and Tod [P-T] it is enough to show that every leaf S of S is an
A-manifold.
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Using the formula

Rijks = g(R(Ei, Ej)Ek, Es)

= EiΓ
s
jk − EjΓ sik + Γ pjkΓ

s
ip − Γ pikΓ sjp − (Γ pij − Γ pji)Γ spk,

in view of E1α = E2α = E3α = 0 we obtain

R1313 = R2424 = Γ 4
11Γ

4
33 − (Γ 3

12)2,(3.1.a)

R2323 = R1414 = Γ 4
11Γ

4
33 − (Γ 3

12)2,(3.1.b)

R3434 = R1212 = E2
4 lnα− E4α+ (Γ 4

33)2,(3.1.c)

R1234 = 2Γ 4
11Γ

3
12 − 2Γ 3

12Γ
4
33.(3.1.d)

Denote by RS the curvature tensor of the leaf S of foliation S. Then

g(R(X,Y )Z,W ) = g(RS(X,Y )Z,W ) + g(A(X,Z), A(Y,W ))

− g(A(Y,Z), A(X,W ))

where A denotes the second fundamental form of the hypersurface S. Since
also R(E3, E4)J = 0 we obtain

R3413 = R3424 = R3423 = R3424 = R1213(3.2)

= R1224 = R1223 = R1224 = 0.

It is easy to see that %S(E1, E3) = %S(E2, E3) = %S(E1, E2) = 0 where %S is
the Ricci tensor of the hypersurface S. We also have

RS
1212 = R1212 − Γ 4

11Γ
4
22 = R1212 − (Γ 4

11)2,(3.3a)

RS
1313 = R1313 − Γ 4

11Γ
4
33,(3.3b)

RS
2323 = R2323 − Γ 4

22Γ
4
33.(3.3c)

Note that from Lemma C(d) and (2.19) we have

(3.4) Γ 3
12 =

α− εβ
2

, Γ 4
11 =

α+ εβ

2
.

Consequently, the Ricci tensor of (S, g|S) has two eigenvalues λ, µ such that

λ = %S(E3, E3) = 2(Γ 3
12)2 = 2

(
α− εβ

2

)2

,(3.5a)

µ = %S(E1, E1) = %S(E2, E2)(3.5b)

= (Γ 4
11)2 − (Γ 4

33)2 + E4α− E2
4 lnα+ (Γ 3

12)2

= (Γ 4
11)2 +

τ∗ + τ∗

8
+ (Γ 3

12)2.

It is clear that λ, µ are constant on every leaf S of the foliation S. We
show that (S, g|S) is an A-manifold. It is enough to show (see [J]) that
∇S
E1
E1,∇S

E2
E2, ∇S

E1
E2 +∇S

E2
E1 ∈ D⊥ and ∇S

E3
E3 = 0 where ∇S is the

induced Levi-Civita connection of (S, g|S). The above conditions are conse-
quences of the equations Γ 3

11 = Γ 3
22 = Γ 3

12 + Γ 3
21 = Γ 1

33 = Γ 2
33 = 0, which
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hold true in view of Lemma C and (2.16). It follows that every leaf (S, g|S)
of S is a 3-dimensional A-manifold. Note that it also means that the metric
fg of the foliated manifold (M,D, fg) is bundle-like for a positive function
f satisfying the equation E4 ln f = 2Γ 4

11 = α + εβ. Note that the differen-
tial form ω = (α + εβ)θ4 is well defined and closed (note that dθ4 = 0),
thus (we can assume H1(M,R) = 0) there exists a function F ∈ C∞(M)
such that dF = ω. We take f = expF . It follows that the distribution
D⊥ is geodesic in (M,fg) (i.e. ∇fXX ∈ Γ (D⊥) if X ∈ Γ (D⊥) where ∇f
is the Levi-Civita connection of (M,fg)), which means that (M,fg,D) has
a bundle-like metric. Thus (locally) M is a locally trivial bundle over the
space of leaves M/D and the natural projection p : M →M/D is a Rieman-
nian submersion (this is a consequence of [M]), precisely for every x0 ∈ M
there exists a neighborhood U of x0 such that p : (U, fg) → (U/D, g∗) is a
Riemannian submersion onto the Riemannian manifold (U/D, g∗) with the
induced Riemannian metric g∗.

It follows that the manifold M(t) is isometric to a locally trivial bundle
over (M0, b(t)2can) (where can denotes the standard metric on M0), i.e.
it is the total space of a Riemannian submersion p : M(c) → M0 with a
metric

gc = a(t)2η ⊗ η + b(t)2p∗can,

where η = 1
2αδΩ and a(t), b(t) depend only on t. Note that the horizontal

space of any such fibration coincides with D⊥. Thus M has a metric

(3.6) g = dt2 + a(t)2η ⊗ η + b(t)2p∗can,

where a, b are smooth functions depending on t. Note that a = l0|X| =
l0κ
−1/3α for some constant l0 ∈ R+. Every A-manifoldM(t) with the metric

gt = a(t)2η ⊗ η + b(t)2p∗can admits a 3-dimensional group G of isometries
whose Lie algebra g consists of lifts of Killing fields on (M0, can) (they
correspond to the Killing fields on G with any left invariant metric which
are right invariant vector fields on G). Thus from (3.6) it is clear that M
admits a 3-dimensional group of isometries G such that G preserves every
M(t) and [X,Y ] = 0 (where X = J(∇κ−1/3)) for any Killing vector field
Y ∈ g. It is easy to see that the action of G extends to M and the dimension
of the isometry group Iso(M,g) of (M,g) is at least 4.

(c)⇒(a). This is trivial, from (∗) it follows that the group G of isometries
of P0 acts as isometries on M with orbits P0.

(a)⇒(b). Since W+ 6= 0 it follows that every isometry of M is holomor-
phic. Consequently, Xα = 0 if X ∈ iso(M). Analogously X|W+|2 = 0, thus
Xκ = 0 if X ∈ iso(M). Since θ = − 2

3d ln |κ| it follows that ∇α ‖ θ]. Thus
from Lemma F we get (b).

As a corollary from the above theorem we get
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Theorem 2. Let (M,g) be an oriented Einstein 4-manifold. Assume
that (M,g) is not locally symmetric. Then the following conditions are equiv-
alent :

(a) (M,g) is (locally) of cohomogeneity 1 (at least on an open dense
subset of M), with the group Iso(M) of (local) isometries of dimension at
least 4.

(b) (M,g) admits (up to change of orientation and up to two-fold cov-
ering) a compatible non-Kähler Hermitian structure J such that |W+| 6= 0
and the natural opposite almost Hermitian structure J is Hermitian.

(c) (M,g) admits (up to change of orientation and up to two-fold cover-
ing) a compatible non-Kähler Hermitian structure J such that the natural
opposite almost Hermitian structure J is Hermitian.

(d) An open dense subset (U, g|U ) ⊂ (M,g) is locally isometric to the

manifold M̃ = R × P0, where (P0, g0) is a 3-dimensional A-manifold (the
total space of a Riemannian submersion p : P0 → M0 over a Riemannian
surface M0 of constant sectional curvature K ∈ {−1, 0, 1}) with a metric

g = dt2 + a(t)2θ2 + b(t)2p∗gcan,

where g0 = θ2 + p∗gcan, θ is the connection form of P0 such that p∗dθ =
c volcan, c ∈ R and volcan is the volume form of the canonical metric on M0.

Proof. (a)⇒(b). From [De-1, Lemma 9] it follows that (M,g) has both
tensors W+,W− degenerate. Since (M,g) is not locally symmetric it fol-
lows from Proposition 1 that at least one of the functions |W+|, |W−| is
not constant on M . Choose an orientation such that |W+| is not constant,
in particular does not vanish on M . Then (M,g) admits a positive Hermi-
tian non-Kähler structure J (which corresponds to a simple eigenvalue of
W+) and from Theorem 1 it follows that it also admits an opposite nat-
ural Hermitian structure J . Note that J is defined on an open and dense
subset U ⊂ M . If |W−| 6= 0 then J extends to the whole of M as a simple
eigenvalue of W− and if |W−| is a non-zero constant then J is Kähler.

(b)⇒(c), (c)⇒(d) and (d)⇒(a) are now trivial, where we take U = {x ∈
M : |∇Jx| 6= 0}. Note that the metric (∗) always has at least 4-dimensional
group of isometries and if it is not locally symmetric then it is of cohomo-
geneity 1. Note also that if (M,g) admits a compatible non-Kähler Hermitian
structure J such that the natural opposite almost Hermitian structure J is
Hermitian and W+ = 0 then W− 6= 0 and J extends to a global non-Kähler
Hermitian structure such that the natural opposite structure for J is the
Hermitian structure J (see Lemma G), so (b) is equivalent to (c).

Remark. Note that there are many examples of non-compact Einstein-
Hermitian manifolds with Hermitian natural opposite structure J . For ex-
ample, all the examples of A. Derdziński (see [De-2]) of self-dual Einstein-
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Hermitian structures on C2 have globally defined and Hermitian natural
opposite almost Hermitian structure J (J is given by Je1 = −e3, Je2 = e4

in Derdziński’s notation, clearly D = span {e1, e3}). Note that for arbitrary
functions a, b the metric (∗) has two Hermitian opposite structures given by
the foliation D = span{∂/∂t, θ]} and distribution D⊥. The foliation D is to-
tally geodesic and is contained in the nullity of J and J . From our theorems
it follows that all such examples are generally of the form R×P where P is a
3-dimensional naturally reductive manifold (the total space of a Riemannian
submersion p : P → M0 over a Riemannian surface (M0, can) of constant
curvature K ∈ {−1, 0, 1}) with the metric g = dt2 + a(t)2η⊗ η+ b(t)2p∗can
where the functions a, b satisfy a system of ODE’s obtained by means of the
O’Neill formulas so that the Einstein condition is satisfied.
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