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On extremal holomorphically contractible families

by Marek Jarnicki (Kraków), Witold Jarnicki (Kraków)
and Peter Pflug (Oldenburg)

Abstract. We prove (Theorem 1.2) that the category of generalized holomorphically
contractible families (Definition 1.1) has maximal and minimal objects. Moreover, we
present basic properties of these extremal families.

1. Introduction. Main results. First recall the standard definition
of a holomorphically contractible family (cf. [Jar-Pfl 1993, §4.1]). A family
(dG)G of functions

dG : G×G→ R+ := [0,∞),

where G runs over all domains G ⊂ Cn with arbitrary n ∈ N, is said to be
holomorphically contractible if the following two conditions are satisfied:

• for the unit disc E we have dE(a, z) = mE(a, z) :=
∣∣ z−a

1−az
∣∣ for a, z ∈ E,

• for any domains G ⊂ Cn and D ⊂ Cm, every holomorphic mapping
F : G→ D is a contraction with respect to dG and dD, i.e.

dD(F (a), F (z)) ≤ dG(a, z), a, z ∈ G.
Let us recall some important holomorphically contractible families:

• Möbius pseudodistance:

c∗G(a, z) := sup{mE(f(a), f(z)) : f ∈ O(G,E)}
= sup{|f(z)| : f ∈ O(G,E), f(a) = 0},

• higher order Möbius function:

m
(k)
G (a, z) := sup{|f(z)|1/k : f ∈ O(G,E), ordaf ≥ k}, k ∈ N,

where ordaf denotes the order of zero of f at a,
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• pluricomplex Green function:

gG(a, z) := sup{u(z) : u : G→ [0, 1), log u ∈ PSH(G),

∃C=C(u)>0 ∀w∈G : u(w) ≤ C‖w − a‖},
where PSH(G) denotes the family of all functions plurisubharmonic on G,
• Lempert function:

k̃∗G(a, z) := inf{mE(λ, µ) : ∃ϕ∈O(E,G) : ϕ(λ) = a, ϕ(µ) = z}
= inf{|µ| : ∃ϕ∈O(E,G) : ϕ(0) = a, ϕ(µ) = z}.

It is well known that

c∗G = m
(1)
G ≤ m

(k)
G ≤ gG ≤ k̃∗G,

and for any holomorphically contractible family (dG)G we have

(∗) c∗G ≤ dG ≤ k̃∗G,
i.e. the Möbius family is minimal and the Lempert family is maximal.

The Green function gG may be generalized as follows. Let p : G → R+
be an arbitrary function. Define

gG(p, z) := sup{u(z) : u : G→ [0, 1), log u ∈ PSH(G),

∀a∈G ∃C=C(u,a)>0 ∀w∈G : u(w) ≤ C‖w − a‖p(a)}, z ∈ G (1);

obviously the above growth condition is trivially satisfied at all points a ∈ G
such that p(a) = 0. We have gG(0, ·) ≡ 1. The function gG(p, ·) is called
the generalized pluricomplex Green function with poles (weights) p. Observe
that if the set

|p| := {a ∈ G : p(a) > 0}
is not pluripolar, then gG(p, ·) ≡ 0.

In the case where |p| is finite, the function gG(p, ·) was introduced by
P. Lelong in [Lel 1989].

For p = χA = the characteristic function of a set A ⊂ G, we put
gG(A, ·) := gG(χA, ·). Obviously, gG({a}, ·) = gG(a, ·) for a ∈ G.

The generalized Green function was recently studied by many authors,
e.g. [Car-Wie 2003], [Com 2000], [Edi 2002], [Edi-Zwo 1998], [Lár-Sig 1998].

Using the same idea, one can generalize the Möbius function. For

p : G→ Z+ := {0, 1, 2, . . .}
we put

mG(p, z) := sup{|f(z)| : f ∈ O(G,E), ordaf ≥ p(a), a ∈ G}, z ∈ G.
The function mG(p, ·) is called the generalized Möbius function with
weights p. Clearly mG(0, ·) ≡ 1. Observe that if the set |p| is not thin,

(1) Here 00 := 1.
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then mG(p, ·) ≡ 0. Similarly to the case of the generalized Green function
we put mG(A, ·) := mG(χA, ·), A ⊂ G. We get mG({a}, ·) = c∗G(a, ·), a ∈ G.

Moreover, if |p| = {a} and p(a) = k, then mG(p, ·) = [m(k)
G (a, z)]k.

It is clear that mG(p, ·) ≤ gG(p, ·) (for any p : G → Z+). Some other
properties of gG(p, ·) and mG(p, ·) will be presented in §2.

Definition 1.1. A family d = (dG)G of functions

dG : RG+ ×G→ R+

is said to be a generalized holomorphically contractible family if the following
three axioms are satisfied:

(E)
∏
a∈E [mE(a, z)]p(a) ≤ dE(p, z) ≤ infa∈E [mE(a, z)]p(a) for every (p, z)
∈ RE+ × E (2),

(H) for any F ∈ O(G,D) and q : D → R+ we have

dD(q, F (z)) ≤ dG(q ◦ F, z) for every z ∈ G,

(M) for any p, q : G→ R+, if p ≤ q, then dG(q, ·) ≤ dG(p, ·).
If in the above definition one considers only integer-valued weights (as in

the case of the generalized Möbius function), then we get the definition of a
generalized holomorphically contractible family with integer-valued weights.

Put dG(A, ·) := dG(χA, ·), A ⊂ G, dG(a, ·) := dG({a}, ·), a ∈ G.

One can prove that the generalized Green and Möbius functions satisfy
all the above axioms (cf. §2).

The main result of the paper is the following theorem.

Theorem 1.2. In the category of generalized holomorphically contrac-
tible families there exists a minimal and a maximal object. They are given
by the following formulae:

dmin
G (p, z) := sup

{ ∏

µ∈f(G)

[mE(µ, f(z))]supp(f−1(µ)) : f ∈ O(G,E)
}

= sup
{ ∏

µ∈f(G)

|µ|supp(f−1(µ)) : f ∈ O(G,E), f(z) = 0
}
,

dmax
G (p, z) := inf{[k̃∗G(a, z)]p(a) : a ∈ G}

= inf{|µ|p(ϕ(µ)) : ϕ ∈ O(E,G), ϕ(0) = z, µ ∈ E}.

Observe that if |p| = {a} and p(a) = k, then dmin
G (p, ·) = [c∗G(a, ·)]k and

dmax
G (p, ·) = [k̃∗G(a, ·)]k. Moreover, for A ⊂ G we get

(2) We put
∏
a∈A h(a) := inf{∏a∈B h(a) : B ⊂ A, #B <∞} for h : A→ [0, 1].
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dmin
G (A, z) = sup

{ ∏

µ∈f(A)

mE(µ, f(z)) : f ∈ O(G,E)
}

= sup
{ ∏

µ∈f(A)

|µ| : f ∈ O(G,E), f(z) = 0
}

(3),

dmax
G (A, z) = inf{k̃∗G(a, z) : a ∈ A}.

The function dmin
G (resp. dmax

G ) may be considered as a generalization of the
Möbius function c∗G (resp. Lempert function k̃∗G). The proof of Theorem 1.2
will be given in §3. Some properties of dmin

G and dmax
G will be presented

in §4.

2. Basic properties of gG and mG. Directly from the definitions we
conclude that the systems (gG)G and (mG)G satisfy (H) and (M) and the
following conditions (to simplify formulations we will write dG if a given
property holds simultaneously for mG and gG):

Property 2.1. We have

dG(p, ·)dG(q, ·) ≤ dG(p+ q, ·) ≤ min{dG(p, ·), dG(q, ·)}.
In particular , gG(p, ·) ≤ infa∈G[gG(a, ·)]p(a) ≤ dmax

G (p, ·).

Property 2.2. If the set |p| is finite, then
∏

a∈G
[dG(a, ·)]p(a) ≤ dG(p, ·).

Property 2.3. We have

gG(p, z) = sup{u(z) : u : G→ [0, 1), log u ∈ PSH(G),

u(·) ≤ inf
a∈G

[gG(a, ·)]p(a)}, z ∈ G.

Property 2.4. mG(p, ·) ∈ C(G).

Proof. The family {f ∈ O(G,E) : ordaf ≥ p(a), a ∈ G} is equicontinu-
ous.

Property 2.5. If p 6≡ 0, then for any z0 ∈ G there exists an extremal
function for mG(p, z0), i.e. a function fz0 ∈ O(G,E) with ordafz0 ≥ p(a),
a ∈ G, and mG(p, z0) = |fz0(z0)|.

Property 2.6. log dG(p, ·) ∈ PSH(G).

Proof. Argue as in the one-pole case (cf. [Jar-Pfl 1993, §§2.5, 4.2]).

Property 2.7. If Gk ↗ G and pk ↗ p, then dGk(pk, z) ↘ dG(p, z)
for z ∈ G.

(3) In fact, dmin
G (A, ·) = mG(A, ·) (cf. Corollary 3.1(c)).
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Proof. It is clear that the sequence is monotone and the limit function
u satisfies u ≥ dG(p, ·).

In the case of the generalized Green function, using 2.6, we have
u ∈ PSH(G). By 2.3 it remains to observe that u(z) ≤ infa∈G[gG(a, z)]p(a)

for z ∈ G (because gGk(a, z)↘ gG(a, z) for every (a, z) ∈ G×G).
The case of the generalized Möbius function is simpler and it follows

from 2.5 and a Montel argument.

Property 2.8. gG(p, ·) = inf{gG(q, ·) : q ≤ p, #|q| <∞}.
Proof. Let u := inf{gG(q, ·) : q ≤ p, #|q| <∞}. Obviously gG(p, ·) ≤ u.

By 2.3, to prove the opposite inequality we only need to show that log u is
plurisubharmonic. Observe that

gG(max{q1, . . . , qN}, ·) ≤ min{gG(q1, ·), . . . , gG(qN , ·)}.
We finish the proof by applying the following general result.

Lemma 2.9. Let (vi)i∈A ⊂ PSH(Ω) (Ω ⊂ Cn) be such that for any
i1, . . . , iN ∈ A there exists an i0 ∈ A such that vi0 ≤ min{vi1 , . . . , viN }.
Then v := infi∈A vi ∈ PSH(Ω).

Proof. It suffices to consider the case n = 1. Take a disc ∆a(r) b Ω,
ε > 0, and a continuous function w ∈ C(∂∆a(r)) such that w ≥ v on ∂∆a(r).
We want to show that v(a) ≤ (2π)−1

� 2π
0 w(a + reiθ) dθ + ε. For any point

b ∈ ∂∆a(r) there exists an i = i(b) ∈ A such that vi(b) < w(b) + ε. Hence
there exists an open arc I = I(b) ⊂ ∂∆a(r) with b ∈ I such that vi(λ) <
w(λ)+ε for λ ∈ I. By a compactness argument, we find b1, . . . , bN ∈ ∂∆a(r)
such that ∂∆a(r) =

⋃N
j=1 I(bj). By assumption, there exists an i0 ∈ A such

that vi0 ≤ min{vi(b1), . . . , vi(bN )}. Then

v(a) ≤ vi0(a) ≤ 1
2π

2π�

0

vi0(a+ reiθ) dθ

≤ 1
2π

2π�

0

w(a+ reiθ) dθ + ε.

Property 2.10. We have∏

a∈G
[gG(a, ·)]p(a) ≤ gG(p, ·).

Proof. Use 2.2 and 2.8.

Property 2.11. If G ⊂ C, then

gG(p, z) =
∏

a∈G
[gG(a, z)]p(a), z ∈ G.

In particular , gE(p, z) =
∏
a∈E [mE(a, z)]p(a) for z ∈ E.
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Proof. By 2.8 we may assume that the set |p| is finite, and by 2.7,
that G b C is regular with respect to the Dirichlet problem. Let u :=∏
a∈|p|[gG(a, ·)]p(a). Then log u is subharmonic on G and harmonic on G\|p|.

The function v := log gG(p, ·)− log u is locally bounded from above in G and
lim supz→ζ v(z) ≤ 0 for ζ ∈ ∂G. Consequently, v extends to a subharmonic
function on G, and by the maximum principle, v ≤ 0 on G, i.e. gG(p, ·) ≤ u
on G. The opposite inequality follows from 2.10.

Property 2.12. For any p : G→ Z+,

mG(p, ·) = inf{mG(q, ·) : q : G→ Z+, q ≤ p, #|q| <∞}.
In particular , for any p : E → Z+,

mE(p, z) = gE(p, z) =
∏

a∈E
[mE(a, z)]p(a), z ∈ E.

Proof. The case where |p| is finite is trivial; the case where it is countable
follows from 2.7. In the general case let Ak := {a ∈ G : p(a) = k} and let Bk
be a countable (or finite) dense subset of Ak for k ∈ Z+. Put B :=

⋃∞
k=0Bk

and p′ := p · χB . Then p′ ≤ p, the set |p′| is countable, and mG(p, ·) ≡
mG(p′, ·). Consequently, the result reduces to the countable case.

Proposition 2.13 ([Edi-Zwo 1998], [Lár-Sig 1998]). Let G,D ⊂ Cn
be domains and let F : G → D be a proper holomorphic mapping. Let
q : D → R+. Assume that detF ′(a) 6= 0 for any a ∈ G such that
q(F (a)) > 0. Then

gD(q, F (z)) = gG(q ◦ F, z), z ∈ G.
In particular , if B ⊂ D is such that detF ′(a) 6= 0 for any a ∈ F−1(B),
then

gD(B,F (z)) = gG(F−1(B), z), z ∈ G.
Corollary 2.14. Let A1, . . . , An ⊂ E be finite sets. Put

Fj(λ) :=
∏

a∈Aj

λ− a
1− aλ, λ ∈ E, j = 1, . . . , n,

F (z) := (F1(z1), . . . , Fn(zn)), z = (z1, . . . , zn) ∈ En.
Then

mEn(A1 × . . .× An, z) ≤ gEn(A1 × . . .× An, z)

= gEn(0, F (z)) = max{|Fj(zj)| : j = 1, . . . , n}
= max{mE(A1, z1), . . . ,mE(An, zn)}
≤ mEn(A1 × . . .× An, z), z = (z1, . . . , zn) ∈ En.
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Proposition 2.15 ([Car-Wie 2003]). Let p : En → R+ be such that
|p| = {a1, . . . , aN} ⊂ E × {0}n−1. Put kj := p(aj), j = 1, . . . , N , and
assume that k1 ≥ . . . ≥ kN . Then

gEn(p, z) =
N∏

j=1

u
kj−kj+1
j (z), z ∈ En,

where kN+1 := 0 and

uj(z) := max{mE(a1,1, z1) . . .mE(aj,1, z1), |z2|, . . . , |zn|}
= max{mE({a1,1, . . . , aj,1}, z1), |z2|, . . . , |zn|}
= gEn({a1, . . . , aj}, z), j = 1, . . . , N.

If k1, . . . , kN ∈ N, then mEn(p, ·) = gEn(p, ·).

Observe that if k1 = . . . = kN = 1, then the above formula coincides
with that from Corollary 2.14.

Notice that even for the simplest case not covered by Proposition 2.15:
n = N = 2, a1 = (0, 0), a2 ∈ (E∗)2, k1 = k2 = 1, an effective formula for
gEn(p, ·) is not known.

Recall that by the Lempert theorem (cf. [Jar-Pfl 1993, Ch. 8]), if G ⊂ Cn
is convex, then c∗G = k̃∗G, and consequently, by (∗), all holomorphically con-
tractible families coincide on G. The following example shows that this is
not true in the category of generalized holomorphically contractible fami-
lies.

Example 2.16 (due to W. Zwonek). Let D :={(z, w)∈C2 : |z|+|w|<1},
At := {(t,

√
t), (t,−

√
t)}, 0 < t� 1. Then

mD(At, (0, 0)) < gD(At, (0, 0)) < dmax
D (At, (0, 0))

for small t.
Indeed, let G := {(z, w) ∈ C2 : |z| +

√
|w| < 1} and let F : D → G,

F (z, w) := (z, w2). Note that F is proper and locally biholomorphic in a
neighborhood of At. Moreover, At = F−1(t, t).

Using Proposition 2.13, we conclude that gD(At, (0, 0)) = gG((t, t), (0, 0)).
Observe that mD(At, (0, 0)) = mG((t, t), (0, 0)). In fact, the inequality

“≥” follows from (H) (applied to F ). The opposite inequality may be proved
as follows. Let f ∈ O(D,E) be such that f |At = 0. Define

f̃(z, w) := 1
2(f(z,

√
w) + f(z,−√w)), (z, w) ∈ G.

Note that f̃ is well defined, |f̃ | < 1, f̃(t, t) = 0, f̃ is continuous, and f̃
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is holomorphic on D ∩ {w 6= 0}. In particular, f̃ is holomorphic on D.
Consequently, |f(0, 0)| = |f̃(0, 0)| ≤ mG((t, t), (0, 0)).

Suppose that mD(Atk , (0, 0)) = gD(Atk , (0, 0)) for a sequence tk ↘ 0.
Then

gG((tk, tk), (0, 0)) = gD(Atk , (0, 0)) = mD(Atk , (0, 0))

= mG((tk, tk), (0, 0)) ≤ gG((tk, tk), (0, 0)), k = 1, 2, . . .

Thus mG((tk, tk), (0, 0)) = gG((tk, tk), (0, 0)), k = 1, 2, . . .
Consequently, using [Jar-Pfl 1993, §2.5], and [Zwo 2000a, Corollary 4.4]

(or [Zwo 2000b, Corollary 4.2.3]), we conclude that

γG((0, 0); (1, 1)) = AG((0, 0); (1, 1)),

where γG (resp. AG) denotes the Carathéodory–Reiffen (resp. Azukawa)
metric of G (cf. [Jar-Pfl 1993, §§2.1, 4.2]). Hence, by Propositions 4.2.7
and 2.2.1(d) from [Jar-Pfl 1993], using the fact that D is the convex en-
velope of G, we get

2 = hD(1, 1) = γG((0, 0); (1, 1)) = AG((0, 0); (1, 1)) = hG(1, 1) =
2

3−
√

5
,

where hD (resp. hG) denotes the Minkowski function for D (resp. G); con-
tradiction.

To prove the inequality gD(At, (0, 0)) < dmax
D (At, (0, 0)), we may argue

as follows. We already know that

gD(At, (0, 0)) = gG((t, t), (0, 0))

≈ gG((0, 0), (t, t)) = hG(t, t) =
2t

3−
√

5
, t ≈ 0.

On the other hand,

dmax
D (At, (0, 0)) = min{k̃∗D((t,−

√
t), (0, 0)), k̃∗D((t,

√
t), (0, 0))}

= min{hD(t,−
√
t), hD(t,

√
t)} = t+

√
t.

It remains to observe that 2t/(3−
√

5) < t+
√
t for small t > 0.

Let δD(At, ·) denote the Coman function for D with poles at At, i.e.

δD(At, (z, w)) = inf{|µ1µ2| : ∃ϕ∈O(E,D) :

ϕ(0) = (z, w), ϕ(µ1) = (t,
√
t), ϕ(µ2) = (t,−

√
t)}, (z, w) ∈ D

(cf. [Com 2000]). It is known that gD(At, ·) ≤ δD(At, ·). Taking ϕ(λ) :=
(λ2/4, λ/2), we easily see that δD(At, (0, 0)) ≤ 4t < t+

√
t = dmax

D (At, (0, 0)),
0 < t� 1. We do not know whether gD(At, (0, 0)) < δD(At, (0, 0)) for small
t > 0.
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3. Proof of Theorem 1.2

Step 1. If (dG)G satisfies (H) and

(E+) dE(p, λ) ≤ dmax
E (p, λ) = inf{[mE(µ, λ)]p(µ) : µ ∈ E}, (p, λ) ∈

RE+ × E, then dG ≤ dmax
G for any G. The same remains true in

the category of contractible families with integer-valued weights.

Proof. We have

dG(p, z)
(H)
≤ inf{dE(p ◦ ϕ, 0) : ϕ ∈ O(E,G), ϕ(0) = z}

(E+)
≤ inf{|µ|p(ϕ(µ)) : ϕ ∈ O(E,G), ϕ(0) = z, µ ∈ E}
= dmax

G (p, z), (p, z) ∈ RG+ ×G.
Step 2. The system (dmax

G )G satisfies (E), (H), and (M).

Proof. (E) and (M) are obvious. To prove (H) let F : G → D be holo-
morphic and let q : D → R+. Then

dmax
D (q, F (z)) = inf{[k̃∗D(b, F (z))]q(b) : b ∈ D}

≤ inf{[k̃∗D(F (a), F (z))]q(F (a)) : a ∈ G}
≤ inf{[k̃∗G(a, z)]q(F (a)) : a ∈ G} = dmax

G (q ◦ F, z), z ∈ G.
Step 3. If (dG)G satisfies (H), (M), and

(E−)
∏

µ∈E
[mE(µ, λ)]p(µ) ≤ dE(p, λ), (p, λ) ∈ RE+ × E,

then dmin
G ≤ dG for any G. The same remains true in the category of con-

tractible families with integer-valued weights.

Proof. Indeed,

dG(p, z)
(M)
≥ sup{dG(q ◦ f, z) : f ∈ O(G,E), q : E → R+, f(z) = 0, p ≤ q ◦ f}
(H)
≥ sup{dE(q, 0) : f ∈ O(G,E), q : E → R+, f(z) = 0, p ≤ q ◦ f}

(E−)
≥ sup

{ ∏

µ∈E
|µ|q(µ) : f ∈ O(G,E), q : E → R+, f(z) = 0, p ≤ q ◦ f

}

≥ sup
{ ∏

µ∈f(G)

|µ|supp(f−1(µ)) : f ∈ O(G,E), f(z) = 0
}

= dmin
G (p, z), (p, z) ∈ RG+ ×G.

Step 4. The system (dmin
G )G satisfies (E), (H), and (M).



192 M. Jarnicki et al.

Proof. (E) and (M) are elementary. To prove (H) let F : G → D be
holomorphic and let q : D → R+. Then

dmin
D (q, F (z)) = sup

{ ∏

µ∈g(D)

[mE(µ, g(F (z))]supq(g−1(µ)) : g ∈ O(D,E)
}

f=g◦F
≤ sup

{ ∏

µ∈f(G)

[mE(µ, f(z))]sup(q◦F )(f−1(µ)) : f ∈ O(G,E)
}

= dmin
G (q ◦ F, z), z ∈ G.

Corollary 3.1. (a) dmin
G ≤ gG ≤ dmax

G and dmin
G ≤ mG ≤ gG ≤ dmax

G
(for integer-valued weights).

(b) dmin
E (p, λ) = gE(p, λ) =

∏
µ∈E [mE(µ, λ)]p(µ) for (p, λ) ∈ RE+ × E.

(c) dmin
G (A, ·) = mG(A, ·) for any A ⊂ G.

Proof. (a) follows from Theorem 1.2.
(b) Using (a) and 2.11 we get
∏

µ∈E
[mE(µ, λ)]p(µ) ≤ dmin

E (p, λ) ≤ gG(p, λ) =
∏

µ∈E
[mE(µ, λ)]p(µ).

(c) Let A ⊂ G. Then

mG(A, z) ≥ dmin
G (A, z)

≥ sup
{ ∏

µ∈f(A)

mE(µ, f(z)) : f ∈ O(G,E), f |A = 0
}

= mG(A, z), z ∈ G.
Example 3.2. Let G := E2, a− :=

(
−1

2 , 0
)
, a+ :=

(1
2 , 0
)
, b :=

(
0, 1

3

)
,

|p| = {a−, a+}, p(a−) = 2, p(a+) = 1. Then dmin
E2 (p, b) < mE2(p, b)

(cf. Corollary 3.1(c)).
Indeed, by Proposition 2.15,

mE2(p, b) = u1(b)u2(b) = max
{1

2 ,
1
3

}
max

{1
2 · 1

2 ,
1
3

}
= 1

2 · 1
3 = 1

6 .

On the other hand,

dmin
E2 (p, b)

= max{sup{|f(a−)|2|f(a+)| : f ∈ O(E2, E), f(b) = 0, f(a−) 6= f(a+)},
sup{|f(b)|2 : f ∈ O(E2, E), f(a−) = f(a+) = 0}}

≤ max{[mE2(a−, b)]2mE2(a+, b), [mE2({a−, a+}, b)]2}

= max
{[

max
{1

2 ,
1
3

}]2 max
{1

2 ,
1
3

}
,
[
mE2

({
− 1

2 ,
1
2

}
× {0}, b

)]2}

= max
{1

8 ,
[

max
{1

2 · 1
2 ,

1
3

}]2} = 1
8 .
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4. Basic properties of dmin
G and dmax

G

Property 4.1. If D ⊂ Cm is a Liouville domain, then

dmin
G×D(p, (z, w)) = dmin

G (p′, z), (z, w) ∈ G×D,
where p′(z) := sup{p(z, w) : w ∈ D}, z ∈ G, and dmin

G (p′, ·) := 0 if there
exists a z0 ∈ G with p′(z0) =∞.

Property 4.2. (a) The functions dmin
G (p, ·) and dmax

G (p, ·) are upper
semicontinuous.

(b) If p : G→ Z+, then dmin
G (p, ·) ∈ C(G) (cf. 2.4).

Proof. (a) The case of dmax
G (p, ·) is obvious. To prove the upper semicon-

tinuity of dmin
G (p, ·), fix a z0 ∈ G and suppose that

dmin
G (p, zk)→ α > β > dmin

G (p, z0)

for some sequence zk → z0. Let fk ∈ O(G,E) be such that fk(zk) = 0
and

∏
µ∈fk(G) |µ|supp(f−1

k (µ)) → α. By a Montel argument we may assume
that fk → f0 locally uniformly in G with f0 ∈ O(G,E), f0(z0) = 0. Since∏
µ∈f0(G) |µ|supp(f−1

0 (µ)) < β, we can find a finite set A ⊂ G such that f0|A is

injective and
∏
a∈A |f0(a)|p(a) < β. Consequently,

∏
a∈A |fk(a)|p(a) < β and

fk|A is injective for k � 1. Finally,
∏
µ∈fk(G) |µ|supp(f−1

k (µ)) < β for k � 1;
contradiction.

(b) In view of (a), it suffices to prove that for every f ∈ O(G,E) the
function uf (z) :=

∏
µ∈f(G)[mE(µ, f(z))]supp(f−1(µ)), z ∈ G, is continuous

on G. Observe that uf (z) = infM
∏
µ∈M [mE(µ, f(z))]kf (µ), where M runs

over all finite sets M ⊂ f(|p|) such that kf (µ) := supp(f−1(µ)) < ∞,
µ ∈ M . Thus uf = infM |hM |, where hM ∈ O(G,E). Consequently, since
the family (hM)M is equicontinuous, the function uf is continuous on G.

Example 4.3. Let p : E × C→ R+ be defined by p(1/k, k) := 1/k2 for
k = 2, 3, . . . , and p(z, w) := 0 otherwise. Notice that |p| is discrete. Then
by 4.1 and Corollary 3.1(b),

dmin
E×C(p, (z, w)) = dmin

E (p′, z) =
∞∏

k=2

[mE(1/k, z)]1/k
2
, (z, w) ∈ E × C.

In particular, dmin
E×C(p, ·) is discontinuous at (0, w) ∈ E × C \ |p|.

Property 4.4 (cf. 2.5). If #|p| < ∞, then for any z0 ∈ G there exists
an extremal function for dmin

G (p, z0), i.e. a function fz0 ∈ O(G,E) with
fz0(z0) = 0 and

∏

µ∈fz0 (G)

|µ|supp(f−1
z0

(µ)) = dmin
G (p, z0).



194 M. Jarnicki et al.

Proof. Fix a z0 ∈ G and let fk ∈ O(G,E) with fk(z0) = 0 be such that

αk :=
∏

µ∈fk(G)

|µ|supp(f−1
k (µ)) → α := dmin

G (p, z0).

Let Ak ⊂ |p| be such that fk|Ak is injective, fk(Ak) = fk(|p|), and p(a) =
supp(f−1

k (fk(a))) for a ∈ Ak. Thus αk =
∏
a∈Ak |fk(a)|p(a). We may as-

sume that Ak = B is independent of k and for any a ∈ B the fiber
Ba := f−1

k (fk(a)) ∩ |p| is also independent of k. Moreover, we may assume
that fk → f0 locally uniformly in G. Then f0 ∈ O(G,E), f0(z0) = 0, and∏
a∈B |f0(a)|p(a) = α. Observe that f0(B) = f0(|p|). Let B0 ⊂ B be such

that f0|B0 is injective and f0(B0) = f0(B). We have

α ≥
∏

µ∈f0(|p|)
|µ|supp(f−1

0 (µ)) =
∏

µ∈f0(B0)

|µ|supp(f−1
0 (µ))

=
∏

a∈B0

|f0(a)|max{p(b) :b∈B, f0(b)=f0(a)} ≥
∏

a∈B
|f0(a)|p(a) = α.

Property 4.5. log dmin
G (p, ·) ∈ PSH(G) (cf. 2.6).

Proof. By 4.2(a), we only need to show that for any f ∈ O(G,E) the
function uf (z) :=

∏
µ∈f(G)[mE(µ, f(z))]supp(f−1(µ)), z ∈ G, is log-pluri-

subharmonic on G. The proof of 4.2 shows that uf = infM vM , where vM is
a log-plurisubharmonic function given by the formula

vM :=
∏

µ∈M
[mE(µ, f(z))]kf (µ)

and M runs over a family of finite sets as in the proof of 4.2. Observe that
vM1∪M2 ≤ min{vM1 , vM2}. It remains to apply Lemma 2.9.

Property 4.6. If Gk ↗ G and pk ↗ p, then

dmin
Gk

(pk, z)↘ dmin
G (p, z), dmax

Gk
(pk, z)↘ dmax

G (p, z), z ∈ G.
Proof. By (H) and (M) the sequences are monotone and for the limit

functions u we have u ≥ dmin
G (p, ·) (resp. u ≥ dmax

G (p, ·)). Fix a z0 ∈ G.
In the case of the minimal family suppose that u(z0) > α > dmin

G (G, z0).
Let fk ∈ O(Gk, E) be such that fk(z0) = 0 and

∏

µ∈fk(Gk)

|µ|suppk(f−1
k (µ)) → u(z0).

By a Montel argument we may assume that fk → f0 locally uniformly in G
with f0 ∈ O(G,E), f0(z0) = 0. Since

∏
µ∈f0(G) |µ|supp(f−1

0 (µ)) < α, we can

find a finite set A ⊂ G such that f |A is injective and
∏
a∈A |f0(a)|p(a) < α.

Consequently,
∏
a∈A |fk(a)|pk(a) < α and fk|A is injective for k � 1. Finally,∏

µ∈fk(Gk) |µ|suppk(f−1
k (µ)) < α for k � 1; contradiction.



Holomorphically contractible families 195

In the case of the maximal family for any a ∈ G and ε > 0 there exists
a k(a, ε) ∈ N such that z0, a ∈ Gk, k̃∗Gk(a, z0) ≤ k̃∗G(a, z0) + ε, and pk(a) ≥
p(a)− ε for k ≥ k(a, ε). Hence

inf
k∈N

dmax
Gk

(pk, z0) = inf
k∈N : a∈Gk

[k̃∗Gk(a, z0)]pk(a)

≤ inf
a∈G

inf{[k̃∗G(a, z0) + ε]pk(a) : 0 < ε� 1, k ≥ k(a, ε)}

≤ inf
a∈G

inf{[k̃∗G(a, z0) + ε]p(a)−ε : 0< ε� 1}= dmax
G (p, z0).

Example 4.7. Let G := {z ∈ Cn : |zα| < 1}, where α = (α1, . . . , αn) ∈
Nn with α1, . . . , αn relatively prime. Then

dmin
G (p, z) = dmin

E (p′, zα) =
∏

µ∈E
[mE(µ, zα)]p

′(µ), z ∈ G,

where p′(λ) = sup{p(a) : aα = λ} for λ ∈ E, and dmin
E (p′, ·) := 0 if there

exists a λ0 ∈ E with p′(λ0) =∞.
Indeed, it is known that any function f ∈ O(G,E) has the form f = g◦Φ,

where Φ(z) := zα and g ∈ O(E,E) (cf. [Jar-Pfl 1993, §4.4]. Thus

dmin
G (p, z) = sup

{ ∏

µ∈g(Φ(G))

[mE(µ, g(Φ(z)))]supp(Φ−1(g−1(µ))) : g ∈ O(E,E)
}

= sup
{ ∏

µ∈g(E)

[mE(µ, g(Φ(z)))]supp′(g−1(µ)) : g ∈ O(E,E)
}

= dmin
E (p′, Φ(z)).

5. Product property. Let d = (dG)G be a generalized holomorphi-
cally contractible family with integer-valued weights. We say that d has the
product property if

(P) dG×D(A×B, (z, w)) = max{dG(A, z), dD(B,w)}, (z, w) ∈ G×D,
for any domains G ⊂ Cn, D ⊂ Cm and for any sets ∅ 6= A ⊂ G,
∅ 6= B ⊂ D. Notice that the inequality “≥” follows from (H) applied to
the projections G × D → G, G × D → D. The definition applies to the
standard holomorphically contractible families and means that

dG×D((a, b), (z, w)) = max{dG(a, z), dD(b, w)}, (a, b), (z, w) ∈ G×D.
It is well known that the families (k̃∗G)G, (c∗G)G, (gG)G have the product
property (cf. [Jar-Pfl 1993, Ch. 9], [Edi 1997], [Edi 1999], [Edi 2001]).

Moreover, it is known that the higher order Möbius functions (m(k)
G )G

with k ≥ 2 fail the product property (cf. [Jar-Pfl 1993, Ch. 9]).
Thus it is natural to ask whether the minimal and maximal families have

the product property.

Proposition 5.1. The system (dmax
G )G has the product property.
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Proof. Fix (z0, w0) ∈ G×D and ε > 0. Let (a, b) ∈ A× B be such that
k̃∗G(a, z0) ≤ dmax

G (A, z0) + ε, k̃∗D(b, w0) ≤ dmax
G (B,w0) + ε. Then using the

product property for (k̃∗G)G, we get

dmax
G×D(A×B, (z0, w0)) ≤ k̃∗G×D((a, b), (z0, w0))

= max{k̃∗G(a, z0), k̃∗D(b, w0)}
≤ max{dmax

G (A, z0), dmax
D (B,w0)}+ ε.

We do not know whether the system (dmin
G )G has the product property. So

far we have been able to handle only the case where #B = 1 (see Proposi-
tion 5.3). Recall that dmin

G (A, ·) = mG(A, ·) (Corollary 3.1(c)).

Proposition 5.2. Assume that for any n ∈ N, the system (mG)G has
the following special product property :

(P0) |Ψ(z, w)| ≤ (max
G×D

|Ψ |) max{mG(A, z),mD(B,w)}, (z, w) ∈ G×D,

where G,D ⊂ Cn are balls with respect to arbitrary C-norms, A ⊂ D, B ⊂ G
are finite and non-empty , Ψ(z, w) :=

∑n
j=1 zjwj , and Ψ |A×B = 0. Then the

system (mG)G has the product property (P) in full generality. Moreover , if
(P0) holds with #B = 1, then (P) holds with #B = 1.

Proof (cf. [Jar-Pfl 1993, the proof of Th. 9.5]). Fix arbitrary domains
G ⊂ Cn, D ⊂ Cm, non-empty sets A ⊂ G, B ⊂ G, and (z0, w0) ∈ G × D.
We have to prove that for any F ∈ O(G×D,E) with F |A×B = 0,

|F (z0, w0)| ≤ max{mG(A, z0),mD(B,w0)}.
By 2.12, we may assume that A,B are finite.

Let (Gν)∞ν=1, (Dν)∞ν=1 be sequences of relatively compact subdomains of
G and D, respectively, such that A∪{z0} ⊂ Gν ↗ G, B ∪{w0} ⊂ Dν ↗ D.
By 2.7, it suffices to show that

|F (z0, w0)| ≤ max{mGν (A, z0),mDν (B,w0)}, ν ≥ 1.

Fix a ν0 ∈ N and let G′ := Gν0 , D′ := Dν0 . It is well known that F may
be approximated locally uniformly in G×D by functions of the form

(∗∗) Fs(z, w) =
Ns∑

µ=1

fs,µ(z)gs,µ(w), (z, w) ∈ G×D,

where fs,µ ∈ O(G), gs,µ ∈ O(D), s ≥ 1, µ = 1, . . . , Ns. Notice that Fs → 0
uniformly on A×B. Using the Lagrange interpolation formula, we find poly-
nomials Ps : Cn × Cm → C such that Ps|A×B = Fs|A×B and Ps → 0 locally
uniformly in Cn×Cm. The functions F̂s := Fs−Ps, s ≥ 1, also have the form
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(∗∗) and F̂s → F locally uniformly in G×D. Hence, without loss of general-
ity, we may assume that Fs|A×B = 0 for s ≥ 1. Letms := max{1, ‖Fs‖G′×D′}
and F̃s := Fs/ms, s ≥ 1. Note that ms → 1, and therefore F̃s → F uniformly
on G′ ×D′. Consequently, we may assume that Fs(G′ ×D′) b E for s ≥ 1.

It is enough to prove that

|Fs(z0, w0)| ≤ max{mG′(A, z0),mD′(B,w0)}, s ≥ 1.

Fix an s = s0 ∈ N and let N := Ns0 , fµ := fs0,µ, gµ := gs0,µ, µ =
1, . . . , N . Let f := (f1, . . . , fN ) : G→ CN and g := (g1, . . . , gN ) : D → CN .
Put

K := {ξ = (ξ1, . . . , ξN ) ∈ CN :

|ξµ| ≤ ‖fµ‖G′ , µ = 1, . . . , N, |Ψ(ξ, g(w))| ≤ 1, w ∈ D′}.
It is clear that K is an absolutely convex compact subset of CN with
f(G′) ⊂ K. Let

L := {η = (η1, . . . , ηN ) ∈ CN :

|ηµ| ≤ ‖gµ‖D′ , µ = 1, . . . , N, |Ψ(ξ, η)| ≤ 1, ξ ∈ K}.
Then again L is an absolutely convex compact subset of CN , and moreover,
g(D′) ⊂ L.

Let (Wσ)∞σ=1 (resp. (Vσ)∞σ=1) be a sequence of absolutely convex bounded
domains in CN such that Wσ+1 b Wσ and Wσ ↘ K (resp. Vσ+1 b Vσ and
Vσ ↘ L). Put Mσ := ‖Ψ‖Wσ×Vσ , σ ∈ N. By (P0) and by the holomorphic
contractibility applied to the mappings f : G′ →Wσ, g : D′ → Vσ we have

|Fs0(z0, w0)| = |Ψ(f(z0), g(w0))|
≤Mσ max{mWσ(f(A), f(z0)),mV σ(g(B), g(w0))}
≤Mσ max{mG′(f−1(f(A)), z0),mD′(g−1(g(B)), w0)}
≤Mσ max{mG′(A, z0),mD′(B,w0)}.

Letting σ →∞ we get the required result.

Proposition 5.3. The system (mG)G has the product property (P)
whenever #B = 1, i.e. for any domains G ⊂ Cn, D ⊂ Cm, any set A ⊂ G,
and any b ∈ D we have

mG×D(A× {b}, (z, w)) = max{mG(A, z),mD(b, w)}, (z, w) ∈ G×D.
Proof. By Proposition 5.2, we only need to check (P) in the case where

D is a bounded convex domain, A is finite, and B = {b}. Fix (z0, w0) ∈
G × D. Let ϕ : E → D be a holomorphic mapping such that ϕ(0) = b
and ϕ(mD(b, w0)) = w0 (cf. [Jar-Pfl 1993, Ch. 8]). Consider the mapping
F : G× E → G×D, F (z, λ) := (z, ϕ(λ)). Then

mG×D(A× {b}, (z0, w0)) ≤ mG×E(A× {0}, (z0,mG(b, w0))).
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Consequently, it suffices to show that

(†) mG×E(A× {0}, (z0, λ)) ≤ max{mG(A, z0), |λ|}, λ ∈ E.
The case where mG(A, z0) = 0 is elementary: for an f ∈ O(G× E,E) with
f |A×{0} = 0 we have f(z0, 0) = 0 and hence |f(z0, λ)| ≤ |λ| for λ ∈ E
(by the Schwarz lemma). Thus, we may assume that r :=mG(A, z0)> 0.
First observe that it suffices to prove (†) on the circle |λ| = r. Indeed,
if the inequality holds on that circle, then by the maximum principle for
subharmonic functions (applied to the function mG×E(A × {0}, (z0, ·))) it
holds for all |λ| ≤ r. In the annulus {r < |λ| < 1} we apply the maximum
principle to the subharmonic function λ 7→ |λ|−1mG×E(A× {0}, (z0, λ)).

Now fix a λ0 ∈ E with |λ0| = r. Let f be an extremal function for
mG(A, z0) with f |A = 0 and f(z0) = λ0. Consider F : G→ G× E, F (z) :=
(z, f(z)). Then

mG(A× {0}, (z0, λ0)) ≤ mG(A, z0) = max{mG(A, z0), |λ0|},
which completes the proof.
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