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On the Euler characteristic of the real Milnor
fibres of an analytic function

by Piotr Dudziński (Gdańsk)

Abstract. The paper is concerned with the relations between real and complex topo-
logical invariants of germs of real-analytic functions. We give a formula for the Euler char-
acteristic of the real Milnor fibres of a real-analytic germ in terms of the Milnor numbers
of appropriate functions.

Introduction. In [3], McCrory and Parusiński proved that if f : Rn, 0
→ R, 0 is a germ of an analytic function, then the difference (and sum) of
the Euler characteristics mod 4 of the real Milnor fibres of f over +δ and −δ
can be expressed in terms of the dimensions of the generalized eigenspaces
of the algebraic monodromy.

In this paper we shall prove an analogous formula for Ad-germs. The
notion of an Ad-germ was introduced by Szafraniec in [5] as a generalization
of a germ defined by a weighted homogeneous polynomial (the papers [2, 5]
are concerned with topological invariants of Ad-germs and generalize Wall’s
result [7]). In the case of Ad-germs, we obtain another description of the real
Milnor fibres, without using the complex monodromy. Instead we prove that
the sum of the Euler characteristics mod 4 of the real Milnor fibres over ±δ
can be expressed in terms of the Euler characteristics of the Milnor fibres
of appropriate restrictions of fC, where fC denotes the complexification of f
(Theorem 2). These characteristics, in turn, can be effectively calculated if
0 is an isolated critical point of fC, although the formula also holds in the
non-isolated case.

In the first section we study the action of the dihedral group on the Mil-
nor fibre of an analytic function. Theorem 1 describes the relation between
the real and complex invariants of a real-analytic germ and it is the main
tool we use in the proof of Theorem 2.
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1. Action of the dihedral group on the Milnor fibre of an an-
alytic function. Let d,w1, . . . , wn be positive integers. For every λ ∈ C
and z = (z1, . . . , zn) ∈ Cn we shall write λ.z = (λw1z1, . . . , λ

wnzn). Write
d = puv, where p, u, v are positive integers such that p is prime, v is odd and
prime to p. We may assume that wk ≡ 0 mod p if and only if k ≤ m = m(p)
for some integer m ≤ n.

Assume that m < n, i.e. some wk is not divisible by p. Set η = exp(πi/pu)
and ε = η2. For j = 0, 1, . . . , pu − 1 and z ∈ Cn we define j(z) = εj.z =
(εjw1z1, . . . , ε

jwnzn).
If f : Rn, 0 → R, 0 is a germ of a real-analytic function, denote by

fC : Cn, 0 → C, 0 its complexification, by F (f) the Milnor fibre of fC,
and by FR(f) the real Milnor fibre of f , i.e. F (f) = f−1

C (ξ) ∩ B2n
r and

FR(f) = f−1(ξ) ∩ Bn
r , where 0 < ξ � r � 1 and B2n

r (resp. Bn
r ) denotes

the ball of radius r centred at the origin in R2n (resp. Rn). Let f̃ denote the
restriction of f to Rm×{0} ⊂ Rn. Recall that we do not assume that f and
g have an isolated singularity at the origin.

Theorem 1. If f, g : Rn, 0→ R, 0 are analytic such that

fC(εj .z) = fC(z), gC(εj.z) = gC(z)(1)

for z ∈ Cn, j ∈ Z, and

fC(ηj.x) =
{
f(x) if j is even,
g(x) if j is odd ,

(2)

for x ∈ Rn and j ∈ Z, then

χ(F (f))− χ(F (f̃)) ≡ a+χ(FR(f)) + a−χ(FR(g))

− p(ã+χ(FR(f̃)) + ã−χ(FR(g̃))) mod 2pu

where a+/a− (resp. ã+/ã−) denote the number of even/odd integers j such
that 0 ≤ j ≤ pu − 1 (resp. 0 ≤ j ≤ pu−1 − 1).

Set a = pu. Condition (1) implies that the group Za acts on F (f) (and on
F (g)). Since f is real-analytic, the complex conjugation also acts on F (f).
Let G be the dihedral group of order 2a, i.e. the group generated by elements
γ, β with the relations γ2 = 1, βa = 1, γβj = β−jγ, j ∈ Z. From the above,
there is an action of G on F (f) given by γ(z) = z, β(z) = ε.z.

Define Aj = {z ∈ F (f) | εj .z = z} for j = 0, . . . , a − 1. Observe that
if j = a/p = pu−1, then εjwkzk = zk exp(2πwki/p); if k > m, that is, wk is
not divisible by p, then exp(2πwki/p) 6= 1, and consequently Aa/p = {z ∈
F (f) | zk = 0 for k > m}.

Lemma 1.
a−1⋃

j=1

Aj = Aa/p.
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Proof. Assume that z ∈ F (f) and z = εj .z for some 1 ≤ j ≤ a− 1. This
means that zk = εjwkzk for k = 1, . . . , n. Assume that zk 6= 0 for some k, i.e.
jwk is divisible by a = pu. Since j is not divisible by a, it follows that wk is
divisible by p. Hence zk = 0 for k > m and Aj ⊂ Aa/p for 1 ≤ j ≤ a− 1.

Lemma 2. (i) χ(Bj) =
{
χ(FR(f)) if j is even,
χ(FR(g)) if j is odd.

(ii) If 0 ≤ j < j′ ≤ a− 1, then

Bj ∩Bj′ = Aa/p ∩Bj ∩Bj′ .
(iii) If 0 ≤ j ≤ a/p− 1, 0 ≤ s ≤ p− 1 and j ′ = j + sa/p, then

Bj ∩ Aa/p = Bj′ ∩Aa/p.

Proof. (i) Suppose that εj .z = z for some 0 ≤ j ≤ a − 1. This means
that zk = εjwkzk, 1 ≤ k ≤ n, hence z2

k = εjwkzkzk = (ηjwk |zk|)2. It follows
that zk = ηjwkxk, xk ∈ R. Set x = (x1, . . . , xn). Then, from condition (2),

fC(z) =
{
f(x) if j is even,
g(x) if j is odd,

and consequently

χ(Bj) =
{
χ(FR(f)) if j is even,
χ(FR(g)) if j is odd.

(ii) Assume that z ∈ Bj ∩ Bj′ and k < m. Then zk = ηjwkxk = ηj
′wkx′k

for some xk, x′k ∈ R. Clearly |xk| = |x′k|. If xk 6= 0, then wk(j′−j) is divisible
by a = pu. Since wk is not divisible by p for k > m, it follows that j ′ − j is
divisible by a, which contradicts the assumption that 0 ≤ j < j ′ ≤ a− 1.

(iii) Suppose that z ∈ Bj′ ∩ Aa/p. Then zk = 0 for k > m and wk is
divisible by p for k ≤ m. Hence zk = η(j+sa/p)wkxk = ±ηjwkxk, so z ∈
Bj ∩ Aa/p.

Proof of Theorem 1. The dihedral group G of order 2a acts freely on
F (f)−⋃a−1

j=0 (Aj ∪Bj), hence

χ(F (f)) ≡ χ
( a−1⋃

j=0

(Aj ∪Bj)
)

mod 2a.

According to Lemma 1,
⋃a−1
j=1 Aj = Aa/p. For simplicity we will write Ba

instead of Aa/p. Thus,

χ(F (f)) ≡ χ
( a⋃

j=0

Bj

)
mod 2a.
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Clearly,

χ
( a⋃

j=0

Bj

)
=

a+1∑

q=1

(−1)q−1Sq,

where Sq =
∑

J TJ , J = (j1, . . . , jq), 0 ≤ j1 < . . . < jq ≤ a and TJ = χ(Bj1∩
. . . ∩ Bjq). We may write Sq =

∑
H TH +

∑
I TI , where H = (h1, . . . , hq),

0 ≤ h1 < . . . < hq = a, I = (i1, . . . , iq), 0 ≤ i1 < . . . < iq < a.
Thus, we have Sq+1 =

∑
Ia
TIa +

∑
I′ TI′ , where Ia = (i1, . . . , iq, a) and

I ′=(i′1, . . . , i
′
q+1), 0 ≤ i′1 < . . . < i′q+1 < a.

If q = a, then

Sq+1 = Sa+1 = χ
( a⋂

j=0

Bj

)
.

Due to Lemma 2(ii),
∑

I TI =
∑

Ia
TIa and consequently

χ
( a⋃

j=0

Bj

)
=

a∑

j=0

χ(Bj)−
a−1∑

h=0

χ(Bh ∩Ba).

Applying Lemma 2(i), (iii) we obtain

χ
( a⋃

j=0

Bj

)
= a+χ(FR(f)) + a−χ(FR(g)) + χ(Ba)−

a−1∑

j=0

χ(Bj ∩Ba)

= a+χ(FR(f)) + a−χ(FR(g)) + χ(Ba)− p
a/p−1∑

j=0

χ(Bj ∩Ba).

By the definition f̃ : Rm → R. For z′ = (z1, . . . , zm) ∈ Cm and j = 0,
1, . . . , a/p − 1 we define j(z′) = (εjw1z1, . . . , ε

jwmzm), B̃j = {z′ ∈ F (f̃) |
j(z′) = z′}, C̃j = {z′ ∈ F (g̃) | j(z′) = z′}.

Using the same arguments as above one can prove that

χ(B̃j) =
{
χ(FR(f̃)) if j is even,
χ(FR(g̃)) if j is odd.

Clearly, χ(Ba) = χ(F (f̃)), and χ(B̃j) = χ(Bj ∩Ba) for j = 0, 1, . . . , a/p−1.
Thus

χ(F (f)) ≡ a+χ(FR(f)) + a−χ(FR(g)) + χ(F (f̃))

− p(ã+χ(FR(f̃)) + ã−χ(FR(g̃))) mod 2a.

2. Ad-germs. Let f : Rn, 0→ R, 0 be a germ of a real-analytic function.

Definition. Let d ≥ 2 be an integer. We shall say that f is an Ad-germ
if there are positive integers w1, . . . , wn such that if f =

∑
α aαx

α and aα 6= 0
then α1w1 + . . .+ αnwn ≡ d mod 2d.
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Examples. (i) Each germ defined by a weighted homogeneous polyno-
mial of degree d is an Ad-germ.

(ii) The germ f(x, y, z, t) = x4 + x12 + y2 + z3t + z4t4 is an A8-germ,
where w1 = 2, w2 = 4, w3 = 1, w4 = 5.

Let F+ and F− denote the positive and negative real Milnor fibres of f ,
that is, F+ = f−1(δ) ∩ Bn

r , F− = f−1(−δ) ∩ Bn
r , where 0 < δ � r � 1.

Clearly, F+ = FR(f) and F− = FR(−f). Let F̃+ (resp. F̃−) denote the
positive (resp. negative) real Milnor fibre of f̃ (of course f̃ is an Ad-germ).

Theorem 2. If f is an Ad-germ, then

(χ(F+) + χ(F−))− (χ(F̃+) + χ(F̃−)) ≡ 2(χ(F (f))− χ(F (f̃)))/a mod 4.

Proof. We have fC(εj.z) = fC(z) for z ∈ Cn, j ∈ Z. Moreover, v is odd,
hence if x ∈ Rn, j ∈ Z, then fC(ηj.x) = (−1)jf(x). This means that the
germs f and −f satisfy conditions (1) and (2) of Theorem 1. Thus,

χ(F (f))−χ(F (f̃)) ≡ a+χ(F+)+a−χ(F−)−p(ã+χ(F̃+)+ ã−χ(F̃−)) mod 2a.

If d is even then p = 2 and a+ = a− = a/2. If d is odd then the
map (x1, . . . , xn) 7→ ((−1)w1x1, . . . , (−1)wnxn) maps F+ homeomorphically
onto F−. Then aχ(F+) = aχ(F−) = a(χ(F+) + χ(F−))/2 (similarly for F̃ ).
Hence in both cases we obtain

a(χ(F+) + χ(F−))/2− a(χ(F̃+) + χ(F̃−))/2 ≡ χ(F (f))− χ(F (f̃))) mod 2a.

It follows that

(χ(F+) + χ(F−))− (χ(F̃+) + χ(F̃−)) ≡ 2(χ(F (f))− χ(F (f̃)))/a mod 4.

As mentioned above, f̃ is an Ad-germ, so Theorem 2 may be applied
to f̃ , and so on. Repeated application of Theorem 2 enables us to express
the number χ(F+) +χ(F−) mod 4 only in terms of the Euler characteristics
of the Milnor fibres of appropriate restrictions (given by the weights wi)
of fC. In the case of an algebraically isolated singularity of f , i.e., when
0 ∈ Cn is isolated in the set of critical points of fC, those characteristics
can be calculated effectively from the Milnor numbers of fC, f̃C, etc. Recall
that the Milnor number of fC equals the dimension of an appropriate local
algebra ([4]). Moreover, if fC has an isolated singularity, then also f̃C has
one ([2]). When 0 is not an isolated critical point of fC, then one can use
Varchenko’s method ([6]), although it is less effective.
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