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New variational principle and duality for an
abstract semilinear Dirichlet problem

by Marek Galewski (Łódź)

Abstract. A new variational principle and duality for the problem Lu = ∇G(u) are
provided, where L is a positive definite and selfadjoint operator and ∇G is a continuous
gradient mapping such that G satisfies superquadratic growth conditions. The results
obtained may be applied to Dirichlet problems for both ordinary and partial differential
equations.

1. Introduction. We shall prove the existence of solutions to the prob-
lem

Lx = ∇G(x),(1.1)

where L is defined on a separable real Hilbert space D(L) with values in a
separable real Hilbert space Y with scalar product 〈·, ·〉. We assume

(A1) D(L) is dense in Y ; L is a selfadjoint and positive definite linear
operator, i.e. there is a constant α > 0 such that for all x ∈ D(L),

(1.2) 〈Lx, x〉 ≥ α‖x‖2.
By (1.2) it follows that R(L) = Y and the inverse operator L−1 : Y →

D(L) is continuous and selfadjoint. By the properties of L it follows (see [3])
that there exists (exactly one) operator S, called the square root operator,
selfadjoint and such that S2 = L. The domain of S, which is a subspace of
Y , is denoted by D(S). We endow D(S) with the following scalar product:

〈x1, x2〉D(S) = 〈x1, x2〉+ 〈Sx1, Sx2〉.
Then the norm in D(S), i.e.

‖x‖D(S) =
√
‖x‖2Y + ‖Sx‖2Y ,

makes it into a complete space. The space D(S) is dense in Y and D(L) is
dense in D(S) (see [3], [12]). Moreover Sx ∈ D(S) for any x ∈ D(L).
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Now we shall state the assumption on the right hand side of the equation
considered.

(A2) ∇G : D(S) → D(S) is a gradient mapping continuous on D(S)
in the topology inherited from Y . The potential G : Y → R is
lower semicontinuous and convex, G(0) <∞. There exist constants
q ≥ q1 ≥ 2, k1, l1 > 0, k2, l2 ≥ 0 such that for any x ∈ Y ,

(1.3) ‖∇G(x)‖ ≤ k1‖x‖q−1 + k2, G(x) ≥ l1‖x‖q1 + l2.

The action functional J : D(S)→ R is defined by

J(x) = 1
2 〈Sx, Sx〉 −G(x).

and the dual functional JD : D(S)→ R is given by the formula

JD(p) = G∗(Sp)− 1
2〈p, p〉,

where G∗ : Y → R denotes the Fenchel–Young conjugate of G : Y → R
(see [2]). We observe that both J and JD are unbounded on their respective
domains. Hence we have to apply the dual variational method and so we
will investigate the following system:

(1.4) Sx = p, Sp = ∇G(x),

where x ∈ D(L), p ∈ D(S). Necessary conditions for the existence of a solu-
tion to (1.4) are obtained by duality results. The existence is a consequence
of a modification of the well known Weierstrass theorem.

The abstract variational principle which we derive enables one to con-
sider linear differential equations of even order. We consider an abstract
problem, while in [7]–[11] the duality theory is developed for each Dirich-
let problem independently. We use methods of Hilbert spaces which not
only make the reasoning clear but also enable us to derive from our results
some results known so far. The main difference in comparison to known
abstract variational principles [4]–[6] is that the growth assumptions are su-
perquadratic. For the quadratic case see also [1]. Neither the least action
principle nor the dual least action principle can be applied here. Hence a
duality, based on the duality provided in [8], is derived. The system (1.4),
which may be viewed as a system of Hamilton’s equations, seems to be
new.

We make an additional assumption which is usually satisfied in concrete
applications to both O.D.E. and P.D.E.

(A3) D(S) is compactly imbedded in Y ; for any sequence {xn} with
xn ∈ D(L),

lim
n→∞

‖xn − x‖D(S) = 0

iff
lim
n→∞

‖Sxn − Sx‖Y = 0;
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a set A ⊂ D(L) is bounded in D(S) iff there exists a constant
M > 0 such that for any x ∈ A we have

‖Sx‖ ≤M.

2. Duality results. The solution of equation (1.1) is understood in the
following sense.

Definition 2.1. We say that x ∈ D(L) is a solution to equation (1.1)
if there exists an element p ∈ S(D(L)) such that system (1.4) is satisfied.

Now we define subsets of D(L) and D(S) on which we will investigate
the action and dual action functionals. Put

X̃k = {v ∈ D(L) : ‖v‖Y ≤ k},
where k > 0 is a number satisfying the inequality

‖L−1‖(k1k
q−1 + k2) ≤ k.(2.1)

Definition 2.2. X is a subset of X̃k such that for each x ∈ X the
relation

Lx̃ = ∇G(x)

implies that x̃ ∈ X.

Lemma 2.3. There exists a nonempty set X as in Definition 1.2.

Proof. We shall show that X̃k has the property from the definition of X.
Fix x ∈ X̃k. Since L is invertible the equation Lx̃ = ∇G(x) has exactly one
solution. By (1.3), definition of X̃k and (2.1) we obtain

‖x̃‖Y ≤ ‖L−1‖(k1k
q−1 + k2) ≤ k.

Hence x̃ ∈ X̃k. In consequence we may put X = X̃k.

Now we define a set on which the dual action functional will be consid-
ered; we denote it by Xd.

Definition 2.4. We put

Xd = S(X).

Remark 1. Of course, Xd ⊂ S(D(L)). The set Xd is nonempty since
X is. Moreover for each p ∈ Xd there exists exactly one x ∈ X such that
Sx = p.

Let us define a perturbation Jx : Y → R of the functional J . Let x ∈ X.
For c ∈ Y put

Jx(c) = −1
2〈Sx, Sx〉+G(x+ c).

Let p ∈ Xd. Define a type of conjugate of Jx by

J#
x (p) = sup

c∈Y
{〈c, Sp〉 −G(x+ c)}+ 1

2〈Sx, Sx〉.
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By the definition and properties of the Fenchel–Young transformation [2],
we have

J#
x (p) = G∗(Sp) + 1

2〈Sx, Sx〉 − 〈Sp, x〉.
In the proof of the duality principle we shall use the lemmas below.

Lemma 2.5. For any p ∈ Xd,

sup
x∈X
−J#

x (p) = −JD(p).

Proof. Fix p ∈ Xd. Since S is selfadjoint and X ⊂ D(L) ⊂ Y we obtain

sup
x∈X

{
〈x, Sp〉 − 1

2〈Sx, Sx〉
}
−G∗(Sp)

≤ sup
x∈X

{
〈Sx, p〉 − 1

2〈Sx, Sx〉
}
−G∗(Sp)

≤ sup
v∈Y

{
〈v, p〉 − 1

2〈v, v〉
}
−G∗(Sp) = 1

2〈p, p〉 −G∗(Sp).

Hence

sup
x∈X

{
〈x, Sp〉 − 1

2〈Sx, Sx〉
}
−G∗(Sp) ≤ 1

2〈p, p〉 −G∗(Sp).(2.2)

By Remark 1 it follows that for a given p ∈ Xd there exists xp ∈ X satisfying
Sxp = p. We then have

〈xp, Sp〉−1
2〈Sxp, Sxp〉−G∗(Sp) = 〈p, p〉−1

2〈p, p〉−G∗(Sp) = 1
2〈p, p〉−G∗(Sp).

In consequence

〈xp, Sp〉 − 1
2〈Sxp, Sxp〉 −G∗(Sp) = 1

2〈p, p〉 −G∗(Sp).(2.3)

Hence by (2.2), (2.3) and

〈xp, Sp〉 − 1
2〈Sxp, Sxp〉 −G∗(Sp) ≤ sup

x∈X

{
〈x, Sp〉 − 1

2〈Sx, Sx〉
}
−G∗(Sp)

we conclude that
sup
x∈X
−J#

x (p) = −JD(p).

Lemma 2.6. For x ∈ X,
sup
p∈Xd

−J#
x (p) = −J(x).

Proof. Fix x ∈ X. By the inclusion S(Xd) ⊂ Y and by the convexity
and lower semicontinuity of G we have

sup
p∈Xd

{〈x, Sp〉 −G∗(Sp)} − 1
2〈Sx, Sx〉

≤ sup
v∈Y
{〈x, v〉 −G∗(v)} − 1

2〈Sx, Sx〉

= G∗∗(x)− 1
2〈Sx, Sx〉 = G(x)− 1

2〈Sx, Sx〉 = −J(x).
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Hence

sup
p∈Xd

{〈x, Sp〉 −G∗(Sp)} − 1
2〈Sx, Sx〉 ≤ −J(x).(2.4)

By definition of Xd for a given x there exists px ∈ Xd such that Sx̃ = px,
where x̃ ∈ X is such that Lx̃ = ∇G(x). It follows that

Spx = ∇G(x),

and by the properties of the Fenchel–Young transformation we have

G(x) +G∗(Spx) = 〈x, Spx〉.
In consequence

〈x, Spx〉 −G∗(Spx)− 1
2〈Sx, Sx〉 = G(x)− 1

2〈Sx, Sx〉 = −J(x).(2.5)

Now the assertion follows from (2.4), (2.5) and

〈x, Spx〉 −G∗(Spx)− 1
2〈Sx, Sx〉 ≤ sup

p∈Xd

{〈x, Sp〉 −G∗(Sp)} − 1
2〈Sx, Sx〉.

We may now prove the duality principle.

Theorem 2.7.
inf
x∈X

J(x) = inf
p∈Xd

JD(p).

Proof. By Lemmas 2.5 and 2.6 we obtain

inf
x∈X

J(x) = − sup
x∈X
−J(x) = − sup

x∈X
sup
p∈Xd

−J#
x (p)

= − sup
p∈Xd

sup
x∈X
−J#

x (p) = − sup
p∈Xd

−JD(p) = inf
p∈Xd

JD(p).

3. Variational principles. We shall use the results of duality theory
to derive the so called variational principle providing necessary conditions
for the existence of a solution to equation (1.1).

Theorem 3.1. Assume that x ∈ X is such that −∞ < J(x) =
infx∈X J(x) <∞. Then there exists p ∈ Xd such that Sp ∈ ∂Jx(0) and

inf
p∈Xd

JD(p) = JD(p) = J(x) = inf
x∈X

J(x).

Moreover ,

Jx(0) + J#
x (p) = 0,(3.1)

JD(p)− J#
x (p) = 0.(3.2)

Proof. Observe that for x ∈ X there exists p ∈ Xd such that Sp =
∇G(x). This means that Sp ∈ ∂Jx(0). Hence

Jx(0) + J∗x(Sp) = 0.
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From J∗x(Sp) = J#
x (p) it follows that Jx(0) + J#

x p = 0 and in consequence

G(x) +G∗(Sp)− 〈Sp, x〉 = 0.

From the above and the Fenchel–Young inequality we obtain

−J(x) = −1
2〈Sx, Sx〉+G(x) = −1

2〈Sx, Sx〉 −G∗(Sp) + 〈Sp, x〉
= 〈p, Sx〉 − 1

2〈Sx, Sx〉 −G∗(Sp) ≤ 1
2〈p, p〉 −G∗(Sp) = −JD(p).

Hence J(x) ≥ JD(p). By Theorem 2.7 it follows that J(x) ≤ JD(p). In
consequence, J(x) = JD(p). Let us observe that Jx(0) = −J(x) = −JD(p).
Hence −JD(p) + J#

x (p) = 0.

From Theorem 3.1 we derive a corollary which provides necessary con-
ditions for the existence of a solution to system (1.4).

Corollary 3.2. Assume that there exists an x ∈ X such that −∞ <
J(x) = infx∈X J(x) <∞. Then there exists p ∈ Xd such that the pair (x, p)
satisfies

(3.3) Sx = p,

(3.4) Sp = ∇G(x).

Proof. Relation (3.4) has been proved in Theorem 3.1. Equality (3.3)
follows from (3.2). Indeed, since J(x) = JD(p) we have

1
2〈Sx, Sx〉 −G(x) = −1

2〈p, p〉+G∗(Sp).

Taking the equality

G(x) +G∗(Sp)− 〈Sp, x〉 = 0

into account, we have
1
2〈Sx, Sx〉+ 1

2〈p, p〉 = 〈Sp, x〉.
From the above, the properties of the operator S and the definition of the
norm in Y it follows that p = Sx.

We shall show that the above results with suitable modifications are valid
for minimizing sequences. These will be used in the proof of the existence
theorem.

Theorem 3.3. Let {xj}, xj ∈ X, j ∈ N, be a minimizing sequence for
J and assume that

−∞ < inf
j∈N

J(xj) = a <∞.

There exists a sequence {pj} minimizing for JD such that pj ∈ Xd and
Spj ∈ ∂Jxj (0) for j ∈ N. Furthermore,

inf
p∈Xd

JD(p) = inf
j∈N

JD(pj) = inf
x∈X

J(x) = inf
j∈N

J(xj)
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and for all j ∈ N we have

Jxj (0) + J#
xj (pj) = 0.(3.5)

Moreover , for any ε > 0 there exists j0 such that for all j ≥ j0,

J(xj)− JD(pj) < ε.(3.6)

Proof. Since xj ∈ X for j ∈ N, it follows that there exists pj ∈ Xd such
that

Spj = ∇G(xj).(3.7)

We will show that {pj} is a minimizing sequence for JD. By (3.7) and the
Fenchel–Young inequality, for any j ∈ N we have

−J(xj) = −1
2〈Sxj , Sxj〉+G(xj) = −1

2〈Sxj , Sxj〉 −G∗(Spj) + 〈Spj , xj〉
= 〈pj , Sxj〉 − 1

2〈Sxj , Sxj〉 −G∗(Spj)
≤ 1

2〈pj , pj〉 −G∗(Spj) = −JD(pj).

Hence

J(xj) ≥ JD(pj).(3.8)

Take arbitrary ε > 0. Observe that since

−∞ < inf
j∈N

J(xj) = a <∞,

there exists j0 such that J(xj) < a + ε for all j ≥ j0. By (3.8) it follows
that JD(pj) < a + ε for j ≥ j0. Now from Theorem 2.7 we deduce that
infj∈N JD(pj) = a. In consequence, {pj} is a minimizing sequence for JD.

Relation (3.5) follows from (3.7) by using similar arguments to those in
the proof of Theorem 3.1 (cf. (3.1)).

Relation (3.6) follows from Theorem 2.7. Indeed, for each ε > 0 there
exists j0 such that for all j ≥ j0,

J(xj) < a+ ε = inf
l∈N

J(xl) + ε = inf
l∈N

JD(pl) + ε ≤ JD(pj) + ε.

Corollary 3.4. Let {xj}, xj ∈ X, j ∈ N, be a minimizing sequence for
J and assume that

−∞ < inf
j∈N

J(xj) = a <∞.

If pj ∈ Xd and Spj = ∇G(xj), then {pj} is a minimizing sequence for JD.
For all j ∈ N,

Jxj (0) + J#
xj (pj) = 0.

Moreover , for every ε > 0 there exists j0 such that for all j ≥ j0 we have

J(xj)− JD(pj) < ε.
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4. Existence of solutions. We shall show that there exists an element
x ∈ D(L) and an element p ∈ S(D(L)) such that the system (1.4) is satisfied.
We will make use of the lemma below.

Lemma 4.1. There exist constants d1 > 0, d2 such that for any x ∈ Y ,

G(x) ≤ d1‖x‖q + d2.(4.1)

Proof. Putting d1 = k1 + k2 and d2 = k2 + G(0), by convexity and
Gateaux differentiability of G and by the Schwarz inequality and (1.3) we
obtain (4.1).

Theorem 4.2. There exists a pair (x, p) ∈ D(L)× S(D(L)) such that

(4.2) Sx = p,

(4.3) Sp = ∇G(x).

Proof. We first show that the functional J is bounded from below on X.
By Lemma 4.1 and the definition of X it follows that there exists a constant
c > 0 such that G(x) ≤ c for all x ∈ X. From this and the definition of J
we obtain, for any x ∈ X,

J(x) = 1
2〈Sx, Sx〉 −G(x) ≥ 1

2〈Sx, Sx〉 − c = 1
2‖Sx‖2 − c.(4.4)

Since X 6= ∅, there exists b ∈ R such that the set Sb = {x∈X : J(x)≤ b}
is nonempty. Since X ⊂ D(L), we deduce from (4.4) and assumption (A3)
that Sb is bounded in D(S). In consequence, it is relatively weakly compact
in D(S). Hence we may find in Sb a minimizing sequence {xj} weakly con-
vergent in D(S). By (A3) it follows that {xj} converges strongly in Y . We
denote its limit by x ∈ D(S).

We shall show that J(x) = infx∈X J(x).
Observe that J is weakly lower semicontinuous on D(S). Indeed, the

functional
D(S) 3 x 7→ 1

2〈Sx, Sx〉 ∈ R
is convex and lower semicontinuous. Hence it is weakly lower semicontinuous
on D(S). Since Sb is bounded there exists an open set A ⊂ Y bounded in Y
and containing Sb. By Lemma 4.1 it follows that G is bounded from above
on A. Since G is convex it is continuous [2], i.e. limn→∞G(xn) = G(x). In
consequence,

lim inf
n→∞

J(xn) ≥ J(x).

Then
J(x) = inf

x∈X
J(x).

We will show that there exists a p ∈ S(D(L)) such that (x, p) satisfies
system (4.2)–(4.3). We will use the properties of a minimizing sequence for
the dual functional. By the definition of Xd we can find a sequence {pj} ⊂
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Xd such that Spj = ∇G(xj). By Corollary 3.4 it follows that {pj} is a
minimizing sequence for JD.

We will show that {pj} converges strongly in D(S). Indeed, since {xj}
is strongly convergent in Y and ∇G is continuous on D(S) (in the topology
inherited from Y ), it follows that {∇G(xj)} converges to ∇G(x). By the
above and continuity of S−1 we see that the sequence

pj = S−1∇G(xj) ∈ D(S)

is strongly convergent. We denote its limit by p ∈ D(S). Hence

p = S−1∇G(x),

proving (4.3).
We now show that (p, x) also satisfies (4.2). By Corollary 3.4 there exists

a numerical sequence {εn}, εn > 0, εn → 0, having the property: for each n
there exists jn such that for all j ≥ jn,

1
2〈Sxj , Sxj〉+ 1

2〈pj , pj〉 − 〈xj, Spj〉 ≤ εn.
We may assume that jn → ∞. Since {xj} is strongly convergent in Y and
{Spj} converges strongly to ∇G(x) in Y , it follows that limj→∞〈xj , Spj〉 =
〈x,∇G(x)〉. Taking n→∞ we obtain

0 ≥ lim inf
j→∞

(1
2〈Sxj , Sxj〉+ 1

2〈pj , pj〉 − 〈xj , Spj〉
)

≥ lim inf
j→∞

1
2〈Sxj , Sxj〉+ lim

j→∞
1
2〈pj , pj〉 − lim

j→∞
〈xj , Spj〉

≥ 1
2〈Sx, Sx〉+ 1

2〈p, p〉 − 〈x,∇G(x)〉.
From the above, relation (4.3) and the Fenchel–Young inequality we obtain

0 ≥ 1
2〈Sx, Sx〉+ 1

2〈p, p〉 − 〈x, Sp〉 ≥ 0.

The definition of the norm in Y now yields (4.2). The limit x of {xj} belongs
to D(S). From (4.2) and (4.3) we obtain

S2x = ∇G(x).

Since S2 = L, we conclude that x ∈ D(L). In consequence, p ∈ S(D(L)).
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