On asymptotic solutions of analytic equations

by Jacek Stasica (Kraków)

Abstract

Sufficient conditions for the existence of an analytic solution of analytic equations in the complex and real cases are given.

1. Introduction. Let $K=\mathbb{R}$ or \mathbb{C}. We will denote by $K\{x\}$ the ring of convergent power series in the variables $x=\left(x_{1}, \ldots, x_{n}\right)$ with coefficients in K, and by $K[[x]]$ the formal power series ring. We will denote by \mathfrak{m} the maximal ideal of $K\{x\}$, and by $\widehat{\mathfrak{m}}$ the maximal ideal of $K[[x]]$. Consider an arbitrary system of analytic equations:

$$
\begin{equation*}
f(x, y)=0 \tag{1.1}
\end{equation*}
$$

where $f \in K\{x, y\}^{s}, x=\left(x_{1}, \ldots, x_{n}\right)$ and $y=\left(y_{1}, \ldots, y_{p}\right)$. We ask for solutions of (1.1) in which y_{ν} are convergent series in x. M. Artin showed in [A1] that any formal solution of (1.1) can be approximated to any desired degree of accuracy (in the (x)-adic topology) by a convergent solution. Namely we have

Artin's Approximation Theorem. Let $f=\left(f_{1}, \ldots, f_{s}\right) \in K\{x, y\}^{s}$ be such that $f(0,0)=0$. Consider a solution $\widehat{y}(x)=\left(\widehat{y}_{1}(x), \ldots, \widehat{y}_{p}(x)\right) \in$ $K[[x]]^{p}$ of the system $f(x, y)=0$. Then for every integer $L \geq 1$ there exists a solution $y(x)=\left(y_{1}(x), \ldots, y_{p}(x)\right) \in K\{x\}^{p}$ of $f(x, y)=0$ such that $y(x)=$ $\widehat{y}(x)\left(\bmod \widehat{\mathfrak{m}}^{L}\right)$ (the congruence just means that the coefficients of monomials of degree less than L are the same in $y_{\nu}(x)$ and $\left.\widehat{y}_{\nu}(x)\right)$.

The Artin Theorem is indispensable in the study of complex analytic structures, particularly in deformation theory where it is used to provide a transition from formal information to "actual" (i.e. convergent) information. There are some improvements of this theorem essentially stating that to determine whether a convergent solution exists one needs only a finite

[^0]amount of information (compare with [W] and [A2] in the polynomial case) or sharper results with parameters (see [P]).

In this paper, for a fixed holomorphic function $F(z, t)$ defined in a neighborhood of $(a, b) \in \mathbb{C}_{z, t}^{n+1}$ we show the existence of a number $N \in \mathbb{N}$ such that the existence of a continuous quasi-solution g of order at least N (i.e. $F(z, g(z))=O|z-a|^{N}$) implies the existence of a holomorphic solution (i.e. $F(z, h(z)) \equiv 0$ with some holomorphic function h defined in a neighborhood of a, and $h(a)=b$).

By the Weierstrass Preparation Theorem we can assume that $F(z, t)=$ $t^{k}+a_{1}(z) t^{k-1}+\ldots+a_{k}(z)$ and $D(\operatorname{red} F)=H D_{0}$, where $\inf |H|>0$, $D_{0}(u, s)=s^{r}+b^{1}(u) s^{r-1}+\ldots+b^{r}(u)$. Let $D\left(\operatorname{red} D_{0}\right)(u)=\sum_{|\mu| \geq q} c_{\mu} u^{\mu}$ $\left(c_{q} \neq 0\right)$. In fact, we show that it suffices to take $N>k r q$ in our theorem.

For the convenience of the reader we recall some basic definitions.
Consider a monic polynomial P in $t \in \mathbb{C}$ whose coefficients a_{1}, \ldots, a_{n} are holomorphic functions in an open subset Ω of \mathbb{C}^{n}, i.e.

$$
P(z, t)=t^{n}+a_{1}(z) t^{n-1}+\ldots+a_{n}(z)
$$

The function

$$
D(P)(z)=\prod_{i<j}\left(t_{i}(z)-t_{j}(z)\right)^{2}=(-1)^{\binom{k}{2}} \prod_{j=1}^{k} \frac{\partial P}{\partial t}\left(z, t_{j}(z)\right)
$$

where $t_{1}(z), \ldots, t_{k}(z)$ is the complete sequence of roots of the polynomial $t \mapsto P(z, t)$, is called the discriminant of the polynomial P.

We say that a holomorphic function $f(z, t)$ in a neighborhood of zero in $\mathbb{C}^{n} \times \mathbb{C}$ is t-regular if $f(0, t) \not \equiv 0$ in a neighborhood of zero in \mathbb{C}.

Let $P(z, t)$ be a distinguished polynomial for which $D P(z) \equiv 0$ in some neighborhood of $0 \in \mathbb{C}^{n}$. Then there exists a distinguished polynomial red $P(z, t)$ for which $D(\operatorname{red} P)(z) \not \equiv 0$ and $\{P=0\}=\{\operatorname{red} P=0\}$ in some neighborhood of 0 .

Observe that our Theorem 1 implies the Artin Theorem in the case $p=s=1$. Indeed, take N from our theorem for a convergent power series f. If $f(z, y(z))=0$ with some formal power series $y(z)=\sum a_{\nu} z^{\nu}$, then $f\left(z, \sum_{\nu \leq m} a_{\nu} z^{\nu}\right) \in \mathfrak{m}^{N}$ for sufficiently large m. Hence, knowing that $\sum_{\nu \leq m} a_{\nu} z^{\nu}$ is a continuous function, we get from Theorem 1 a convergent solution. As an application of Theorem 1 we also get a sufficient condition for the existence of a Nash solution in the real case (compare with [G]).

2. Main result

Lemma 1. Let K_{0}, K be open discs in $\mathbb{C}, \bar{K}_{0} \subset K$ and $a \in K_{0}$. Let $P(z, t)$ be a monic polynomial in t with coefficients holomorphic in K. Assume that $D(P)(z) \neq 0$ in $K \backslash\{a\}$. Then each function h holomorphic in $K \backslash \bar{K}_{0}$ for which $P(z, h(z)) \equiv 0$ extends holomorphically onto K.

Proof. Each of the open sets $B_{\nu}=K \cap \Pi_{\nu}$, where Π_{1}, Π_{2} and Π_{3}, Π_{4} are open halfplanes cut off from \mathbb{C} by two different lines passing through a, is homeomorphic to an open disc, hence each of the sets $W_{B_{\nu}}=W \cap\left(B_{\nu} \times \mathbb{C}\right)$, where $W=\{P(z, t)=0\}$, is a finite sum of graphs of holomorphic functions on B_{ν}. Therefore the restrictions of h to the open connected sets $B_{0 \nu}=$ $\left(K \backslash \bar{K}_{0}\right) \cap \Pi_{\nu}$ has holomorphic extensions h_{ν} onto B_{ν}, which are compatible. Thus $\bigcup h_{\nu}$ is an extension of h, which extends holomorphically to a by the Riemann Theorem.

Lemma 2. Let $P(z, t)$ be a monic polynomial of degree k with holomorphic coefficients for which $D(\operatorname{red} P)(z) \neq 0$ in an open set $G \subset \mathbb{C}_{z}^{n}$. Define

$$
\tau(z):=\frac{1}{2} \min _{i \neq j}\left|t_{i}(z)-t_{j}(z)\right|, \quad \eta(z, t):=\min _{i}\left|t-t_{i}(z)\right|
$$

where $t_{1}(z), \ldots, t_{l}(z)$ is the sequence of all different roots of the polynomial $t \mapsto P(z, t)$. If there exists a continuous function g for which $\eta(z, g(z))<$ $\tau(z)$ in G, then there exists a holomorphic function h such that $P(z, h(z)) \equiv 0$ and $|h(z)-g(z)| \leq|P(z, g(z))|^{1 / k}$ in G.

Proof. It follows from the assumption that for each $a \in G$ there exists a uniquely determined root $h(a)$ of the polynomial $t \mapsto P(a, t)$ such that $|h(a)-g(a)|<\tau(a)$. Hence $|h(a)-g(a)|=\eta(a, g(a)) \leq|P(a, g(a))|^{1 / k}$. Since g is a continuous function, the implicit function theorem shows that the root $h(z)$ must coincide in some neighborhood of a with a holomorphic root $t(z)$ of the polynomial P.

TheOrem 1. Let $F(z, t)$ be a holomorphic function in a neighborhood of $(a, b) \in \mathbb{C}_{z, t}^{n+1}$, t-regular in (a, b), and let $L>0$. Then there exists $N \in \mathbb{N}$ such that if $F(z, g(z))=O\left(|z-a|^{N}\right)$ as $z \rightarrow a$ with some function g continuous in a neighborhood of a such that $g(a)=b$, then there exists a function h holomorphic in a neighborhood of a such that $h(a)=b$ and $F(z, h(z)) \equiv 0$. Moreover, if g is holomorphic, then $h(z)-g(z)=O\left(|z-a|^{L}\right)$ as $z \rightarrow a$.

Proof. We can assume that $a=b=0$, and by the Weierstrass Preparation Theorem that $F(z, t)=t^{k}+a_{1}(z) t^{k-1}+\ldots+a_{k}(z)$ is a distinguished polynomial of degree $k>0$ with bounded holomorphic coefficients a_{j} in some open neighborhood $\Omega \times \Delta$ of $0 \in \mathbb{C}^{n}$, where $\Omega \subset \mathbb{C}_{u}^{n-1}$ and $\Delta \subset \mathbb{C}_{s}^{1}$, $z=(u, s)$. We can also assume that the polynomial $\operatorname{red} F$ has bounded holomorphic coefficients in $\Omega \times \Delta$ and that $\{F=0\}=\{\operatorname{red} F=0\}$. Moreover, by the Weierstrass Preparation Theorem we can assume that $D(\operatorname{red} F)=H D_{0}$ in $\Omega \times \Delta$, where $D_{0}(u, s)=s^{r}+b_{1}(u) s^{r-1}+\ldots+b_{r}(u)$ is a distinguished polynomial with coefficients b_{j} holomorphic and bounded in Ω and $\inf |H|>0$ in $\Omega \times \Delta$. Finally, we can assume that red D_{0} has coefficients holomorphic and bounded in Ω. Take τ and η from Lemma 2 for
the polynomial red F in the set $D(\operatorname{red} F) \neq 0$. Of course in this set we have $|D(\operatorname{red} F)(z)| \leq M \tau(z)$ with some constant $M>1$ and $|F(z, t)| \geq \eta(z, t)^{k}$. Hence, due to Lemma 2 for each open set $G \subset\{D(\operatorname{red} F) \neq 0\}$ the inequality

$$
\begin{equation*}
|F(z, g(z))|<M^{-k}|D(\operatorname{red} F)(z)|^{k} \tag{i}
\end{equation*}
$$

with some continuous function g on G gives us the existence of a holomorphic root h of the polynomial F in G such that

$$
\begin{equation*}
|h(z)-g(z)| \leq|F(z, g(z))|^{1 / k} \quad \text { in } G \tag{ii}
\end{equation*}
$$

Put $|u|=\sigma$. The roots of the polynomial $s \mapsto D_{0}(u, s)$ are $O\left(\sigma^{1 / r}\right)$. Hence, if we take M sufficiently large, there exists $\delta>0$ such that for $\sigma>0$ sufficiently small, on the set

$$
G_{\sigma}:=B_{\sigma} \times\left(K_{\sigma}^{\prime} \backslash \bar{K}_{\sigma}\right)
$$

where $B_{\sigma}=\{|u|<2 \delta\}, K_{\sigma}=\left\{|s|<M \sigma^{1 / r}\right\}, K_{\sigma}^{\prime}=\left\{|s|<2 M \sigma^{1 / r}\right\}$, we have the inequality $\left|D_{0}(u, s)\right| \geq \delta \sigma$ and $G_{\sigma} \subset \Omega \times \Delta$. Let $D\left(\operatorname{red} D_{0}\right)(u)=$ $\sum_{|\mu| \geq q} c_{\mu} u^{\mu}$. Hence there exists $\varepsilon \in(0,1)$ such that for sufficiently small $\sigma>\overline{0}$ we have

$$
\max _{|u|=\sigma}\left|D\left(\operatorname{red} D_{0}\right)(u)\right| \geq 3 \varepsilon \sigma^{q}
$$

It follows that for some u_{0} with $\left|u_{0}\right|=\sigma$, we have $\left|D\left(\operatorname{red} D_{0}\right)(u)\right| \geq 3 \varepsilon \sigma^{q}$. But when $\sigma>0$ is sufficiently small, the roots $s_{i}\left(u_{0}\right)$ of the polynomial $s \mapsto D_{0}\left(u_{0}, s\right)$ satisfy $\left|s_{i}\left(u_{0}\right)\right| \leq 1 / 2$ and therefore $\left|s_{i}\left(u_{0}\right)-s_{j}\left(u_{0}\right)\right| \geq 3 \varepsilon \sigma^{q}$ for $s_{i}\left(u_{0}\right) \neq s_{j}\left(u_{0}\right)$. Observe that for

$$
K_{\sigma_{i}}=\left\{\left|s-s_{i}\left(u_{0}\right)\right|<\varepsilon \sigma^{k}\right\}
$$

we have $\bar{K}_{\sigma_{i}} \cap \bar{K}_{\sigma_{j}}=\emptyset$ (for different roots) and in the complement of $\bigcup_{i} \bar{K}_{\sigma_{i}}$ we have the inequality $\left|D_{0}(u, s)\right| \geq \varepsilon^{r} \sigma^{r q}$. Finally, diminishing $\delta>0$, when σ is sufficiently small, we have

$$
|D(\operatorname{red} F)(z)| \geq \delta \sigma^{r q}
$$

in

$$
G=G_{\sigma} \cup\left(U_{\sigma} \times\left(K_{\sigma} \backslash \bigcup_{i} \bar{K}_{\sigma_{i}}\right)\right) \subset \Omega \times \Delta
$$

for some open neighborhood $U_{\sigma} \subset B_{\sigma}$ of u_{0}. If we take $N>k r q$, the condition $F(z, g(z))=O\left(|z|^{N}\right)$ implies the inequality (i) for σ sufficiently small. Then there exists a holomorphic root h of the polynomial F in G. According to Lemma 1 , if $u \in U_{\sigma}$, the function $h(u, \cdot)$ extends holomorphically onto $K_{\sigma^{\prime}}$. Hence h extends holomorphically onto $U_{\sigma} \times K_{\sigma^{\prime}}$ (use the Cauchy formula for $h(u, \cdot)$ on $\left.\left\{|s|=\frac{3}{2} M \sigma^{1 / 2}\right\}\right)$. Thus, from the Hartogs Lemma, h extends holomorphically onto $B_{\sigma} \times K_{\sigma^{\prime}}$. In case g is holomorphic take moreover $N>k L r$. According to (ii) we have $|h(z)-g(z)| \leq \widetilde{M}|z|^{L r}$
with some \widetilde{M} in the set G_{σ} when σ is small enough. Hence in G_{σ} we have the inequality $|h(z)-g(z)| \leq M^{\prime} \sigma^{L}$ with some constant M^{\prime}, and due to the maximum principle this inequality also holds in $B_{\sigma} \times K_{\sigma^{\prime}}$. So $h-g=O\left(|z|^{L}\right)$.

Remark. From the above proof it is easy to see that if $F(z, t)$ is a polynomial monic in t, then the $N \in \mathbb{N}$ can be taken the same for all points $z \in \mathbb{C}^{n}$.

THEOREM 2. Let $Q(x, t)$ be a complex polynomial on $\mathbb{R}_{x, t}^{n+1}$, monic in t. Then there exists $m>0$ such that if f, g are complex, continuous roots: $Q(x, f(x))=Q(x, g(x))=0$ in a neighborhood of $a \in \mathbb{R}^{n}$, then

$$
f(x)-g(x)=O\left(|x-a|^{m}\right) \Rightarrow f=g
$$

in a neighborhood of a.
Proof. We can assume that $a=0$ and $D(Q)(z) \neq 0$ (replacing Q by red Q). Obviously, when $|x| \leq 1$ we have $\left|t^{\prime \prime}(x)-t^{\prime}(x)\right| \geq M|D(Q)(x)|$ with some constant M for different roots $t^{\prime \prime}(x), t^{\prime}(x)$ of the polynomial $t \mapsto$ $Q(x, t)$. Take an open ball $B=\{|x|<R\}, R<1$, in which f and g are defined. The number of connected components of the set $B \cap\{D(Q) \neq 0\}$ is finite and each connected component is semi-algebraic. Let S be one of them. Assume that $0 \in \bar{S}$. The function

$$
d: r \mapsto \sup _{S(r)}|D(r)|
$$

where $S(r)=S \cap\{|x|=r\}$, is positive semi-algebraic. Hence $d(r) \geq r^{m-1}$ in $(0, \delta)$ with $m>0$ and $\delta>0$ common for all such components S. The assumption $f \not \equiv g$ in each neighborhood of zero implies $f \neq g$ on one of these components S, because the set $\{f=g\} \cap S$ is open-closed in S. But $\mid f(x)-$ $g(x)|\geq M| D(Q)(x) \mid$ on S, which implies $\sup _{S(r)}|f(x)-g(x)| \geq M r^{m-1}$ for sufficiently small r. The last inequality contradicts our assumption that $f(x)-g(x)=O\left(|x|^{m}\right)$.

Theorem 3. Let Q be a real polynomial on $\mathbb{R}_{x, t}^{n+1}$, monic in t, and let $L>0$. Then there exists $N \in \mathbb{N}$ such that if $Q(x, \psi(x))=O\left(|x-a|^{N}\right)$ as $x \rightarrow a$, with some real-analytic function ψ defined in a neighborhood of $a \in \mathbb{R}^{n}$, then there exists an analytic function φ defined in a neighborhood of $a \in \mathbb{R}^{n}$ such that $Q(x, \varphi(x)) \equiv 0$ and $\varphi-\psi=O\left(|x-a|^{L}\right)$ as $x \rightarrow a$.

Proof. Replacing Q and ψ by their complexifications, and taking m from Theorem 2 we get (due to Theorem 1 with $L>m$) a holomorphic function φ defined in a neighborhood of a such that $Q(z, \varphi(z)) \equiv 0$ and $\varphi-\psi=$ $O\left(|z-a|^{m}\right)$. But then also $Q(z, \bar{\varphi}(z)) \equiv 0$. Moreover $\bar{\varphi}-\psi=O\left(|z-a|^{m}\right)$, which implies $\bar{\varphi}-\varphi=O\left(|z-a|^{m}\right)$. According to Theorem 2 we get $\bar{\varphi}=\varphi$, i.e. the function φ is real.

References

[A1] M. Artin, On the solutions of analytic equations, Invent. Math. 5 (1968), 277-291.
[A2] -, Algebraic approximation of structures over complete local rings, Publ. Math. I.H.E.S. 36 (1969), 23-58.
[G] M. J. Greenberg, Rational points in henselian discrete valuation rings, ibid. 31 (1966), 563-568.
[乇] S. Łojasiewicz, Introduction to Complex Analytic Geometry, Birkhäuser, 1991.
[P] A. Płoski, Note on a theorem of M. Artin, Bull. Polish Acad. Sci. 22 (1974), 11071109.
[W] J. J. Wavrick, A theorem on solution of analytic equations with applications to deformation of complex structures, Math. Ann. 216 (1975), 127-142.

Institute of Mathematics
Jagiellonian University
Reymonta 4
30-059 Kraków, Poland
E-mail: jacek.stasica@im.uj.edu.pl

[^0]: 2000 Mathematics Subject Classification: 32A10, 32A60.
 Key words and phrases: analytic function, holomorphic function, asymptotic solution. This paper is partially supported by the KBN grant number 159/P03/2001/21.

