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Smooth points of a semialgebraic set

by Jacek Stasica (Kraków)

Abstract. It is proved that the set of smooth points of a semialgebraic set is semi-
algebraic.

1. Introduction. The semialgebraicity of the smooth points of a semi-
algebraic set plays an important role in semialgebraic geometry. In [Ł1]
S. Łojasiewicz proved that for locally semialgebraic sets the notions of a
Nash smooth point and of an analytic point coincide. Moreover if Γ ⊂ Rn
is an analytic submanifold, then for the germ Γa of Γ at a ∈ Γ we have the
equivalence:

Γa is Nash ⇔ Γa is semialgebraic.

Hence the semialgebraicity of the smooth points can be obtained follow-
ing Łojasiewicz’s method for the analogous theorem for semianalytic sets.
The aim of this paper is to give a straightforward proof of the semialge-
braicity of the smooth points of a semialgebraic set based on the properties
of asymptotic analytic solutions proved in [S].

Recall that a subset of Rn is semialgebraic if it is described by polyno-
mials on Rn. Thus, the class of semialgebraic subsets of Rn is the algebra of
subsets of Rn which is generated by the family of sets {P > 0}, where P is a
polynomial. Equivalently, E ⊂ Rn is semialgebraic if there are polynomials
Pi and Pij , i = 1, . . . , p, j = 1, . . . , q, such that

E =
p⋃

i=1

{x | Pi(x) = 0, Pij(x) > 0, j = 1, . . . , q}.

Let G be an open subset of Rn. We say that an analytic function f :
G → R is a Nash function at a ∈ G if W (x, f(x)) = 0 in a neighborhood
of a for a polynomial W 6≡ 0 in Rn+1

x,t . A Nash function on G is an analytic
function on G which is Nash at each point of G.
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2. Auxiliary results

Lemma 1. Let E be a semialgebraic subset of Rn. If intE = ∅, then
some nonzero polynomial on Rn vanishes on E.

Proof. We have E =
⋃q
i=1Bi with Bi = {Pi = 0} ∩ ⋂j{Pij > 0} for

some polynomials Pi and Pij . We can assume that each Bi is nonempty.
Then Pi 6= 0, since otherwise Bi would be open. Hence P1 · . . . · Pq is the
required polynomial.

Lemma 2. Every semialgebraic set E ⊂ Rn is contained in an algebraic
set V ⊂ Rn of the same dimension.

Proof. Let πα :Rn→Lα be the natural projections onto Lα=Rk+1
xα1 ,...,xαk+1

,

where α = (α1, . . . , αk+1), 1 ≤ α1 < . . . < αk+1 ≤ n, and k = dimE. Then
each πα(E) is semialgebraic of dimension at most k. Hence πα(E)⊂{Pα=0}
for a nonzero polynomial Pα. Therefore E ⊂ V =

⋂
α{Pα◦πα = 0}. Moreover

dimV = k, since otherwise V would contain a semialgebraic leaf Γ (1) of
dimension k + 1 and so there would exist an α such that intπα(Γ ) 6= ∅,
which would imply Pα ≡ 0.

We say that a point a ∈ E is a smooth point of dimension k of E if it has
a neighborhood in E which is an analytic submanifold of dimension k. By
definition the dimension of E is equal to the maximum of the dimensions of
its smooth points.

Note that every polynomial on Rn of degree r > 0 is monic of degree r
with respect to each of its variables in some coordinate system.

Lemma 3. Let E ⊂ Rnx be a semialgebraic set of dimension ≤ k < n.
Then in some linear coordinate system, E is contained in a Weierstrass set

(∗) {Pk+1(u, xk+1) = . . . = Pn(u, xn) = 0},
where u = (x1, . . . , xk) and Pj is a monic polynomial on Rk+1

u,xj for j =
k+1, . . . , n. (Such a coordinate system will be called a regular system for E.)

Proof. By the previous lemma it suffices to give the proof for an algebraic
set V ⊃ E of dimension k. Let Pn ⊃ . . . ⊃ Pk+1 ⊃ Pk denote the rings of
polynomials on Rnu,xk+1,...,xn

, . . . ,Rk+1
u,xk+1

, Rku (after suitable identifications).
Denote by Rj the ring of restrictions of the polynomials from Pj to V . Let
I = {P ∈ Pn | P|V = 0}. Changing coordinate systems in Rn, . . . ,Rk+1

successively we find in I ∩ Pj monic polynomials with respect to xj . This
means in particular that wj = xj |V is integral over Rj−1. Evidently Rj =
Rj−1[wj ]; it follows that wn, . . . , wk+1 are integral over Rk, which means that
there exist monic polynomials Pj ∈ Pk[xj], j = n, . . . , k+1, with Pj |V = 0.

(1) A semialgebraic leaf is any analytic submanifold which is a semialgebraic set.
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Let us recall two theorems (for proofs see [S]) useful for the proof of the
main theorem.

Theorem 1. Let Q(x, t) be a complex polynomial on Rn+1
x,t , monic in t.

Then there exists m > 0 such that if f, g are complex , continuous roots:
Q(x, f(x)) = Q(x, g(x)) = 0 in a neighborhood of a ∈ Rn, then the following
implication holds:

f(x)− g(x) = O(|x− a|m) ⇒ f = g

in a neighborhood of a.

Theorem 2. Let Q be a real polynomial on Rn+1
x,t , monic in t, and let

L > 0. Then there exists N ∈ N such that the following implication holds:
if Q(x, ψ(x)) = O(|x − a|N ) as x → a, with some real-analytic function ψ
defined in a neighborhood of a ∈ Rn, then there exists a Nash function ϕ
defined in a neighborhood of a ∈ Rn such that Q(x, ϕ(x)) ≡ 0 and ϕ− ψ =
O(|x− a|L) as x→ a.

3. Main result. We say that a submanifold Γ ⊂ Rn is topographic if it
is the graph of an analytic mapping of an open subset of Rk into Rn−k.

Theorem 3. Let E ⊂ Rk+l
u,v , l = n− k, be a semialgebraic set contained

in the Weierstrass set (∗). Then the set

Λ = {x ∈ E | U ∩ E is a k-topographic submanifold for some nbd U of x}
is semialgebraic.

Proof. For a ∈ Rku, b ∈ Rlv and δ, ε > 0 set Uabδε = B(a, δ) × B(b, ε),
where B(a, δ) = {u | |u− a|<δ}, B(b, ε) = {v | |v − b|<ε}. Let (a, b) ∈ E.
The set Eabδε = E∩Uabδε is the graph of some continuous function B(a, δ)→
Rlv if and only if E∩Uabδε ⊂ E and for u ∈ B(a, δ) we have (u, v) ∈ E∩Uabδε
for exactly one v. Thus the set

F = {(a, b, δ, ε) | Eabδε is the graph of

some continuous function onB(a, δ)}
is semialgebraic.

Take m from Theorem 1, the same for all polynomials Pj , and N > m
from Theorem 2 also the same for all polynomials Pj , and L = m. For
c = {cα}|α|≤N , where cα ∈ Rl and α ∈ Nk, we define the polynomial mapping
Pc : u 7→ ∑

|α| cαu
α. In what follows we write (c0, c

′) = c. For a ∈ Rku,
c, C,N, δ > 0 we define the following subset of Rk+l

u,v :

WacCNδ = {(u, v) | u ∈ B(a, δ) and |v − Pc(u− a)| ≤ C|u− a|N}.
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It is enough to show that

(∗∗) Λ = {(a, b) ∈ Rk+l
u,v | (a, b, δ, ε) ∈ F and

Eabδε ⊂Wa(b,c′)CNδ with some δ, ε, c′, C}
because the last set is semialgebraic. Let (a, b) ∈ Γ . Obviously for some
sufficiently small δ, ε > 0 we have (a, b, δ, ε) ∈ F and the set Eabδε is the
graph of some Nash function ϕ; taking c′ such that x 7→ P(b,c′)(x− a) is the
Nth Taylor polynomial for ϕ we have Eabδε = ϕ ⊂Wa(b,c′)CNδ with some C
when δ is sufficiently small.

Now, assume that the condition (∗∗) holds. Then Eabδε is the graph
of some continuous function ψ : B(a, δ) → Rlv. Hence Q(u, ψ(u)) = 0 on
B(a, δ), where Q = (Pk+1, . . . , Pn). The graph of ψ is contained in the set
WacCNδ. Thus ψ(u)−Pc(u− a) = O(|u− a|N ). Therefore Q(u, Pc(u− a)) =
O(|u − a|N ). By Theorem 2 there exists an analytic function ϕ defined in
a neighborhood of a such that Q(u, ϕ(u)) ≡ 0 and ϕ(u) − Pc(u − a) =
O(|u − a|m). Hence ϕ − ψ = O(|u − a|m) and according to Theorem 1 we
have ϕ = ψ in a neighborhood of a.

Theorem 4. Let E ⊂ Rn be a semialgebraic set. Then the set E(k) of
its smooth points of dimension k is semialgebraic as well.

Proof. It is enough to prove the theorem for k = dimE, because we can
proceed by induction.

For each isomorphism ϕ : Rn → Rn we define

λ(ϕ) = ϕ−1(ek+1) ∧ . . . ∧ ϕ−1(en) ∈ Λn−kRn,
where e1, . . . , en is a canonical basis of Rn. We say that a sequence ϕ1, . . . , ϕr
of linear isomorphisms of Rn is complete if λ(ϕ1), . . . , λ(ϕr) generate
Λn−kRn. One can easily prove that:

(1) there exists a complete sequence,
(2) any sequence that is sufficiently close (in the natural topology) to a

complete one is complete,
(3) if ϕ1, . . . , ϕr is a complete sequence and the set E is smooth of di-

mension k at a then ϕν(E) is k-topographic at ϕν(a) for some ν.

We find a complete sequence ϕ1, . . . , ϕr such that each ϕi is a regular
system for E. According to Theorem 3 the set Rν of points at which ϕν(E)
is k-topographic is a semialgebraic set. Hence

E(k) =
⋃
ϕ−1
ν (Rν)

is semialgebraic as a finite sum of semialgebraic sets.
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