Smooth points of a semialgebraic set

by Jacek Stasica (Kraków)

Abstract

It is proved that the set of smooth points of a semialgebraic set is semialgebraic.

1. Introduction. The semialgebraicity of the smooth points of a semialgebraic set plays an important role in semialgebraic geometry. In [Ł1] S. Łojasiewicz proved that for locally semialgebraic sets the notions of a Nash smooth point and of an analytic point coincide. Moreover if $\Gamma \subset \mathbb{R}^{n}$ is an analytic submanifold, then for the germ Γ_{a} of Γ at $a \in \Gamma$ we have the equivalence:

$$
\Gamma_{a} \text { is Nash } \Leftrightarrow \Gamma_{a} \text { is semialgebraic. }
$$

Hence the semialgebraicity of the smooth points can be obtained following Łojasiewicz's method for the analogous theorem for semianalytic sets. The aim of this paper is to give a straightforward proof of the semialgebraicity of the smooth points of a semialgebraic set based on the properties of asymptotic analytic solutions proved in [S].

Recall that a subset of \mathbb{R}^{n} is semialgebraic if it is described by polynomials on \mathbb{R}^{n}. Thus, the class of semialgebraic subsets of \mathbb{R}^{n} is the algebra of subsets of \mathbb{R}^{n} which is generated by the family of sets $\{P>0\}$, where P is a polynomial. Equivalently, $E \subset \mathbb{R}^{n}$ is semialgebraic if there are polynomials P_{i} and $P_{i j}, i=1, \ldots, p, j=1, \ldots, q$, such that

$$
E=\bigcup_{i=1}^{p}\left\{x \mid P_{i}(x)=0, P_{i j}(x)>0, j=1, \ldots, q\right\} .
$$

Let G be an open subset of \mathbb{R}^{n}. We say that an analytic function f : $G \rightarrow \mathbb{R}$ is a Nash function at $a \in G$ if $W(x, f(x))=0$ in a neighborhood of a for a polynomial $W \not \equiv 0$ in $\mathbb{R}_{x, t}^{n+1}$. A Nash function on G is an analytic function on G which is Nash at each point of G.

[^0]
2. Auxiliary results

Lemma 1. Let E be a semialgebraic subset of \mathbb{R}^{n}. If int $E=\emptyset$, then some nonzero polynomial on \mathbb{R}^{n} vanishes on E.

Proof. We have $E=\bigcup_{i=1}^{q} B_{i}$ with $B_{i}=\left\{P_{i}=0\right\} \cap \bigcap_{j}\left\{P_{i j}>0\right\}$ for some polynomials P_{i} and $P_{i j}$. We can assume that each B_{i} is nonempty. Then $P_{i} \neq 0$, since otherwise B_{i} would be open. Hence $P_{1} \cdot \ldots \cdot P_{q}$ is the required polynomial.

Lemma 2. Every semialgebraic set $E \subset \mathbb{R}^{n}$ is contained in an algebraic set $V \subset \mathbb{R}^{n}$ of the same dimension.

Proof. Let $\pi_{\alpha}: \mathbb{R}^{n} \rightarrow L_{\alpha}$ be the natural projections onto $L_{\alpha}=\mathbb{R}_{x_{\alpha_{1}}, \ldots, x_{\alpha_{k+1}}}^{k+1}$, where $\alpha=\left(\alpha_{1}, \ldots, \alpha_{k+1}\right), 1 \leq \alpha_{1}<\ldots<\alpha_{k+1} \leq n$, and $k=\operatorname{dim} E$. Then each $\pi_{\alpha}(E)$ is semialgebraic of dimension at most k. Hence $\pi_{\alpha}(E) \subset\left\{P_{\alpha}=0\right\}$ for a nonzero polynomial P_{α}. Therefore $E \subset V=\bigcap_{\alpha}\left\{P_{\alpha} \circ \pi_{\alpha}=0\right\}$. Moreover $\operatorname{dim} V=k$, since otherwise V would contain a semialgebraic leaf $\Gamma\left({ }^{1}\right)$ of dimension $k+1$ and so there would exist an α such that int $\pi_{\alpha}(\Gamma) \neq \emptyset$, which would imply $P_{\alpha} \equiv 0$.

We say that a point $a \in E$ is a smooth point of dimension k of E if it has a neighborhood in E which is an analytic submanifold of dimension k. By definition the dimension of E is equal to the maximum of the dimensions of its smooth points.

Note that every polynomial on \mathbb{R}^{n} of degree $r>0$ is monic of degree r with respect to each of its variables in some coordinate system.

Lemma 3. Let $E \subset \mathbb{R}_{x}^{n}$ be a semialgebraic set of dimension $\leq k<n$. Then in some linear coordinate system, E is contained in a Weierstrass set

$$
\begin{equation*}
\left\{P_{k+1}\left(u, x_{k+1}\right)=\ldots=P_{n}\left(u, x_{n}\right)=0\right\} \tag{*}
\end{equation*}
$$

where $u=\left(x_{1}, \ldots, x_{k}\right)$ and P_{j} is a monic polynomial on $\mathbb{R}_{u, x_{j}}^{k+1}$ for $j=$ $k+1, \ldots, n$. (Such a coordinate system will be called a regular system for E.)

Proof. By the previous lemma it suffices to give the proof for an algebraic set $V \supset E$ of dimension k. Let $\mathcal{P}_{n} \supset \ldots \supset \mathcal{P}_{k+1} \supset \mathcal{P}_{k}$ denote the rings of polynomials on $\mathbb{R}_{u, x_{k+1}, \ldots, x_{n}}^{n}, \ldots, \mathbb{R}_{u, x_{k+1}}^{k+1}, \mathbb{R}_{u}^{k}$ (after suitable identifications). Denote by R_{j} the ring of restrictions of the polynomials from \mathcal{P}_{j} to V. Let $I=\left\{P \in \mathcal{P}_{n} \mid P_{\mid V}=0\right\}$. Changing coordinate systems in $\mathbb{R}^{n}, \ldots, \mathbb{R}^{k+1}$ successively we find in $I \cap \mathcal{P}_{j}$ monic polynomials with respect to x_{j}. This means in particular that $w_{j}=x_{j \mid V}$ is integral over R_{j-1}. Evidently $R_{j}=$ $R_{j-1}\left[w_{j}\right]$; it follows that w_{n}, \ldots, w_{k+1} are integral over R_{k}, which means that there exist monic polynomials $P_{j} \in \mathcal{P}_{k}\left[x_{j}\right], j=n, \ldots, k+1$, with $P_{j \mid V}=0$.

[^1]Let us recall two theorems (for proofs see $[\mathrm{S}]$) useful for the proof of the main theorem.

Theorem 1. Let $Q(x, t)$ be a complex polynomial on $\mathbb{R}_{x, t}^{n+1}$, monic in t. Then there exists $m>0$ such that if f, g are complex, continuous roots: $Q(x, f(x))=Q(x, g(x))=0$ in a neighborhood of $a \in \mathbb{R}^{n}$, then the following implication holds:

$$
f(x)-g(x)=O\left(|x-a|^{m}\right) \Rightarrow f=g
$$

in a neighborhood of a.
THEOREM 2. Let Q be a real polynomial on $\mathbb{R}_{x, t}^{n+1}$, monic in t, and let $L>0$. Then there exists $N \in \mathbb{N}$ such that the following implication holds: if $Q(x, \psi(x))=O\left(|x-a|^{N}\right)$ as $x \rightarrow a$, with some real-analytic function ψ defined in a neighborhood of $a \in \mathbb{R}^{n}$, then there exists a Nash function φ defined in a neighborhood of $a \in \mathbb{R}^{n}$ such that $Q(x, \varphi(x)) \equiv 0$ and $\varphi-\psi=$ $O\left(|x-a|^{L}\right)$ as $x \rightarrow a$.
3. Main result. We say that a submanifold $\Gamma \subset \mathbb{R}^{n}$ is topographic if it is the graph of an analytic mapping of an open subset of \mathbb{R}^{k} into \mathbb{R}^{n-k}.

Theorem 3. Let $E \subset \mathbb{R}_{u, v}^{k+l}, l=n-k$, be a semialgebraic set contained in the Weierstrass set (*). Then the set
$\Lambda=\{x \in E \mid U \cap E$ is a k-topographic submanifold for some nbd U of $x\}$ is semialgebraic.

Proof. For $a \in \mathbb{R}_{u}^{k}, b \in \mathbb{R}_{v}^{l}$ and $\delta, \varepsilon>0$ set $U_{a b \delta \varepsilon}=B(a, \delta) \times B(b, \varepsilon)$, where $B(a, \delta)=\{u| | u-a \mid<\delta\}, B(b, \varepsilon)=\{v| | v-b \mid<\varepsilon\}$. Let $(a, b) \in E$. The set $E_{a b \delta \varepsilon}=E \cap U_{a b \delta \varepsilon}$ is the graph of some continuous function $B(a, \delta) \rightarrow$ \mathbb{R}_{v}^{l} if and only if $\bar{E} \cap U_{a b \delta \varepsilon} \subset E$ and for $u \in B(a, \delta)$ we have $(u, v) \in \bar{E} \cap U_{a b \delta \varepsilon}$ for exactly one v. Thus the set

$$
F=\left\{(a, b, \delta, \varepsilon) \mid E_{a b \delta \varepsilon}\right. \text { is the graph of }
$$ some continuous function on $B(a, \delta)\}$

is semialgebraic.
Take m from Theorem 1, the same for all polynomials P_{j}, and $N>m$ from Theorem 2 also the same for all polynomials P_{j}, and $L=m$. For $c=\left\{c_{\alpha}\right\}_{|\alpha| \leq N}$, where $c_{\alpha} \in \mathbb{R}^{l}$ and $\alpha \in \mathbb{N}^{k}$, we define the polynomial mapping $P_{c}: u \mapsto \sum_{|\alpha|} c_{\alpha} u^{\alpha}$. In what follows we write $\left(c_{0}, c^{\prime}\right)=c$. For $a \in \mathbb{R}_{u}^{k}$, $c, C, N, \delta>0$ we define the following subset of $\mathbb{R}_{u, v}^{k+l}$:

$$
W_{a c C N \delta}=\left\{(u, v) \mid u \in B(a, \delta) \text { and }\left|v-P_{c}(u-a)\right| \leq C|u-a|^{N}\right\}
$$

It is enough to show that

$$
\begin{aligned}
(* *) \quad \Lambda=\left\{(a, b) \in \mathbb{R}_{u, v}^{k+l} \mid(a, b, \delta, \varepsilon)\right. & \in F \text { and } \\
E_{a b \delta \varepsilon} & \left.\subset W_{a\left(b, c^{\prime}\right) C N \delta} \text { with some } \delta, \varepsilon, c^{\prime}, C\right\}
\end{aligned}
$$

because the last set is semialgebraic. Let $(a, b) \in \Gamma$. Obviously for some sufficiently small $\delta, \varepsilon>0$ we have $(a, b, \delta, \varepsilon) \in F$ and the set $E_{a b \delta \varepsilon}$ is the graph of some Nash function φ; taking c^{\prime} such that $x \mapsto P_{\left(b, c^{\prime}\right)}(x-a)$ is the N th Taylor polynomial for φ we have $E_{a b \delta \varepsilon}=\varphi \subset W_{a\left(b, c^{\prime}\right) C N \delta}$ with some C when δ is sufficiently small.

Now, assume that the condition $(* *)$ holds. Then $E_{a b \delta \varepsilon}$ is the graph of some continuous function $\psi: B(a, \delta) \rightarrow \mathbb{R}_{v}^{l}$. Hence $Q(u, \psi(u))=0$ on $B(a, \delta)$, where $Q=\left(P_{k+1}, \ldots, P_{n}\right)$. The graph of ψ is contained in the set $W_{a c C N \delta}$. Thus $\psi(u)-P_{c}(u-a)=O\left(|u-a|^{N}\right)$. Therefore $Q\left(u, P_{c}(u-a)\right)=$ $O\left(|u-a|^{N}\right)$. By Theorem 2 there exists an analytic function φ defined in a neighborhood of a such that $Q(u, \varphi(u)) \equiv 0$ and $\varphi(u)-P_{c}(u-a)=$ $O\left(|u-a|^{m}\right)$. Hence $\varphi-\psi=O\left(|u-a|^{m}\right)$ and according to Theorem 1 we have $\varphi=\psi$ in a neighborhood of a.

Theorem 4. Let $E \subset \mathbb{R}^{n}$ be a semialgebraic set. Then the set $E^{(k)}$ of its smooth points of dimension k is semialgebraic as well.

Proof. It is enough to prove the theorem for $k=\operatorname{dim} E$, because we can proceed by induction.

For each isomorphism $\varphi: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ we define

$$
\lambda(\varphi)=\varphi^{-1}\left(e_{k+1}\right) \wedge \ldots \wedge \varphi^{-1}\left(e_{n}\right) \in \Lambda^{n-k} \mathbb{R}^{n}
$$

where e_{1}, \ldots, e_{n} is a canonical basis of \mathbb{R}^{n}. We say that a sequence $\varphi_{1}, \ldots, \varphi_{r}$ of linear isomorphisms of \mathbb{R}^{n} is complete if $\lambda\left(\varphi_{1}\right), \ldots, \lambda\left(\varphi_{r}\right)$ generate $\Lambda^{n-k} \mathbb{R}^{n}$. One can easily prove that:
(1) there exists a complete sequence,
(2) any sequence that is sufficiently close (in the natural topology) to a complete one is complete,
(3) if $\varphi_{1}, \ldots, \varphi_{r}$ is a complete sequence and the set E is smooth of dimension k at a then $\varphi_{\nu}(E)$ is k-topographic at $\varphi_{\nu}(a)$ for some ν.

We find a complete sequence $\varphi_{1}, \ldots, \varphi_{r}$ such that each φ_{i} is a regular system for E. According to Theorem 3 the set R_{ν} of points at which $\varphi_{\nu}(E)$ is k-topographic is a semialgebraic set. Hence

$$
E^{(k)}=\bigcup \varphi_{\nu}^{-1}\left(R_{\nu}\right)
$$

is semialgebraic as a finite sum of semialgebraic sets.

References

[Ł1] S. Łojasiewicz, Ensembles semi-analytiques, IHES, Bures-sur-Yvette, 1965.
[七2] -, Introduction to Complex Analytic Geometry, Birkhäuser, 1991.
[S] J. Stasica, On asymptotic solutions of analytic equations, Ann. Polon. Math. 82 (2003), 71-76.

Institute of Mathematics
Jagiellonian University
Reymonta 4
30-059 Kraków, Poland
E-mail: jacek.stasica@im.uj.edu.pl

[^0]: 2000 Mathematics Subject Classification: Primary 14P10.
 Key words and phrases: semialgebraic set, smooth point, topographic submanifold. This paper is partially supported by the KBN grant number 159/P03/2001/21.

[^1]: $\left({ }^{1}\right)$ A semialgebraic leaf is any analytic submanifold which is a semialgebraic set.

