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Some properties of Reinhardt domains

by Le Mau Hai, Nguyen Quang Dieu and
Nguyen Huu Tuyen (Hanoi)

Abstract. We first establish the equivalence between hyperconvexity of a fat
bounded Reinhardt domain and the existence of a Stein neighbourhood basis of its closure.
Next, we give a necessary and sufficient condition on a bounded Reinhardt domain D so
that every holomorphic mapping from the punctured disk ∆∗ into D can be extended
holomorphically to a map from ∆ into D.

1. Introduction. Let D be a domain in Cn. We say that D is a Rein-
hardt domain if D is invariant under the action of the n-torus (for a precise
definition see Section 2). Reinhardt domains are important objects in com-
plex analysis; their pseudoconvexity, hyperconvexity, kinds of hyperbolicity,
etc. have been characterized in [CCW], [Zw1], [Zw2], etc.

The aim of this paper is to study Reinhardt domains in connection with
other concepts. Namely, in Theorem 3.2 we prove that a fat Reinhardt do-
main is hyperconvex if and only if its closure is compact Stein, i.e. has a
neighbourhood basis of Stein domains. It should be remarked that there ex-
ists a fat, pseudoconvex domain in C2 whose closure is polynomially convex
but the domain itself is not hyperconvex (see Proposition 3.1). On the other
hand, the “worm” domains constructed by Diederich and Fornæss provide
examples of hyperconvex domains whose closure is not compact Stein.

In Section 4, we deal with the question of extending holomorphic map-
ping into Reinhardt domains. Roughly speaking, we say that a domain D
in Cn has the k- or ∆∗-extension property if every holomorphic mapping
into D can be holomorphically extended through a “small” set (see Sec-
tion 4 for precise definitions). The∆∗-extension property was first studied by
D. D. Thai [T] and recently by P. Thomas and D. D. Thai [TT]. In general,
the k-extension property is strictly stronger than the ∆∗-extension property.
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However, we prove in Proposition 4.1 that in the class of Reinhardt domains,
they are in fact equivalent. We also give a characterization of pseudoconvex
Reinhardt domains with the ∆∗-extension property in Proposition 4.2.

Finally we prove in Section 5 that every pseudoconvex Reinhardt do-
main is the domain of existence of a bounded holomorphic function having
polynomial growth. This result is closely related to earlier investigations in
[JP].
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2. Basic notions and auxiliary facts. Let D be a domain in Cn. It
is said to be a Reinhardt domain if for every (θ1, . . . , θn) ∈ Rn we have

(z1, . . . , zn) ∈ D ⇒ (eiθ1z1, . . . , e
iθnzn) ∈ D.

For each Reinhardt domain D in Cn we denote by logD∗ its logarithmic
image, more precisely

logD∗ = {(log |z1|, . . . , log |zn|) : (z1, . . . , zn) ∈ D∗},
where D∗ = {(z1, . . . , zn) ∈ D : z1 . . . zn 6= 0}. We also write D̂ for the
envelope of holomorphy of D. Next for 1 ≤ j ≤ n we let

Vj = {z ∈ Cn : zj = 0}, V =
⋃

1≤j≤n
Vj .

The following useful criterion for pseudoconvexity of a Reinhardt domain
can be found in [Zw1].

Lemma 2.1. Let D be a Reinhardt domain in Cn. Then the following
assertions are equivalent.

(i) D is pseudoconvex.
(ii) logD∗ is convex and if D ∩ Vj 6= ∅ for some 1 ≤ j ≤ n then

(z1, . . . , zj−1, zj , . . . , zn) ∈ D ⇒ (z1, . . . , zj−1, λzj , . . . , zn) ∈ D ∀|λ| < 1.

We next recall the concept of hyperconvexity. A domain D (not necessar-
ily bounded) in Cn is said to be hyperconvex if there is a negative exhaustive
continuous plurisubharmonic function for D. It is a remarkable fact that for



Reinhardt domains 205

bounded hyperconvex domains, it is enough to have a weak plurisubhar-
monic barrier at every boundary point. This fact is perhaps most clearly
explained in [Bł]. More precisely, we have

Theorem 2.2. Let D be a bounded domain in Cn. Then D is hyper-
convex if and only if every boundary point ξ has a weak plurisubharmonic
barrier , i.e. there exists a nonconstant negative plurisubharmonic function
ψ on D such that

lim
z→ξ

ψ(z) = 0.

If the domain in question is pseudoconvex Reinhardt then we have a
simpler criterion.

Lemma 2.3. Let D be a bounded pseudoconvex Reinhardt domain in Cn.
Then:

(i) There exists a weak plurisubharmonic barrier at every point ξ ∈
∂D \ V , which extends to a plurisubharmonic function in a neighbourhood
of ξ in Cn.

(ii) D is hyperconvex if and only if there exists a weak plurisubharmonic
barrier at every point ξ ∈ (∂D) ∩ V .

Proof. (i) The proof is implicitly contained in that of Theorem 2.14 in
[CCW]; we omit the details.

(ii) follows immediately from Theorem 2.2 and (i).

For pseudoconvex Reinhardt domains we mention the following beautiful
result of [Zw2]:

Lemma 2.4. A bounded pseudoconvex Reinhardt domain D in Cn is hy-
perconvex if and only if D ∩ Vj 6= ∅ for any j ∈ {1, . . . , n} with D ∩ Vj 6= ∅.

We need the following result about pseudoconvexity (resp. hyperconvex-
ity) of projections of a pseudoconvex (resp. hyperconvex) Reinhardt domain.
Notice that in general these properties are not preserved under projection.

Lemma 2.5. Let D be a pseudoconvex (resp. hyperconvex ) Reinhardt do-
main in Cn and π be the projection (z1, . . . , zn) 7→ (z1, . . . , zj), 1 ≤ j ≤ n.
Then:

(a) π(D) is pseudoconvex (resp. hyperconvex ).
(b) For every a ∈ π(D) the set π−1(a) ∩ D is a pseudoconvex (resp.

hyperconvex ) Reinhardt domain (viewed as a subset of Cn−j).

Proof. (a) It is clear that log(π(D))∗ = π̃(logD∗), where π̃ denotes the
projection (x1, . . . , xn) ∈ Rn 7→ (x1, . . . , xj) ∈ Rj . Thus log(π(D))∗ is a
convex domain in Rj . By applying Lemmas 2.1 and 2.4 we can easily prove
that π(D) is pseudoconvex (resp. hyperconvex) if so is D.
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(b) We argue similarly. It is easy to check that log(π−1(a) ∩ D)∗ =
π̃−1(ã)∩logD∗, where ã= (log |a1|, . . . , log |aj |). Therefore log(π−1(a)∩D)∗
is convex. Now the desired conclusion follows easily from Lemmas 2.1
and 2.4.

3. Compact Stein Reinhardt sets. A compact set in Cn is called
compact Stein if it has a Stein neighbourhood basis.

Let D be a domain in Cn, and assume that D is compact Stein. By
using the following criterion for pseudoconvexity: A domain Ω in Cn is
pseudoconvex if and only if the function − log d(z) is plurisubharmonic on Ω,
where d(z) is the distance from z to ∂D, we can easily prove that D must
be pseudoconvex.

Therefore it is natural to ask whether a fat domain is hyperconvex if its
closure is compact Stein. Here we recall that a domain D is called fat if
Int(D) = D. The answer is however “no” in general, as demonstrated in the
following example which is inspired from [KR].

Proposition 3.1. There exists a bounded Hartogs domain D in C2 with
the following properties.

(i) D is polynomially convex.
(ii) Int(D) = D.
(iii) D is not hyperconvex.

Proof. Choose a locally bounded subharmonic function ϕ on C such that
ϕ is discontinuous only at the origin in C (a precise construction will be given
at the end of the proof). We let

D = {(z, w) : |z| < 1, |w| < e−ϕ(z)}.
It is straightforward to see that D = D1 ∪D2, where

D1 = {(z, w) : |z| ≤ 1, |w| ≤ e−ϕ(z)}, D2 = {(0, w) : |w| ≤ e−ξ},
with ξ = lim infz→0 f(z). This implies that D satisfies (ii). We must show
that D1 ∪D2 is polynomially convex. For this we employ an argument close
to the proof of Lemma 6.5 in [Fo].

First we prove that D̂ \D ⊂ {0} × C. Indeed, assume that there exists

(z0, w0) ∈ D̂ \ D with z0 6= 0. Then since (z0, w0) 6∈ D1 we deduce that
ϕ(z0) + log |w0| > 0. Now for each λ > 0 we define the function

u(z, w) = log |z|+ λ(ϕ(z) + log |w|).
It is clear that u is plurisubharmonic on C2 and satisfies u(z, w) ≤ 0 for all
(z, w) ∈ D and u(z0, w0) > 0 for λ large enough. In view of Theorem 4.3.4
in [Hö] (which is equivalent to the solution to the Levi problem) we get a
contradiction to the fact that (z0, w0) ∈ D̂. Thus D̂ \D ⊂ {0} × C.
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Next we pick a point (0, w∗) from D̂ ∩ ({0} × C) which is farthest from
the origin. Consider the function f(z, w) = eww

∗ . It is easy to see that |f |
attains a strict maximum in the disk {(0, w) : |w| ≤ |w∗|} at the point
(0, w∗).

Now we claim that (0, w∗) ∈ D2. Otherwise there would exist a small

ball U centred at (0, w∗) which is disjoint from D. It follows that (∂U)∩D̂ ⊂
{0} × C. Therefore

|f(0, w∗)| > sup
(z,w)∈(∂U)∩D̂

|f(z, w)|.

This contradicts the Rossi local maximum principle (Theorem 9.3 in [AW]).

Thus (0, w∗) ∈ D2, and therefore D̂ is polynomially convex.
Finally, D is not hyperconvex because ϕ is not continuous at the origin

(see [KR]). It remains to construct a subharmonic function having the above
mentioned properties. We can take

ϕ(z) = eψ(z), where ψ(z) =
∑

n≥1

1
2n

log
∣∣∣∣z −

1
2n

∣∣∣∣.

Remark. According to Theorem 4.2.1 in [Ra], it is impossible to find a
domain in C enjoying all requirements in Proposition 3.1. However, as the
referee pointed out, there does exist a domain D in C satisfying (ii) and (iii)
of Proposition 3.1. Indeed, consider the Zalcman type domain

D := ∆ \
( ∞⋃

j=1

∆(2−j , 2−j(j
2+1)) ∪ {0}

)
,

where ∆ is the unit disk in C, and ∆(a, r) denotes the disk centred at a with
radius r. Then it follows from the Wiener criterion (see [Ra, Theorem 5.4.1])
thatD is not regular with respect to the Dirichlet problem (and consequently
it is not hyperconvex), although D is obviously fat and D is compact Stein.

Before formulating the main result of this section we recall the following
notion from [Ni] (we thank the referee for directing our attention to this
reference): A bounded hyperconvex domain D in Cn is called strictly hyper-
convex if there exist a bounded pseudoconvex domain Ω in Cn, a function
% ∈ C(Ω, [−∞, 1))∩PSH(Ω) such that D = {z ∈ Ω : %(z) < 0}, % is exhaus-
tive for Ω and for all c ∈ [0, 1), the open set Dc = {z ∈ Ω : %(z) < c} is
connected.

We have some remarks concerning this notion.

Remark. It is clear that the sets Dc for c ∈ (0, 1) small enough form a
Stein neighbourhood basis for D. In particular D is compact Stein. We also
claim that Int(D) = D, i.e., D is fat. Indeed, otherwise there would exist a
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point z0 ∈ Int(D) \ D. It follows that %(z0) = 0. The maximum principle
for plurisubharmonic functions implies that % vanishes on a neighbourhood
of z0. This is clearly absurd.

We now come to the main result of this section.

Theorem 3.2. Let D be a bounded Reinhardt domain in Cn. Then the
following assertions are equivalent.

(i) D is hyperconvex.
(ii) D is strictly hyperconvex.
(iii) Int(D) = D and D is compact Stein.

Proof. (i)⇒(ii). By changing coordinates we may assume that the point
(1, . . . , 1) lies in D. We set

A = {1 ≤ j ≤ n : D ∩ Vj = ∅}.
Since D is hyperconvex, by Lemma 2.4 we infer that D is relatively compact
in the pseudoconvex domain

D̃ = Cn \
⋃

j∈A
Vj .

It suffices to prove that there exists a continuous plurisubharmonic function
u on D̃ satisfying

(a) D = {z ∈ D̃ : u(z) < 0}.
(b) Dt = {z ∈ D̃ : u(z) < t} is connected for every t.

For this we notice logD∗ is a convex domain containing the origin in Rn,
thus we can define the Minkowski functional p for logD∗ as follows:

p(x) = inf{λ > 0 : x/λ ∈ logD∗}, ∀x ∈ Rn.
Since p is convex on Rn we deduce that the function

u(z1, . . . , zn) = p(log |z1|, . . . , log |zn|)− 1

is plurisubharmonic on Cn∗ andD∗ = {z ∈ Cn∗ : u(z) < 0}. Therefore ifA = ∅
then the proof is finished. Otherwise, pick an arbitrary point a ∈ D̃ ∩ V .
If a = 0 then a ∈ D by Lemma 2.1. Obviously u is bounded near 0. If
a 6= 0 then we may assume that a = (0, . . . , 0, ak+1, . . . , an), where aj 6= 0
for k + 1 ≤ j ≤ n. Let πk be the projection (x1, . . . , xn) 7→ (xk+1, . . . , xn).
Then πk(logD∗) is a convex domain in Rn−k containing the origin. We fix
λ > 0 such that (

log |ak+1|
λ

, . . . ,
log |an|
λ

)
∈ πk(logD∗).

Since D∩Vj 6= ∅ for 1≤ j ≤ k, Lemma 2.1 implies that (0, . . . , 0, bk+1, . . . , bn)
∈ D, where log |bj | = (log |aj |)/λ for k + 1 ≤ j ≤ n. Thus we can find ε > 0
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and a Reinhardt neighbourhood W of the point (bk+1, . . . , bn) such that
U × W ⊂ D, where U = {(z1, . . . , zk) : |zj | < ε for 1 ≤ j ≤ k}. Now
we choose a neighbourhood W ′ of (ak+1, . . . , an) so small that (logW ′)/λ
⊂ logW∗, where

logW ′ = {(log |zk+1|, . . . , log |zn|) : (zk+1, . . . , zn) ∈W ′}.
It is obvious that U ′×W ′ is a neighbourhood of a, where U ′ = {(z1, . . . , zk) :
|zj | < ελ for 1 ≤ j ≤ k}. Furthermore, it follows from the definition of u
that

u(z) ≤ λ− 1, ∀z ∈ (U ′ ×W ′) \ V.
Thus u is locally bounded near every point of D̃∩V . Hence u can be extended
to a plurisubharmonic function (still denoted by u) on D̃. Moreover, from
the above reasoning we see that for every point a ∈ (D̃ ∩ V ) \ {0} the
following estimate holds:

(2) u(a) ≤ p̃(log |ai1 |, . . . , log |aik |)− 1,

where ai1 , . . . , aik (i1 < . . . < ik) are all nonzero coordinates of a and p̃
is the Minkowski functional for the projection of logD∗ under the map
π̃i1,...,ik : (z1, . . . , zn) 7→ (zi1 , . . . , zik). On the other hand, let z0 be an
arbitrary point of D̃∩V and let z0

i1
, . . . , z0

ik
be all nonzero coordinates of z0.

From the definition of u we deduce that

u(z) ≥ p̃(log |zi1 |, . . . , log |zik |), ∀z ∈ Cn∗ .
Since

u(z0) = lim sup
ξ→z0, ξ∈Cn∗

u(ξ),

we deduce that

(3) u(z0) ≥ p̃(log |z0
i1 |, . . . , log |z0

ik
|)− 1.

It follows from (2) and (3) that for a ∈ D̃ ∩ V we have

u(a) = p̃(log |ai1 |, . . . , log |ain |)− 1.

Thus u is continuous on D̃ and the requirement (a) is satisfied. For (b), we
notice that for any t > 0 the set {z ∈ Cn∗ : u(z) < t} is a pseudoconvex
Reinhardt domain. It follows that the set {z ∈ Cn : u(z) < t} is connected
for every t > 0.

(ii)⇒(iii). See the remarks before Theorem 3.2.
(iii)⇒(i). We split the proof into two steps.

Step 1. We will prove that 0 6∈ ∂D. Assume that 0 ∈ ∂D. For each
k ≥ 1 we define the domain

Dk = {(z1, . . . , zn) : |zj | < 1/k, 1 ≤ j ≤ n} ∪D.
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It is clear that Dk is Reinhardt, and we have

log (Dk)∗ = {(x1, . . . , xn) : xj < − log k, 1 ≤ j ≤ n} ∪ logD∗.

Take p = (p1, . . . , pn) ∈ Cn∗ ∩D. It is easy to see that

conv(log (Dk)∗) ⊃ conv({(x1, . . . , xn) : xj < − log k, 1 ≤ j ≤ n}, p̃),
where p̃ = (log |p1|, . . . , log |pn|). Hence for k large enough we have

conv(log(Dk)∗) ⊃ {(x1, . . . , xn) : xj < log |pj |, 1 ≤ j ≤ n}.
As log (D̂k)∗ is convex we deduce that for k large enough

D̂k ⊃ {(z1, . . . , zn) : 0 < |zj | < |pj |, 1 ≤ j ≤ n}.
Since D is compact Stein we infer that D has a pseudoconvex Reinhardt
neighbourhood basis. This implies that

D ⊃ {(z1, . . . , zn) : |zj | < |pj |, 1 ≤ j ≤ n}.
Consequently, 0 ∈ Int(D) = D, a contradiction.

Step 2. We let a be an arbitrary point of ∂D ∩ V . According to Lem-
ma 2.3 it suffices to construct a negative plurisubharmonic function ψ on
D such that limz→a ψ(z) = 0. By Step 1 we have a 6= 0, thus with no loss
of generality we may assume that a = (0, . . . , 0, aj+1, . . . , an), where ak 6= 0
for j + 1 ≤ k ≤ n.

Let π denote the projection (z1, . . . , zn) 7→ (zj+1, . . . , zn). By Lem-
ma 2.5(a), π(D) is a Reinhardt pseudoconvex domain in Cn−j . Now we
claim that π(a) 6∈ π(D). Indeed, otherwise we let D′ = π−1(a′) ∩D, where
a′ = (aj+1, . . . , an). By Lemma 2.5(b), D′ is a pseudoconvex Reinhardt do-
main in Cj . Since D is compact Stein, so is D′. Notice that the origin in Cj
lies on the boundary of D′. By repeating the argument used in Step 1 we
see that D′ contains a small neighbourhood of 0 ∈ Cj .

Let (c1, . . . , cj , aj+1, . . . , an) ∈ D ∩Cn∗ . We choose ε, δ > 0 so small that

M1 = {(x1, . . . , xn) : |xj − bj | < δ, 1 ≤ j ≤ n} ⊂ logD∗,

M2 = {(x1, . . . , xn) : x1 < log ε, . . . , xj < log ε} × {(bj+1, . . . , bn)}
⊂ log (D)∗,

and log ε < bk−δ for 1 ≤ k ≤ j, where b1 = log |c1|, . . . , bj = log |cj |, bj+1 =
log |aj+1|, . . . , bn = log |an|. This choice is possible because D′ contains a
neighbourhood of 0 ∈ Cj . We will prove that

conv(M1 ∪M2) ⊃M3 := {(x1, . . . , xn) : x1 < log ε, . . . , xj < log ε,

|xj+1 − bj+1| < δ/2, . . . , |xn − bn| < δ/2}.
Indeed, assume that there exists a point (y1, . . . , yn) ∈M3 \conv(M1∪M2).
Since conv(M1∪M2) is an open convex domain in Rn, by the Hahn–Banach
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theorem we can find (λ1, . . . , λn) ∈ Rn satisfying

(4) λ1x1 + . . .+ λnxn < λ1y1 + . . .+ λnyn, (x1, . . . , xn) ∈M1 ∪M2.

Since (4) holds for every (x1, . . . , xn) ∈ M2 we deduce that λk ≥ 0 for
1 ≤ k ≤ j and

λj+1(yj+1 − bj+1) + . . .+ λn(yn − bn) > 0.

We choose a point (x0
1, . . . , x

0
n) ∈M1 with x0

k = 2yk − bk for j + 1 ≤ k ≤ n.
Then from (4) we obtain

0 >
n∑

k=1

λk(x0
k − yk) =

j∑

k=1

λk(x0
k − yk) +

n∑

k=j+1

λk(x0
k − yk)

≥
n∑

k=j+1

λk(x0
k − yk) =

n∑

k=j+1

λk(yk − bk).

We arrive at a contradiction. Hence conv(M1 ∪M2) ⊃M3.
Now let Ω be an arbitrary Reinhardt domain containing D. We see that

M3 ⊂ conv(M1 ∪M2) ⊂ conv(logΩ∗) ⊂ log (Ω̂)∗,

where Ω̂ denotes the envelope of holomorphy of Ω. Since D is a compact
Stein Reinhardt domain we infer that D has a pseudoconvex Reinhardt
neighbourhood basis. It follows that M3 ⊂ log (D)∗. This implies that 0 ∈
Int(D) = D, which is absurd. The proof is thereby concluded.

We mention a simple consequence of Theorem 3.2.

Corollary 3.3. Let D be a bounded pseudoconvex Reinhardt domain
in Cn satisfying Int(D) = D. Then D is polynomially convex if and only if
0 ∈ D.

Proof. It follows from the proof of Theorem 3.1 that if 0 ∈ D then D is
holomorphically convex in Cn; this means that D is polynomially convex.
Conversely, assume that D is polynomially convex. By changing coordinates
we may assume that (1, . . . , 1) ∈ D. Since D is Reinhardt the Shilov bound-
ary of the unit polydisk is contained in D. As D is polynomially convex it
must contain the whole polydisk, in particular 0 ∈ D.

4. Extending holomorphic mappings into Reinhardt domains.
In this section we deal with the extension of a holomorphic mapping into a
Reinhardt domain. More precisely, we say that a Reinhardt domain D in Cn
has the k- (resp. ∆∗-) extension property if every holomorphic mapping from
∆k \S (resp. ∆∗ := ∆ \ {0}) into D can be extended to a holomorphic map
from ∆k (resp. ∆) into D, where ∆ is the unit disk in C and S is a closed
set of the polydisk ∆k satisfying H2k−1(S) = 0, i.e. the (2k − 1)-Hausdorff
measure of S vanishes.
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It is easy to check that the k-extension property implies the ∆∗-extension
property. The reverse implication is however not true in general. Indeed, we
let S be a closed subset of ∆ satisfying H1(S) = 0 but with no isolated
point. We first show that D = ∆ \ S has the ∆∗-extension property. Let
f : ∆∗ → ∆ \ S be a holomorphic function. By the Riemann extension
theorem, f extends to a holomorphic function f̃ on ∆. If f is constant then
we have nothing to prove, otherwise f̃ is an open mapping on ∆. Since S
has no isolated point we deduce that f̃(0) 6∈ S. It follows that ∆ \ S has
the ∆∗-extension property. On the other hand, the map f : ∆ \ S → ∆ \ S
defined by f(z) = z is clearly not extendible through S.

The first result of this section states that these properties are in fact
equivalent in the class of Reinhardt domains. More precisely we have

Proposition 4.1. Let D be a Reinhardt domain in Cn. The following
assertions are equivalent.

(i) D has the ∆∗-extension property.
(ii) D has the k-extension property.

Proof. It suffices to prove the implication (i)⇒(ii). If D has the ∆∗-
extension property, then by a result in [TT], D is pseudoconvex.

Next we show that D is Brody hyperbolic, i.e. there exists no noncon-
stant holomorphic mapping from C into D. Indeed, let g : C → D be a
holomorphic mapping. Then g̃(z) := g(1/z) is a holomorphic mapping from
C∗ into D. Since D has the ∆∗-extension property, g̃ extends through the
origin. Hence g is bounded on C, and by the Liouville theorem g must be
constant. Thus D is Brody hyperbolic. According to Theorem 2.5.1 in [Zw2]
we may assume that D is bounded.

Next we proceed by induction on n. If n = 1 then D, being a bounded
Reinhardt domain having the ∆∗-extension property, must be either a disk
or an annulus. By the maximum principle for subharmonic functions we can
prove that D has the k-extension property.

Assume that the implication (i)⇒(ii) holds for n− 1; we will prove that
it also holds for n. Let f : ∆k \S → D be a holomorphic mapping, where S
is a closed subset of the polydisk ∆k with H2k−1(S) = 0. We have to prove
that f extends to a holomorphic mapping f̃ : ∆k → D. Since D is bounded,
f extends to a holomorphic mapping f̃ = (f̃1, . . . , f̃n) : ∆k → Cn (see [Ch,
Appendix]). It suffices to check that f̃(α) ∈ D for all α ∈ ∆k. Seeking
a contradiction, assume that there exists α ∈ ∆k such that f̃(α) ∈ ∂D.
If f̃(α) ∈ (∂D) \ V , then according to Lemma 2.3(i) we can find a small
ball B centred at f̃(α), and a plurisubharmonic function ψ on B such that
ψ(z) < 0 for all z ∈ B ∩D but limz→f̃(α) f(z) = 0. Notice that the function

ψ̃ = ψ ◦ f̃ is plurisubharmonic on a small neighbourhood of α. This leads
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to a contradiction, in view of the maximum principle for plurisubharmonic
functions. Thus f̃(α) ∈ (∂D) ∩ V . There are two cases to be considered.

Case 1: f̃1 . . . f̃n ≡ 0. We may assume that f̃1 ≡ 0. Denote by π1 the
projection (z1, . . . , zn) 7→ (z2, . . . , zn). From Lemma 2.1 we deduce that
π1(D ∩ {z1 = 0}) is a bounded pseudoconvex Reinhardt domain having the
∆∗-extension property. Thus by the inductive hypothesis we are done.

Case 2: f̃1 . . . f̃n 6≡ 0. Let Q denote the complex hypersurface
(f̃1 . . . f̃n)−1(0). First we assume that α is a regular point of Q. Then after
a local change of coordinates we may achieve that α is the origin in Ck and
f̃(∆∗ × ∆k−1) ⊂ D. As D has the ∆∗-extension property we deduce that
f̃(∆k) ⊂ D. A contradiction. Thus α ∈ S(Q), the singular locus of Q. By
using the same argument we see that α ∈ S(S(Q)). Continuing this process,
we finally reach a contradiction. The desired conclusion now follows.

In this connection, we would like to mention that there exists a pseudo-
convex Reinhardt domain in C2 having the ∆∗-extension property which is
not hyperconvex (Example 2.11 in [CCW]). Notice that every hyperconvex
domain has the ∆∗-extension property. Therefore the problem of finding a
“good” criterion for the ∆∗-extension property of pseudoconvex Reinhardt
domains is of interest. We have the following

Proposition 4.2. Let D be a bounded pseudoconvex Reinhardt domain
in Cn. Then D has the ∆∗-extension property if and only if the following
conditions hold :

(a) For any 1 ≤ j ≤ n, D ∩ Vj (if not empty) has the ∆∗-extension
property (as a domain in Cn−1).

(b) Every holomorphic mapping f : ∆∗ → D of the form

f(ξ) = (λ1ξ
a1 , . . . , λnξ

an),

where ai ≥ 0 and λi 6= 0 for all i, extends through 0 to a holomorphic
mapping f̃ : ∆→ D.

Proof. (⇒) This follows immediately from the definition of the ∆∗-
extension property.

(⇐) Let f : ∆∗ → D be a holomorphic mapping. Since D is bounded,
f extends holomorphically through the origin to f̃ : ∆ → Cn. We have to
show that f̃(0) ∈ D. Assume that f̃(0) ∈ ∂D. If f̃(0) ∈ (∂D) \ V then
Lemma 2.3 and the maximum principle for subharmonic functions yield a
contradiction. Thus f̃(0) ∈ (∂D) ∩ V .

We consider two cases.

Case 1: f̃1 . . . f̃n ≡ 0. Then the same reasoning as in Case 1 of the
proof of Proposition 4.1 and (a) imply that f̃(0) ∈ D. A contradiction.
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Case 2: f̃1 . . . f̃n 6≡ 0. We choose 0 < r < 1 so small that

f̃j(ξ) 6= 0, ∀0 < |ξ| ≤ r.
Thus we may write

f̃j(ξ) = ξνjgj(ξ),

where νj is the vanishing order of f̃j at 0 and gj(0) 6= 0.
Now we claim that

(5) {(ν1t+ log |g1(0)|, . . . , νnt+ log |gn(0)|) : t < log r} ⊂ logD∗.

Indeed, if this is not true then there exists t0 < log r such that

(ν1t0 + log |g1(0)|, . . . , νnt0 + log |gn(0)|) 6∈ logD∗.

Since logD∗ is an open convex domain in Rn, by the Hahn–Banach theorem
we can find (λ1, . . . , λn) ∈ Rn such that

n∑

j=1

λjxj <

n∑

j=1

λj(νjt0 + log |gj(0)|), ∀(x1, . . . , xn) ∈ logD∗.

This implies, in particular, that for any ξ satisfying 0 < |ξ| ≤ r we have
n∑

j=1

λj log |fj(ξ)| <
n∑

j=1

λj(νjt0 + log |gj(0)|),

n∑

j=1

λj(νj log |ξ|+ log |gj(ξ)|) <
n∑

j=1

λj(νjt0 + log |gj(0)|),

log |ξ| ·
( n∑

j=1

λjνj

)
+

n∑

j=1

λj log |gj(ξ)| < t0

( n∑

j=1

λjνj

)
+

n∑

j=1

λj log |gj(0)|.

By setting

h(ξ) =
n∑

j=1

λj log |gj(ξ)|, 0 < |ξ| ≤ r,

the last inequality becomes

h(ξ)− h(0) < (t0 − log |ξ|)
( n∑

j=1

λjνj

)
, ∀0 < |ξ| ≤ r.

By letting ξ tend to 0 we see that

λ1ν1 + . . .+ λnνn ≥ 0.

As t0 < log r we deduce that

h(ξ) < h(0), ∀|ξ| = r.

Since h is harmonic on the disk |ξ| < r and continuous up to the boundary,
we arrive at a contradiction to the maximum principle. Thus claim (5) is
valid.
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Consider the holomorphic mapping F : ∆∗ → Cn defined by

F (ξ) = (g1(0)ξν1 , . . . , gn(0)ξνn).

From (5) we deduce that the mapping G(ξ) := F (rξ) satisfies (b). Thus it
extends holomorphically through 0 to G̃, so f̃(0) = G̃(0) ∈ D, contrary to
assumption.

Therefore D has the ∆∗-extension property.

Remarks. (a) Proposition 4.2 replaces a similar, though weaker result
that appeared in the first version of this paper. It arised as an attempt
to answer a question posed by the referee. We are grateful to him/her for
bringing this question to our attention.

(b) It is possible to formulate the conclusion of Proposition 4.2 in terms
of certain convex cones introduced in [Zw2, p. 28].

5. O(1)-domain of holomorphy. Let D be a domain in Cn. We put
δD = min((1 + |z|2)−1/2, dD(z)), where dD(z) is the distance from z to ∂D.
For every N > 0 we define

O(N)(D, δD) = {f ∈ O(D) : |δNDf |∞ <∞},
where O(D) is the space of holomorphic functions on D. We call D an
O(N)(D, δD)-domain of holomorphy if D is the existence domain of a func-
tion in O(N)(D, δD).

It is proved in [JP] that any fat Reinhardt pseudoconvex domain in Cn
is an O(N)(D, δD)-domain of holomorphy for every N > 0. The following
result complements this fact.

Proposition 5.1. Let D be a pseudoconvex Reinhardt domain in Cn.
Then D is an O(1)(D, δD)-domain of holomorphy.

Proof. If Int(D) = D then D is an O(1)(D, δD)-domain of holomor-
phy by the above mentioned result of [JP]. It remains to consider the case
Int(D) 6= D.

We proceed by induction on n. For n = 1, D is of the form {z : |z| < r},
where 0 < r ≤ ∞. Thus D is an O(1)(D, δD)-domain of holomorphy.

Assume that the conclusion holds for n− 1. Let a be an arbitrary point
from ∂D. It suffices to show that there exists a function fa ∈ O(1)(D, δD)
which is not extendible through a. We consider two cases.

Case 1: a ∈ ∂D \ V . Then from Lemma 2.3(i) and the maximum
principle for plurisubharmonic functions we deduce that a 6∈ Int(D), thus
a ∈ ∂(Int(D)). Since Int(D) is a fat Reinhardt pseudoconvex domain we can
find a function fa ∈ O(1)(Int(D), δInt(D)) which is not extendible through a.
Since O(1)(Int(D), δInt(D)) ⊂ O(1)(D, δD) we are done.
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Case 2: a = (a1, . . . , an) ∈ (∂D) ∩ V . We may assume that an = 0. If
D ∩ Vn = ∅ then the function 1/zn is not extendible through a. Moreover,
for every z ∈ D we have∣∣∣∣δD(z)

1
zn

∣∣∣∣ ≤
∣∣∣∣
dD(z)
zn

∣∣∣∣ ≤
∣∣∣∣
dCn\Vn(z)

zn

∣∣∣∣ = 1.

This implies that 1/zn ∈ O(1)(D, δD). If D∩Vn 6= ∅, then by Lemma 2.1 the
map πn : (z1, . . . , zn) 7→ (z1, . . . , zn−1, 0) sends D to D ∩ Vn. Moreover, in
view of that lemma, D∩Vn is a Reinhardt pseudoconvex domain (viewed as
a subset of Cn−1) and a′ = πn(a) ∈ ∂(D∩Vn). By the inductive hypothesis,
there exists ga′ ∈ O(1)(D ∩ Vn, δD∩Vn) which is not extendible through a′.
It follows that fa = ga′ ◦ πn is an element of O(D) which is not extendible
through a. It remains to prove that fa belongs to O(1)(D, δD). To see this,
notice that for z ∈ D we get dD(z) ≤ dD∩Vn(πn(z)), and for z ∈ Cn we have
(1 + |z|2)−1/2 ≤ (1 + |πn(z)|2)−1/2. Hence

sup
z∈D
|δD(z)fa(z)| ≤ sup

z′∈D∩Vn
|δD∩Vn(z′)g(z′)| <∞.

This implies that fa ∈ O(1)(D, δD). The proof is complete.
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