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Regularity of certain sets in Cn

by Nguyen Quang Dieu (Hanoi)

Abstract. A subset K of Cn is said to be regular in the sense of pluripotential theory
if the pluricomplex Green function (or Siciak extremal function) VK is continuous in Cn.
We show that K is regular if the intersections of K with sufficiently many complex lines
are regular (as subsets of C). A complete characterization of regularity for Reinhardt sets
is also given.

1. Introduction. Let K be a subset in Cn. It is called regular (in the
literature also sometimes L-regular) if the pluricomplex Green function (or
Siciak extremal function) VK is continuous on Cn. A closely related concept
is that of local regularity: a point a ∈ K is called a local regular point of
K if for every closed ball U centred at a the function VU∩K is continuous
at a. If every point of K is a local regular point of K then we say that K is
locally regular.

The concepts of regularity and local regularity arise naturally in classi-
cal potential theory. For instance, the solvability of the Dirichlet problem
on a domain in C is equivalent to the regularity of the domain (see [Ra]).
These concepts also play central roles in pluripotential theory, especially in
their connection to approximation theory. We could mention a well known
theorem of Siciak (see Theorem 8.5 in [Si]) which gives the rate of poly-
nomial approximation of a holomorphic function on a neighbourhood of a
given regular polynomially convex compact set in Cn. Remarkably enough,
these concepts of regularity also get involved in other seemingly unrelated
problems such as separately holomorphic functions, classifying the space of
germs of holomorphic functions, etc. (see e.g. [Si], [Sa] and the references
given therein).

However, in general determining whether a set is regular or locally reg-
ular at a given point is rather hard. One of the most useful criterions is
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the analytic accessibility criterion due to Pleśniak (see [Kl, p. 201] or [Ce,
p. 117]). As a first application of this, one can prove that the closure of a
C1 smoothly bounded domain is regular ([Kl, p. 202]).

The aim of this note is to give sufficient conditions for regularity of
several types of compact sets in Cn. We now describe the content of the
paper. In Section 2, after giving some preparatory material we present a
sufficient condition for the local regularity of a point in a given set. As a
consequence, we show that the boundary of a smoothly bounded domain is
locally regular. In Section 3 we deal with the regularity of Reinhardt subsets
of Cn. The main result in this section (Theorem 3.1) characterizes locally
regular Reinhardt sets in Cn. The proof of course depends heavily on the
geometric nature of Reinhardt sets.

In the next section we study the regularity of certain compact Hartogs
sets of the form

Ωϕ(K) = {(z, w) ∈ K × C : |w| ≤ e−ϕ(z)},
where ϕ is a real-valued continuous function on K. It is shown in Proposi-
tion 4.1 that Ωϕ(K) is locally regular if and only if so is K. Basing on an
earlier example of Sadullaev, we construct an example of a regular compact
set K and a continuous function ϕ on K such that Ωϕ(K) is not regular (in
Cn+1, n ≥ 2). This shows in some sense that the conclusion of Proposition
4.1 is sharp. In the course of the proof, we also discover in Lemma 4.3 that
polynomial convexity of Ωϕ(K) can be interpreted in terms of plurisubhar-
monicity of ϕ on compact sets, a concept due to Poletsky (see [Po]).

In Section 5 we consider the regularity of components of a regular set
in Cn. Since the standard Cantor set is regular (see [Ra]) we see that a
component of a regular set is not necessarily regular. However, if a regular
polynomially convex setK is the union of a finite number of disjoint compact
sets then each of them must be regular. This is the content of Proposition 5.1.
In Section 6, we consider the concept of weighted regularity and show that
local regularity is equivalent to regularity with respect to every continuous
weight. Interest for this comes from the recent work of Bloom and Levenberg
(see [BL]) on weighted pluripotential theory.

2. Basic notions and auxiliary facts. Let Ω be an open subset in Cn,
and let u : Ω → [−∞,∞) be an upper semicontinuous function which is not
identically −∞ on any connected component of Ω. The function u is said
to be plurisubharmonic if for every complex line l, the restriction of u to
each component of l ∩ Ω is either subharmonic or identically −∞. The set
of plurisubharmonic functions on Ω is denoted by PSH(Ω).

A subset E in Cn is called pluripolar if for each point a ∈ E there is a
neighbourhood V of a and a function ϕ ∈ PSH(V ) such that ϕ ≡ −∞ on
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E ∩V . A basic theorem of Josefson states that E is pluripolar if and only if
there exists u ∈ PSH(Cn) such that u|E ≡ −∞.

Let K be a bounded subset of Cn. The pluricomplex Green function (or
Siciak extremal function) of K is defined as follows:

VK(z) = sup{u(z) : u ∈ L(Cn), u ≤ 0 on K},
where

L(Cn) = {u ∈ PSH(Cn) : u(z) ≤ log+ |z|+ C},
the class of plurisubharmonic (psh) functions of logarithmic growth (here
we use the notation |z| = (

∑n
i=1 |zi|2)1/2 and log+ |z| = max(0, log |z|)). It

is useful to consider the upper semicontinuous regularization of VK ,

V ∗K(z) := lim sup
ξ→z

VK(ξ).

K is said to be regular if VK is continuous on Cn. Given a point a ∈ K,
we say that a is a local regular point of K, or that K is locally regular at a if
for every neighbourhood U of a the function VU∩K is continuous at a. The
set of local regular points of K is denoted by Kloc.

Let K be a compact subset of Cn. We denote by K̂ the polynomial hull
of K,

K̂ = {ξ ∈ Cn : |p(ξ)| ≤ ‖p‖K for all polynomials p in Cn}.
Given a subset S of Cn, a point a ∈ S is called thin if for every neigh-

bourhood U of a and every u ∈ PSH(U) we have

lim sup
z→a, z∈S\{a}

u(z) < u(a).

In the one-dimensional case we have the following celebrated Wiener crite-
rion:

Wiener’s criterion (Theorem 5.4.1 in [Ra]). Let F be an Fσ subset ,
and ξ0 ∈ C. Let γ ∈ (0, 1), and for n ≥ 1 define

Fn = {z ∈ F : γn < |z − ξ0| ≤ γn−1}.
Then F is thin at ξ0 if and only if

(1)
∑

n≥1

n

log(2/c(Fn))
<∞,

where c(Fn) denotes the logarithmic capacity of Fn.

In higher dimensions, we do not have such a powerful tool; the analytic
accessibility criterion (to be introduced shortly) however implies that S is
not thin at a if there exists a real-analytic curve γ such that a ∈ γ and
γ \ {a} ⊂ S. For an interesting discussion on thin sets and regular sets we
refer the reader to the paper [Ce].

We now collect some useful facts from pluripotential theory:
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Proposition 2.1. Let K be a bounded subset in Cn.

(a) If K is nonpluripolar then V ∗K is plurisubharmonic on Cn.
(b) K is regular if and only if V ∗K ≡ 0 on K; K is locally regular at

a ∈ K if and only V ∗U∩K(a) = 0 for every neighbourhood U of a.
(c) If K is compact then V ∗K ≡ V ∗K̂ .
(d) If K is compact then for any compact set L in Cm we have

V ∗K×L ≡ max{V ∗K , V ∗L}.
(e) For every pluripolar set E in Cn we have V ∗K ≡ V ∗K∪E .
(f) K \Kloc is pluripolar.

Remarks. Properties (a)–(c) follow rather easily from the definition
of VK . The more subtle ones, (d) and (e), can be found in [Si]; we will
sometimes refer to (d) as the product property. Property (f) is an immediate
consequence of the solution to the second problem of Lelong (Theorem 7.1
in [BT]). More precisely, let {aj}j≥1 be a countable dense subset of K. Then
for every k ≥ 1, by Theorem 7.1 of [BT] the set

{z ∈ B(aj , 1/k) ∩K : VB(aj ,1/k)∩K(z) < V ∗B(aj ,1/k)∩K(z)}
is pluripolar, where B(a, r) is the open ball with centre a and radius r.
Because a countable union of pluripolar sets is pluripolar, we infer from the
definition of Kloc that K \Kloc is pluripolar.

In general, it is hard to decide whether a given set K is locally regular
at a ∈ K or not. The following criterion due to Pleśniak (see [Kl, p. 201] or
[Ce, p. 117]) is quite useful:

Analytic accessibility criterion. Let K be a subset of Cn, and
let h be a holomorphic mapping from a neighbourhood of [0, 1] to Cn. If
h((0, 1]) ⊂ Kloc, then h(0) ∈ Kloc.

Using the same idea, we give another geometric condition; of course by
translation we may assume that a = 0.

Theorem 2.2. Let K be an Fσ set in Cn (n ≥ 2), i.e., K is a countable
union of closed sets, and 0 ∈ K. Assume that there exists a subset D of K
satisfying the following conditions:

(i) For some 1 ≤ k ≤ n the set

D̃k :=
{(

z1

zk
, . . . ,

zk−1

zk
,
zk+1

zk
, . . .

zn
zk

)
: (z1, . . . , zn) ∈ D, zk 6= 0

}

is nonpluripolar in Cn−1.
(ii) For every b ∈ D \ {0} the set K ∩ lb (viewed as a subset of C) is not

thin at 0, where lb denotes the complex line connecting 0 and b.

Then 0 is a locally regular point of K.
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Remark. Condition (i) is strictly weaker than requiring that D is non-
pluripolar. More precisely, if D is nonpluripolar then for every 1 ≤ k ≤ n
the set D̃k is nonpluripolar in Cn−1. If not then it is easy to check that
D \ {z : zk = 0} is pluripolar in Cn. This implies that D is pluripolar, a
contradiction. On the other hand, the complex curve {(z, z2) : z ∈ C} does
satisfy (i) and is clearly pluripolar.

Proof of Theorem 2.2. Let U be an arbitrary closed ball centred at 0
in Cn. We have to prove that V ∗U∩K(0) = 0. We split the proof into two
steps.

Step 1. We first show that U ∩K is nonpluripolar. Assume otherwise;
then there exists ϕ ∈ PSH(Cn) such that ϕ ≡ −∞ on U∩K. Fix b ∈ D\{0}.
From (ii) we see that the setK∩U∩lb is Fσ and not thin at 0. So in particular
it is not polar (viewed as a subset of C), by Theorem 3.8.2 of [Ra]. It follows
that ϕ ≡ −∞ on lb. Hence

(2) ϕ(bt) = −∞, ∀(b, t) ∈ (D \ {0})× C.
Since ϕ ∈ PSH(Cn) we can find λ ∈ C \ {0} such that the function

ψ(y1, . . . , yn−1) = ϕ(λy1, . . . , λyk−1, λ, λyk+1, . . . , λyn)

is plurisubharmonic on Cn−1. On the other hand, (2) implies that ψ ≡ −∞
on D̃k, which contradicts (i). Thus U ∩K is nonpluripolar.

Step 2. We will show that V ∗K∩U (0) = 0. Indeed, by Proposition 2.1(f)
we can find u ∈ PSH(Cn) such that

K \Kloc ⊂ E := {z ∈ Cn : u(z) = −∞}.
We claim that there exists b ∈ D \ {0} such that lb ∩ E is polar (viewed
as a subset of C). Indeed, otherwise lb ∩ E would be nonpolar for every
b ∈ D \ {0}. Therefore

u(bt) = −∞, ∀t ∈ C, ∀b ∈ D \ {0}.
Using an argument similar to the one in Step 1 we also arrive at a contra-
diction to (i).

Now we fix such a point b and set

h(t) = V ∗U∩K(bt).

Since K ∩ U is nonpluripolar, h(t) is subharmonic on C. We let

S = {t ∈ C : bt ∈ U ∩K}, S′ = {t ∈ C : bt ∈ (U ∩K) \E}.
It follows from (ii) and the Wiener criterion that S is an Fσ set satisfying (1).
As the Fσ set S′ differs from S only in a polar set we deduce that S ′ also
satisfies (1). So by the Wiener criterion S ′ is not thin at 0. Notice that from
the definition of local regularity we get h(t) = 0 for every t ∈ S ′. By putting
all these facts together we obtain h(0) = 0 or equivalently V ∗K∩U (0) = 0.



224 Nguyen Quang Dieu

Corollary 2.3. Let D be a bounded domain in Cn with C1 boundary.
Then ∂D is locally regular.

Proof. Let a ∈ ∂D. We have to prove that D is locally regular at a.
After a linear change of coordinates we may assume that a = 0 and there
exists a neighbourhood U of a in Cn and a function % ∈ C1 satisfying

(i) D ∩ U = {z ∈ U : %(z) < 0}.
(ii) %(z) = Re(z1) + o(|z|).

It follows that for each b = (b1, . . . , bn) ∈ D∩U with b1 6= 0 the intersection
lb ∩ D can be described near 0 by the equation Re(tb1) + o(t) = 0. The
implicit function theorem implies that near 0, this intersection is a C1 curve
passing through 0. This means that conditions (i) and (ii) of Theorem 2.2
are satisfied, and completes the proof.

3. Regularity of certain Reinhardt compact sets. We call a subset
K in Cn a Reinhardt set if for every (θ1, . . . , θn) ∈ Rn we have

(z1, . . . , zn) ∈ K ⇒ (eiθ1z1, . . . , e
iθnzn) ∈ K.

The main result in this section gives a necessary and sufficient condition for
a Reinhardt set to be locally regular. This result is slightly more general
than a previous one that appeared in an earlier version of the paper. We
would like to thank the referee for suggesting this generalization and an
essential idea of the proof.

Theorem 3.1. Let K be a Reinhardt set in Cn. Put V := {(z1, . . . , zn) :
z1 . . . zn = 0}. Then K is locally regular if and only if K \V is dense in K.

Proof. If K \ V is not dense in K then we can find a ∈ K \ K \ V .
It follows that for some r > 0 the set B(a, r) ∩ K is pluripolar (being
contained in V ). Thus K cannot be locally regular at a. For the converse,
we fix a = (a1, . . . , an) ∈ K and r > 0. Set

Pr(a) := {(z1, . . . , zn) : |zj − aj | < r, ∀1 ≤ j ≤ n}.
We have to prove that V ∗K∩Pr(a)(a) = 0. There are two cases to be considered.

Case 1: a = 0. Since K \V is dense in K, we can choose (a′1, . . . , a
′
n) ∈

K \ V such that |a′j | < r,∀1 ≤ j ≤ n. Then

{z : |zj | = |a′j |, ∀1 ≤ j ≤ n} ⊂ K ∩ Pr(a).

By the product formula we infer

V ∗K∩Pr(a)(a) ≤ max
1≤j≤n

log+
∣∣∣∣
aj
a′j

∣∣∣∣ = 0.

Case 2: a 6= 0. Since K is Reinhardt we may assume that a = (0, . . . , 0,
ak+1, . . . , an), where 0 ≤ k ≤ n− 1 and aj > 0 for k + 1 ≤ j ≤ n. As K \ V
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is dense in K we can find N > 1/r and sequences {(a1,m, . . . , an,m)}m≥1 ⊂
K \ V such that for all m ≥ 1 we have

|aj,m| <
1

N +m
, ∀1 ≤ j ≤ k; |aj,m − aj | <

1
N +m

, ∀k + 1 ≤ j ≤ n.

Now we set

Sj,m :=
{
{zj : |zj | = |aj,m|}, 1 ≤ j ≤ k,
{zj : |zj | = |aj,m|, |zj − aj | < r}, k + 1 ≤ j ≤ n.

Then
m∏

j=1

Sj,m ⊂ K ∩ Pr(a).

Using the product formula we obtain

(3) V ∗K∩Pr(a)(a) ≤ max
1≤j≤n

V ∗Sj,m(aj) = max
k+1≤j≤n

V ∗Sj,m(aj), ∀m.

Fix k + 1 ≤ j ≤ n, and put

Sj := {zj : |zj | = aj , |zj − aj | < r}.
Then we can find α > 0 small enough and m0 large enough such that

aj ∈ S̃j := {ajeit : −α ≤ t ≤ α} ⊂ Sj ,
and

S̃j,m = {|aj,m|eit : −α ≤ t ≤ α} ⊂ Sj,m, ∀m ≥ m0.

Since the linear map x 7→ (|aj,m|/aj)x sends S̃j onto S̃j,m we obtain

V ∗
S̃j,m

( |aj,m|
aj

x

)
≡ V ∗

S̃j
(x), ∀x ∈ C.

Hence

V ∗Sj,m(aj) ≤ V ∗S̃j,m(aj) = V ∗
S̃j

(
a2
j

|aj,m|

)
, ∀m ≥ m0.

By letting m tend to ∞ and taking into account the fact that aj ∈ S̃j and
S̃j is regular we get

lim
m→∞

V ∗Sj,m(aj) = 0.

Combining this and (3) we obtain V ∗K∩Pr(a)(a) = 0.

4. Regularity of compact Hartogs sets. In this section we deal with
regularity of compact Hartogs sets of the form

Ωϕ(K) = {(z, w) ∈ K × C : |w| ≤ e−ϕ(z)},
where K is a compact set in Cn and ϕ ∈ C(K), the set of real-valued
continuous functions on K.

The first result in this section is the following.
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Proposition 4.1. Let K be a compact set in Cn and ϕ ∈ C(K).

(a) If Ωϕ(K) is regular then K is regular.
(b) Ωϕ(K) is locally regular in Cn+1 if and only if K is locally regular

in Cn.

Proof. (a) Let m = infz∈K ϕ(z). Then

Ωϕ(K) ⊂ K × {w : |w| ≤ e−m}.
By applying the product property we obtain

max{V ∗K(z), V ∗{w:|w|≤e−m}(w)} ≤ V ∗Ωϕ(K)(z, w), ∀(z, w) ∈ Cn × C.
As Ωϕ(K) is regular, so is K by Proposition 2.1(a).

(b) First assume that K is locally regular. Take a point p = (z0, w0) ∈
Ωϕ(K). Let U be an arbitrary closed ball centred at p in Cn+1. Then we
can find a closed ball Ũ centred at z0 in Cn so small that

(Ũ ∩K)× {w : |w| ≤ e−M} ⊂ U ∩Ωϕ(K),

where M = supz∈Ũ∩K ϕ(z). It follows from the product property that

V ∗U∩Ωϕ(K)(p) ≤ V ∗(Ũ∩K)×{|w|≤e−M}(p) = max(V ∗
Ũ∩K(z0), V ∗{|w|≤e−M}(w0))

= log+
( |w0|
e−M

)
≤M − ϕ(z0).

As ϕ ∈ C(K) we deduce that M − ϕ(z0) → 0 when Ũ shrinks to z0. Thus
for every neighbourhood U of p we have V ∗U∩Ωϕ(K)(p) = 0. This means that
p is a local regular point of Ωϕ(K).

Conversely, assume that Ωϕ(K) is locally regular. Let z0 be an arbitrary
point of K and W be any neighbourhood of z0 in Cn. Choose w0 ∈ C such
that (z0, w0) ∈ Ωϕ(K). Then for some constant m small enough the set
W ×{w : |w| < e−m} is a neighbourhood of (z0, w0). Since (z0, w0) is a local
regular point of Ωϕ(K), by using the product property again we conclude
as before that V ∗W∩K(z0) = 0. Thus K is locally regular.

The example below shows that the converse to (a) is false, or equivalently
the hypothesis that K is locally regular in (b) cannot be weakened to being
regular.

Proposition 4.2. There exists a regular , polynomially convex set K in
C2 and a continuous subharmonic function ϕ on C2 such that Ωϕ(K) is
polynomially convex but not regular in C3.

Remark. Since every regular polynomially convex compact set in C is
locally regular ([Sa, p. 75]), the conclusion of Proposition 4.2 cannot hold if
we take for K a compact set of C.
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For the proof of Proposition 4.2 we need the following lemma which might
be of independent interest. Its proof will be given in the appendix. Before
formulating it, we recall the following concept due to Poletsky (see [Po]).
Let X be a compact subset of Cn. An upper semicontinuous function f on
X is called plurisubharmonic (written f ∈ PSH(X)) if it is the limit of an
increasing sequence of plurisubharmonic functions defined on neighborhoods
of X.

Lemma 4.3. Let K be a compact set in Cn and ϕ ∈ C(K). Then Ωϕ(K)
is polynomially convex if and only if K is polynomially convex and ϕ ∈
PSH(K).

Proof of Proposition 4.2. We let K be the compact set constructed in
Proposition 8.1 of [Sa]. More precisely, K = K1 ∪K2, where

K1 = {(z, w) ∈ C2 : |z| ≤ 1, w = 0},
K2 = {(z, w) ∈ C2 : z = eiθ, Rew = 0,

0 ≤ Imw ≤ e1/(cos θ−1), θ ∈ [−π, π]}.
It is proved there that K is a polynomially convex, regular compact set
in C2. Moreover, K2 ⊂ Kloc. Now we will show that for an appropriately
chosen ϕ, the compact set Ωϕ(K) will have the desired properties. For this,
we let v be an arbitrary continuous subharmonic function on C satisfying

v(z) = 0, ∀z ∈ ∂∆, v 6≡ 0 on ∆,

where ∆ is the open unit disk in C. Let ϕ(z, w) = v(z) + |w|. Since ϕ is
continuous and plurisubharmonic on C2, by Lemma 4.3 the compact set
Ωϕ(K) is polynomially convex in C3.

It remains to show that Ωϕ(K) is not regular. Indeed, otherwise

(4) V ∗Ωϕ(K)(z) = 0, ∀z ∈ Ωϕ(K).

Write
Ωϕ(K) = K ′1 ∪K ′2,

where K ′i = Ωϕ(Ki), i = 1, 2. Since K2 is locally regular, so is K ′2 by
Proposition 4.1(b). Now we have

V ∗K′1∪K′2 ≡ V
∗
̂K′1∪K′2

≤ V ∗
K̂′2∪K′1

≤ V ∗K′1∪K′2 .

Notice that K ′1 is pluripolar in C3, so by Proposition 2.1(e) we obtain

V ∗K′1∪K′2 ≡ V
∗
K̂′2∪K′1

= V ∗
K̂′2
.

Thus

(5) V ∗K′1∪K′2 ≡ V
∗
K̂′2
.
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We deduce from (4) and (5) that K ′1 ⊂ K̂ ′2. On the other hand, by the choice
of v we have

K ′1 = {(z, w, u) : (z, w) ∈ K1, |u| ≤ e−v(z)},
K ′2 = {(z, w, u) : (z, w) ∈ K2, |u| ≤ e−|w|} ⊂ K2 ×∆.

It follows that K ′1 ⊂ C2 × ∆. By the maximum principle, v ≡ 0 on ∆, a
contradiction to the choice of v.

5. Regularity of components of regular compact sets. In this
section, we are concerned with the regularity of components of a regular
compact set K in Cn. It should be noticed that the standard Cantor set is
nonpolar but totally disconnected. This shows that a component of a regular
polynomially convex set may very well be irregular. On the other hand, it is
clear that the union of two regular compact sets is again regular. The result
below is a converse to this statement.

Proposition 5.1. Let K1, . . . ,Km be disjoint compact subsets of Cn.
Assume K1∪ . . .∪Km is regular and polynomially convex. Then K1, . . . ,Km

are regular and polynomially convex.

Proof. It is clear that we need only consider the case m = 2. Further,
by symmetry it suffices to show that K2 is regular and polynomially con-
vex. Let f be a function equal to 0 on a neighbourhood of K1 and to 1
on a neighbourhood of K2. Thus f is holomorphic on a neighbourhood of
the polynomially convex compact set K1 ∪K2. According to Theorem 8.5
of [Si], f can be approximated uniformly on K1 ∪K2 by a sequence {pn} of
polynomials satisfying deg pn ≤ n and

(6) ‖pn‖1/nK1
< α, ‖pn − 1‖1/nK2

< α,

for some α ∈ (0, 1). This implies that pn(K1)∩ pn(K2) = ∅ for n sufficiently
large. It follows that pn(K̂2)∩ pn(K1) = ∅, in particular K̂2 ∩K1 = ∅. Since
K1 ∪K2 is polynomially convex we have K̂2 = K2.

Now we show that K2 is not pluripolar. Otherwise, we would have
V ∗K1∪K2

= V ∗K1
. Since V ∗K1

(z) > 0 for all z ∈ K2, we get a contradiction
to the regularity of K1∪K2. Since K2 is not pluripolar in Cn, it follows that
V ∗K2

is a plurisubharmonic function on Cn.
It remains to prove that V ∗K2

≡ 0 on K2. For this, we apply to (6) the
inequality log(1 + t) < t for t > 0 obtain

(7)
log ‖pn‖K1

n
< logα,

log ‖pn‖K2

n
<
αn

n
.

Now we let u be an arbitrary function in L(Cn) with u ≤ 0 on K2. Choose
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ε > 0 so small that

(8) ε‖V ∗K2
‖K1 + logα < 0.

We define

vn(z) =
1

1 + ε

(
εu+

log |pn(z)|
n

− αn

n

)
.

Since deg pn ≤ n we have vn ∈ L(Cn). Further from (7) and (8) we infer
that vn ≤ 0 on K1 ∪K2. Thus

vn ≤ VK1∪K2 .

Hence
ε

1 + ε
u ≤ VK1∪K2 −

1
1 + ε

(
log |pn|
n

− αn

n

)
.

It follows that
ε

1 + ε
V ∗K2
≤ V ∗K1∪K2

− 1
1 + ε

(
log |pn|
n

− αn

n

)
.

As K1 ∪K2 is regular, we obtain

εV ∗K2
(z) ≤ − log |pn(z)|

n
+
αn

n
, ∀z ∈ K2.

By letting n go to ∞ we have

V ∗K2
(z) = 0, ∀z ∈ K2.

Thus K2 is regular. The proof is complete.

Remarks. (a) The assumption that K1 ∪ K2 is polynomially convex
cannot be entirely omitted. Indeed, it suffices to take for K1 the circle |z| = 1
and for K2 the origin in C.

(b) It would be interesting to have a more direct proof of Proposition
5.1 that does not appeal to Theorem 8.5 of [Si].

6. Weighted regularity. Let K be a subset in Cn and q : K →
[−∞,∞). As in [Si], for each z ∈ Cn we define

VK,q(z) = sup{u(z) : u ∈ L(Cn), u ≤ q on K}.
We say that K is regular with respect to the weight q if VK,q is continuous
on Cn. It is proved in [Si] that if K is locally regular then K is regular with
respect to every continuous weight function. In this section we will prove
the converse.

Proposition 6.1. Let K be a compact subset of Cn. If VK,q is contin-
uous on Cn for every q ∈ C(K) then K is locally regular.
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Proof. Let a ∈ K, and let U be any open ball centred at a. We have to
prove that

V ∗K∩U (a) = 0.

We claim first that K ∩ U is not pluripolar. Indeed, assume otherwise.
Then by Proposition 3.11 of [Si] we obtain

(9) V ∗K,q ≡ V ∗K\U,q
for every q ∈ C(K). We define the following function on the compact set
(K \ U) ∪ {a}:

q̃(z) =
{

0, z ∈ K \ U ,
V ∗K\U (a)− 1, z = a.

Let q be a continuous extension of q̃ to K. By applying (9) to q we get

VK,q(a) = V ∗K,q(a) = V ∗K\U,q(a) = q(a) + 1.

This is a contradiction. Thus K ∩ U is not pluripolar.
Therefore we may define the following function:

q(z) =
{

0, z ∈ K ∩ U ,
V ∗K∩U (z), z ∈ K \ U .

It is easy to check that q is upper semicontinuous on K. Thus we can find a
sequence {qn}n≥1 of continuous functions on K decreasing to q on K. Let
u be a function in L(Cn) with u ≤ 0 on K ∩ U . It is clear that

u(z) ≤ V ∗K∩U (z) = q(z) ≤ qn(z), z ∈ K \ U.
It follows that

VK∩U (z) ≤ VK,qn(z), z ∈ Cn.
Since VK,qn is continuous on Cn, we obtain

V ∗K∩U (z) ≤ VK,qn(z), z ∈ Cn.
In particular, we have V ∗K∩U (a) ≤ VK,qn(a) ≤ qn(a). Finally, by letting n
tend to ∞ we get V ∗K∩U (a) = 0.

7. Appendix

Proof of Lemma 4.3. Assume that ϕ ∈ PSH(K) and K̂ = K. We must
show that Ωϕ(K) is polynomially convex. Since K̂ = K we can choose
a sequence {Un}n≥1 of polynomial polyhedrons decreasing to K and an
increasing sequence {ϕn}n≥1 of plurisubharmonic functions on Un such that

lim
n→∞

ϕn(z) = ϕ(z), z ∈ K.

Now for each n ≥ 1 we define Vn = Un × C and

ψn(z, w) = log |w|+ ϕn(z), (z, w) ∈ Un × C.
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It is clear that Vn is Runge in Cn+1 and ψn ∈ PSH(Vn). Furthermore

(10) ψn(z, w) ≤ log |w|+ ϕ(z) ≤ 0, (z, w) ∈ Ωϕ(K).

Since Ωϕ(K) is a compact subset of Vn, from Theorem 4.3.3 of [Hö] we
deduce that the polynomial convex hull of Ωϕ(K) equals its holomorphic
convex hull in Vn. The latter, according to Theorem 4.3.4 of [Hö], is the
same as the plurisubharmonic hull of Ωϕ(K) in Vn. Thus it follows from
(10) that

ψn(z, w) ≤ 0, (z, w) ∈ ̂Ωϕ(K).

By letting n go to ∞ we see that Ωϕ(K) is polynomially convex.
Conversely, assume that Ωϕ(K) is polynomially convex. Since K×{0} ⊂

Ωϕ(K), we infer that K is polynomially convex. It remains to prove that
ϕ ∈ PSH(K). To see this, we extend ϕ to a continuous function (still denoted
by ϕ) on Cn. Let {Un} be a sequence of Runge domains decreasing to K. It
follows that the sequence {Wn}n≥1, where

Wn = {(z, w) : z ∈ Un, log |w|+ ϕ(z) < 0},
forms a neighbourhood basis for K. On the other hand, as K is polynomially
convex, the sequence {Ŵn}n≥1 is a Stein neighbourhood basis for K, where
Ŵn is the (single sheeted) envelope of holomorphy of Wn. Since

Wn = {(z, w) : z ∈ Un, log |w|+ gn(z) < 0},
where gn is the largest plurisubharmonic minorant of ϕ on Un, the functions
gn must increase to ϕ on K.

The proof is thereby finished.
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Révisé le 21.2.2003 (1359)


