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The set of recurrent points of a continuous
self-map on compact metric spaces

and strong chaos

by Lidong Wang (Dalian), Gongfu Liao (Changchun),
Zhizhi Chen (Siping) and Xiaodong Duan (Dalian)

Abstract. We discuss the existence of an uncountable strongly chaotic set of a con-
tinuous self-map on a compact metric space. It is proved that if a continuous self-map
on a compact metric space has a regular shift invariant set then it has an uncountable
strongly chaotic set in which each point is recurrent, but is not almost periodic.

1. Introduction. Throughout this paper,X will denote a compact met-
ric space with metric d, and I is the closed interval [0, 1].

For a continuous map f : X → X, we will denote the set of almost
periodic points and of recurrent points of f by A(f) and R(f) respectively,
with the usual definitions; fn will denote the n-fold iterate of f .

For x, y in X, any real number t and positive integer n, let

ξn(f, x, y, t) = #{i | d(f i(x), f i(y)) < t, 1 ≤ i ≤ n},
where we use #(·) to denote the cardinality of a set. Let

F (f, x, y, t) = lim inf
n→∞

1
n
ξn(f, x, y, t), F ∗(f, x, y, t) = lim sup

n→∞

1
n
ξn(f, x, y, t).

Definition 1.1. Call x, y ∈ X a pair of points displaying strong chaos if

(1) F (f, x, y, t) = 0 for some t > 0,

(2) F ∗(f, x, y, t) = 1 for any t > 0.

Definition 1.2. f is said to display strong chaos if there exists an un-
countable set D ⊂ X such that any two different points in D display strong
chaos.
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For a continuous map f : I → I, Schweizer and Smı́tal [8] have proved:

(C1) If f has zero topological entropy, then no pair of points can form a
strongly chaotic set.

(C2) If f has positive entropy, then there exists an uncountable strongly
chaotic set in which each member is an ω-limit point of f .

One may pose the following questions:

(Q1) Is (C1) still true for a continuous map of any compact metric
space X?

(Q2) Is there an uncountable strongly chaotic set in which each member
is a recurrent point of f on compact metric spaces?

A negative answer to (Q1) has been given in [6], where a minimal strongly
chaotic sub-shift having zero topological entropy was constructed.

In this paper, a positive answer to (Q2) is given.
In fact, we will prove

Main Theorem. Let f : X → X be continuous. If f has a regular shift
invariant set , then it has an uncountable strongly chaotic set in which each
point is recurrent , but is not almost periodic.

2. Basic definitions and preparations. Let S = {0, 1}, Σ = {x =
x1x2 . . . | xi ∈ S, i = 1, 2, . . .} and define % : Σ ×Σ → R as follows: for any
x, y ∈ Σ, if x = x1x2 . . . and y = y1y2 . . . , then

%(x, y) =
{

0 if x = y,
1/2k if x 6= y and k = min{n | xn 6= yn} − 1.

It is not difficult to check that % is a metric on Σ. The space (Σ, %) is
compact and called the one-sided symbolic space on two symbols.

Define σ : Σ → Σ by σ(x1x2 . . .) = x2x3 . . . for any x = x1x2 . . . ∈ Σ.
Then σ is continuous and called the shift on Σ. Call A a tuple (over S =
{0, 1}) if it is a finite sequence of elements in S. If A = a1a2 . . . am where
ai ∈ S, 1 ≤ i ≤ m, then m is called the length of A, denoted by |A| = m.

For an arbitrary tuple B = b1b2 . . . bn, the set [B] = {x = x1x2 . . . ∈ Σ,
xi = bi, 1 ≤ i ≤ n} is called the cylinder generated by B. For any n ≥ 1, let

Bn = { [b1 . . . bn] | bi = 0 or 1, 1 ≤ i ≤ n}.
Then the collection

⋃∞
n=1 Bn is a subalgebra which generates the σ-algebra

of Borel subsets of Σ. Let h : X → Σ be a continuous map. We use I[B] to
denote h−1[B] for any [B] ∈ Bn.

Definition 2.1. Let f : X → X be continuous. A compact set Λ ⊂ X
is said to be a regular shift invariant set for f if:
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(1) f(Λ) ⊂ Λ,
(2) there exists a continuous surjection h : Λ→ Σ satisfying

(a) h ◦ f |Λ = σ ◦ h,
(b) there exists an M > 0 such that

∑
[B]∈Bn diam I[B] ≤ M for any

n ≥ 1.

Definition 2.2. B(X) is the σ-algebra of Borel subsets of X. A prob-
ability measure µ on (X,B(X)) is an invariant measure for f if µ(f−1(B))
= µ(B) for any B ∈ B(X). We denote the set of all invariant measures for
f by M(X, f).

µ ∈M(X, f) is ergodic (f can then also be regarded ergodic) if the only
members B of B(X) with f−1(B) = B satisfy µ(B) = 0 or µ(B) = 1.

If µ is a unique member of M(X, f), it must be ergodic [9]; we then say
that f is uniquely ergodic.

Lemma 2.1 (see [12]). Let f : X → X and g : Y → Y be continuous,
where X and Y are compact metric spaces. If there exists a continuous
surjection h : X → Y such that g ◦ h = h ◦ f , then

(1) h(A(f)) = A(g),
(2) h(R(f)) = R(g).

Lemma 2.2 (see [10] or [11]). There exists an uncountable set T on the
one-sided symbolic space satisfying

(1) T ⊂ R(σ)− A(σ),
(2) σ|T is strongly chaotic,
(3) σ|T is uniquely ergodic.

Lemma 2.3. Let σ : Σ → Σ be continuous. If µ is the only invariant
probability measure for σ|R(σ)−A(σ), then µ({x}) = 0 for any x∈R(σ)−A(σ).

Proof. Let x ∈ R(σ)−A(σ). We first claim that {x}, σ−1(x), σ−2(x), . . .
are pairwise disjoint. Assume the claim to be false; then σ−m(x) ∩ σ−n(x)
6= ∅ for some m and n with m > n ≥ 0. Take y ∈ σ−m(x) ∩ σ−n(x), so
σm(y) = σn(y) = x. Furthermore,

σm−n(x) = σm−n(σn(y)) = σm(y) = x,

i.e. x is a periodic point, which contradicts x ∈ R(σ)− A(σ). Since µ is an
invariant probability measure for σ|R(σ)−A(σ) and the set of simple points
on (Σ, %) is closed, we have {x} ∈ B(Σ) and

µ({x}) = µ(σ−1(x)) = µ(σ−2(x)) = . . . = µ(σ−n(x)).

By the countable additivity of µ, we get µ({x}) = 0.
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Lemma 2.4. Suppose T = R(σ)−A(σ). If µ is the only invariant prob-
ability measure for σ|T , then the sequence {µ([b1 . . . bn])} of real numbers
converges to zero uniformly in bi ∈ {0, 1}, 1 ≤ i ≤ n, as n→∞.

Proof. For any ε > 0 and any x ∈ T , by Lemma 2.3, there is an open
neighborhood Vx of x such that µ(Vx) < ε. Moreover, by the definition of
[b1 . . . bn], there exists N > 0 such that diam[b1 . . . bn] < ε uniformly in
bi ∈ {0, 1}, 1 ≤ i ≤ n, as n → ∞. Thus for any x ∈ [b1 . . . bn] ∩ T , there
exists N > 0 such that x must be contained in some Vx when n ≥ N . So

µ([b1 . . . bn]) = µ([b1 . . . bn] ∩ T ) < ε.

Lemma 2.5 (see [7]). Let f : X → X be continuous, x, y ∈ X, N > 0.

(1) If F (fN , x, y, s) = 0 for any s > 0, then there exists a t > 0 such
that F (f, x, y, t) = 0.

(2) If F ∗(fN , x, y, s) = 1 for any s > 0, then F ∗(f, x, y, t) = 1 for any
t > 0.

3. Proof of the main theorem. By the hypothesis, f has a regular
shift invariant set, denoted by Λ. Thus there is a continuous surjection h :
Λ→ Σ such that for any x ∈ Λ,

h ◦ f(x) = σ ◦ h(x).

According to Lemma 2.2, there is an uncountable set T ⊂ R(σ) − A(σ)
which is strongly chaotic and σ|T has the only ergodic measure µ. Set,
for simplicity, g = f |Λ. For any y ∈ T , by Lemma 2.1 there exists x ∈
R(g)−A(g) such that h(x) = y. Let

D = {x | x ∈ R(g)− A(g), h(x) = y and y ∈ T }.
Then D ⊂ Λ and D is an uncountable set. To complete the proof, it suffices
to show that D is a strongly chaotic set for f .

For any distinct x1, x2 ∈ D, there exist y1, y2 ∈ T such that h(xi) = yi
for i = 1, 2. Since y1 and y2 are in a strongly chaotic set for σ, there exists
s > 0 and a sequence nk →∞ such that

1
nk

ξnk(σ, y1, y2, s)→ 0 (k →∞).(3.1)

Choose an N > 0 such that diam [B] < s for any [B] ∈ BN . Let

t = min{d(I[B], I[C]) | [B], [C] ∈ BN and [B] 6= [C]},
where d(I[B], I[C]) = inf{d(p, q) | p ∈ I[B], q ∈ I[C]}. By the properties of g,
d(I[B], I[C]) > 0 for any distinct [B], [C] ∈ BN and so t > 0. It is easily seen
that for any i ≥ 0,
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%(σi(y1), σi(y2)) ≥ s
⇒ σi(y1) ∈ [B], σi(y2) ∈ [C]

for some distinct [B], [C] ∈ BN (since diam [B] < s)

⇒ gi(x1) ∈ I[B], g
i(x2) ∈ I[C] and d(I[B], I[C]) ≥ t

⇒ d(gi(x1), gi(x2)) ≥ t,
and therefore, for each k we have

ξnk(g, x1, x2, t) ≤ ξnk(σ, y1, y2, s).

By (3.1), we get
1
nk

ξnk(g, x1, x2, t)→ 0 (k →∞),

and hence

F (g, x1, x2, t) = 0.(3.2)

We now prove F ∗(g, x1, x2, t) = 1 for any t > 0. By the hypothesis, we
can choose M > 0 such that

∑
[B]∈Bn diam I[B] ≤ M for any fixed n > 0.

For any given t > 0 and ε > 0, choose an integer k > 0 such that tk > M .
By Lemma 2.4, we may also choose an N1 large enough such that µ([B]) <
ε/(2k) for any [B] ∈ BN1 ∩ T , i.e. for any y ∈ T ,

lim
n→∞

1
n

#{i | σi(y) ∈ [B], 0 ≤ i ≤ n} < ε

2k
.(3.3)

Put s = 1/2N1 . Since F ∗(σ, y1, y2, s) = 1, there exists a sequence nj → ∞
such that

1
nj
ξnj(σ, y1, y2, s)→ 1 (nj →∞).(3.4)

Set, for simplicity,

θnj =
∑

[B]∈BN1∩T

1
nj

#{i | gi(x1), gi(x2) ∈ I[B], 0 ≤ i ≤ nj}.

Noting that

(3.5) %(σi(y1), σi(y2)) < s

⇔ σi(y1), σi(y2) ∈ [B] for some [B] ∈ BN1 ∩ T
⇔ gi(x1), gi(x2) ∈ I[B] for some [B] ∈ BN1 ∩ T ,

according to (3.4), we have

θnj → 1 (j →∞).(3.6)

Thus from (3.3), (3.5), and (3.6) we can choose N large enough such that
for nj > N ,
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1
nj

#{i | gi(x1), gi(x2) ∈ I[B], 0 ≤ i < nj} <
ε

2k
for any [B] ∈ BN1 ∩ T ,

and

1− θnj < ε/2.(3.7)

On the one hand, by the definition of θnj ,

(3.8) θnj −
∑

[B]∈BN1∩T
diam I[B]≥t

ε

2k

≤ θnj −
∑

[B]∈BN1∩T
diam I[B]≥t

1
nj

#{i | gi(x1), gi(x2) ∈ I[B], 0 ≤ i < nj}

=
∑

[B]∈BN1∩T
diam I[B]<t

1
nj

#{i | gi(x1), gi(x2) ∈ I[B], 0 ≤ i < nj}

≤ 1
nj
ξnj(g, x1, x2, t).

On the other hand, because of the choice of k, there exist at most k different
[B]’s with diam I[B] ≥ t in BN1 ∩ T . In fact, since tk > M , if there exists
k1 > k such that k1 different [B]’s satisfy diam I[B] ≥ t, then k1 diam I[B] ≥
tk1 > M . However, by the choice of M , we know that

M ≥
∑

[B]∈BN1∩T
diam I[B] ≥ k1 diam I[B],

which is contradictory. By (3.8), we have

θnj −
ε

2
= θnj − k ·

ε

2k
≤ 1
nj
ξnj (g, x1, x2, t).

Combining this with (3.7), we see that for nj > N ,

0 ≤ 1− 1
nj
ξnj (g, x1, x2, t) ≤ 1− θnj +

ε

2
<
ε

2
+
ε

2
= ε,

which gives

F ∗(g, x1, x2, t) = 1.(3.9)

By (3.2), (3.9) and the arbitrariness of x1 and x2, we conclude that D is
an uncountable strongly chaotic set of g.

Thus, we have proved that f has an uncountable strongly chaotic set D
in R(f)− A(f).
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4. Examples

Example 4.1. Let f ∈ C0(I). If f has a positive topological entropy,
then there exists anN > 0 such that fN has a regular shift invariant set ([1]).
From the theorem, we deduce that fN has an uncountable strongly chaotic
set in which each point is recurrent, but is not almost periodic. The same
holds for f , since for any positive integer n, f displays strong chaos if and
only if fn does (Lemma 2.5).

Example 4.2. Let r0, r1 : S1→S1 be irrational rotations with r0 6=±r1.
Define f : Σ × S1 → Σ by

f(x, t) = (σ(x), rx1(t))

for x = x1x2 . . . ∈ Σ, t ∈ S1. Note that the nth iteration of f at the point
(x, t) ∈ Σ × S1 is given by

fn(x, t) = (σn(x), rxn ◦ . . . ◦ rx2 ◦ rx1(t)).

It is easy to see that f is continuous.
Let h : Σ × S1 → Σ be defined by h(x, t) = x. We see that h satis-

fies (2)(a) of Definition 2.1, but not (2)(b). Indeed, we do not know if an
h satisfying both (2)(a) and (2)(b) exists or not. Also we do not know if f
displays strong chaos or not, since our theorem cannot be used.

References

[1] L. S. Block and W. A. Coppel, Dynamics in One Dimension, Springer, New York,
1992, 35–36.

[2] B. S. Du, Every chaotic interval map has a scrambled set in the recurrent set , Bull.
Austral. Math. Soc. 39 (1989), 259–264.

[3] T. Y. Li, M. Misiurewicz, G. Pianigiani and J. Yorke, Odd chaos, Phys. Lett. A 87
(1982), 271–273.

[4] —, —, —, —, No division implies chaos, Trans. Amer. Math. Soc. 273 (1982),
191–199.

[5] G. F. Liao, Chain recurrent orbits of mapping of the interval , Northeast. Math. J.
2 (1986), 240–244.

[6] G. F. Liao and Q. J. Fan, Minimal subshifts which display Schweizer–Smı́tal chaos
and have zero topological entropy , Sci. China Ser. A 41 (1998), 33–38.

[7] G. F. Liao and L. D. Wang, Almost periodicity and SS scrambled sets, Chinese Ann.
Math. Ser. A 23 (2002), 685–692 (in Chinese).

[8] B. Schweizer and J. Smı́tal, Measures of chaos and a spectral decomposition of dy-
namical systems on the interval , Trans. Amer. Math. Soc. 344 (1994), 737–754.

[9] P. Walters, An Introduction to Ergodic Theory , Springer, New York, 1982.
[10] L. D. Wang, Z. Y. Chu and G. F. Liao, Recurrence, strong chaos and unique ergod-

icity , Jilin Shifan Daxue Xuebao 82 (2003), 11–15 (in Chinese).
[11] L. D. Wang, G. F. Liao and X. Yang, Recurrent point set of the shift on Σ and

strong chaos, Ann. Polon. Math. 78 (2002), 123–130.



272 L. D. Wang et al.

[12] J. C. Xiong, Set of almost periodic points of a continuous self-map of an interval ,
Acta Math. Sinica 2 (1986), 73–77.

[13] R. S. Yang, Pseudo-shift-invariant sets and chaos, Chinese Ann. Math. Ser. A 13
(1992), 22–25 (in Chinese).

[14] Z. L. Zhou and W. H. He, Level of the orbit’s structure and topological semi-
conjugacy , Sci. China Ser. A 38 (1995), 897–907.

Lidong Wang and Xiaodong Duan
Research Institute of Nonlinear Information Technology
Dalian Nationalities University
Dalian 116600, P.R. China
E-mail: wldwyylfx@hotmail.com

Zhizhi Chen
Graduate Department of Jilin Normal University
Siping 136000, P.R. China
E-mail: dingding chen@263.sina.com

Gongfu Liao
Institute of Mathematics

Jilin University
Changchun 130023, P.R. China

E-mail: liaogf@public.cc.jl.cn
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