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Mean lower bounds for Markov operators

by Eduard Emel’yanov (Novosibirsk and Tübingen)
and Manfred Wolff (Tübingen)

Abstract. Let T be a Markov operator on an L1-space. We study conditions under
which T is mean ergodic and satisfies dim Fix(T ) <∞. Among other things we prove that
the sequence (n−1∑n−1

k=0 T
k)n converges strongly to a rank-one projection if and only if

there exists a function 0 6= h ∈ L1
+ which satisfies limn→∞ ‖(h− n−1∑n−1

k=0 T
kf)+‖ = 0

for every density f . Analogous results for strongly continuous semigroups are given.

Preliminaries. Let (Ω,Σ, µ) be a σ-finite measure space, and L1 =
L1(Ω,Σ, µ) the space of all real-valued Lebesgue-integrable functions on
(Ω,Σ, µ). In the following we will use the notation

�
A for the characteristic

function of the set A ∈ Σ. By D = D(Ω,Σ, µ) we will denote the set of all
densities on Ω, that is,

D = {f ∈ L1
+ : ‖f‖ = 1}.

A linear operator T : L1 → L1 is called a Markov operator if T (D) ⊆ D.
The study of the asymptotic properties of Markov chains leads to questions
of convergence of (An(T )f)n for f ∈ L1, where

An(T ) :=
1
n

n−1∑

k=0

T k

denotes the Cesàro means of T . A Markov operator T is called mean ergodic
if the norm limit limn→∞An(T )f exists for all f ∈ L1.

1. Main results. In many cases it is important to find conditions under
which a Markov operator T is mean ergodic and the space Fix(T ) of all T -
fixed vectors has finite dimension. For this the following theorem is useful.

Theorem 1. Let T be a Markov operator on L1(Ω,Σ, µ). Then the fol-
lowing assertions are equivalent :
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(i) There exists an element y ∈ L1
+ and a real number η with 0 < η < 1

such that

(1) lim
n→∞

‖(An(T )f − y)+‖ ≤ η

for every density f .
(ii) There is an integer m, a decomposition Ω =

⋃m
k=0Ωk into pairwise

disjoint subsets Ωk ∈ Σ, and two sequences of nonnegative functions uk =
Tuk ∈ D(Ωk) and φk ∈ L∞(Ω0), k = 1, . . . ,m, such that

∑m
k=1 φk =

�
Ω0

and for every g ∈ L1(Ω) the norm limit limn→∞An(T )g exists and it may
be written in the form

(2) lim
n→∞

An(T )g =
m∑

k=1

[ �
Ω

(φk +
�
Ωk)g dµ

]
uk;

moreover , limn→∞ � Ω0
Tngdµ = 0.

Proof. (i)⇒(ii). Set E := L1(Ω,Σ, µ). We show that T is mean ergodic.
By Sine’s ergodic theorem (see [Kr, p. 74]) it is enough to check that for
every T ∗-fixed point 0 6= ψ ∈ E∗ = L∞(Ω,Σ, µ) there exists a T -fixed point
w ∈ E which satisfies 〈ψ,w〉 6= 0.

Let E∗ 3 ψ 6= 0, T ∗ψ = ψ. We may assume that ‖ψ+‖ = ‖ψ‖ = 1.
Set ε := (1 − η)/3 and take some f ∈ E which satisfies ‖f‖ = 1 and
〈ψ+, f〉 ≥ 1− ε. We have

∥∥|f |
∥∥ = ‖f‖ = 1 and

1 ≥ 〈|ψ|, |f |〉 ≥ 〈ψ+, |f |〉 ≥ 〈ψ+, f〉 ≥ 1− ε.
Consequently,

〈ψ, |f |〉 = 〈2ψ+, |f |〉 − 〈|ψ|, |f |〉 ≥ 2(1− ε)− 1 = 1− 2ε.

Let f ′′ ∈ E∗∗ be a w∗-cluster point of (An(T )|f |)∞n=1. Then f ′′ obviously
satisfies T ∗∗f ′′ = f ′′. Since

lim
n→∞

dist(An(T )|f |, [0, y]) ≤ η

and [0, y] is weakly compact in E, we obtain

f ′′ ∈ [0, y] + ηBE∗∗ ⊆ E + ηBE∗∗ ,

where as usual BE∗∗ denotes the unit ball of E∗∗. Take the canonical pro-
jection P : E∗∗ → E. Then (I − P )f ′′ ∈ ηBE∗∗ , and

〈ψ,Pf ′′〉 = 〈ψ+, Pf
′′〉 − 〈ψ−, Pf ′′〉

= 〈f ′′, ψ+〉 − 〈(I − P )f ′′, ψ+〉 − 〈ψ−, Pf ′′〉
≥ 〈f ′′, ψ〉 − η = 〈ψ, |f |〉 − η ≥ 1− 2ε− η = ε > 0.

Moreover

TPf ′′ = TP (Tm)∗∗f ′′ ≥ TP (Tm)∗∗Pf ′′ = TPTmPf ′′ = Tm+1Pf ′′ ≥ 0.



Mean lower bounds for Markov operators 13

Thus the sequence (TmPf ′′)m is decreasing in E = L1(Ω,Σ, µ), and hence
w := limm→∞ TmPf ′′ exists. Clearly Tw = w, and 〈ψ,w〉 = 〈ψ,Pf ′′〉 > 0.
Thus T is mean ergodic.

The space Fix(T ) is an L1-space as the range of a Markov projection.
Since

‖(z − y)+‖ ≤ η < 1 (∀z ∈ D ∩ Fix(T )),

which implies

‖y‖ ≥ ‖z ∧ y‖ ≥ 1− η > 0 (∀z ∈ D ∩ Fix(T )),

we obtain dim Fix(T ) <∞. Take a maximal pairwise disjoint family {uk}mk=1
of T -invariant densities (it is clear that m = dim Fix(T )), and put

Ωk := {x ∈ Ω : uk(x) > 0}, Ω0 := Ω −
m⋃

k=0

Ωk.

Let Q be the strong limit of (An(T ))n. Then Q may be written in the form

Qg =
m∑

k=1

λk(g)uk (∀g ∈ L1),

where λk are positive linear functionals on L1, which we may consider as
elements of L∞. Since Quk = uk we obtain

uk =
[ �
Ω

λk · uk dµ
]
uk.

Hence λk ·
�
Ωk =

�
Ωk . Put φk = λk −

�
Ωk . Then assertion (ii) is true for m,

Ωk, uk, and φk.
Given g ∈ L1

+, the sequence (‖ �
Ω0 · Tng‖)n is obviously decreasing, and

satisfies limn→∞ ‖
�
Ω0 · An(T )g‖ = 0. Hence the inequality

inf
n
‖ �

Ω0 · Tng‖ ≤
1
n

n−1∑

k=0

‖ �
Ω0 · T kg‖ = ‖ �

Ω0 · An(T )g‖

implies that limn→∞ � Ω0
Tng dµ = 0.

(ii)⇒(i). This is an easy exercise.

We point out that our proof shows that in fact the assertion of the
theorem is also true for arbitrary positive operators on L1(X,Σ, µ).

In some applications of Theorem 1 it seems to be easier to check an
integral form of (1). Originally such a condition was introduced and exploited
by Komornik, Lasota, and Socała [Ko], [KL], [LS]. A stronger but similar
integral condition was used by Bartoszek [Ba1].

Theorem 2. Under the same conditions as in Theorem 1 assertions (i)
and (ii) are equivalent to:
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(iii) There exist δ > 0 and η < 1 and a set A ∈ Σ with µ(A) < ∞ such
that for every density f there is an integer n(f) for which

(3)
�

(Ω−A)∪B
An(T )f dµ ≤ η

for n ≥ n(f) and µ(B) ≤ δ.

Proof. (iii)⇒(i). Let X := {An(T )f : f ∈ L1
+, ‖f‖ = 1, n ≥ n(f)}.

Obviously X is norm bounded in L1 by 1. Take some A ∈ Σ of finite
measure, η < 1 and δ > 0 which satisfy � B∪(Ω−A) g dµ ≤ η for all g ∈ X
whenever µ(B) ≤ δ. Suppose that (i) does not hold. Then for each k ∈ N
there is an element gk ∈ X such that ‖(gk − k

�
A)+‖ > 1− 1/k. Hence

1 ≤ lim
k→∞

∥∥∥(gk − k
�
A)+

∥∥∥ = lim
k→∞

[ �
Ω−A

gk dµ+
�
A

(gk − k
�
A)+ dµ

]

≤ lim
k→∞

[ �
Ω−A

gkdµ+
�

Bk:={x∈Ω : gk(x)≥k}
gk dµ

]

= lim
k→∞

�
Bk∪(Ω−A)

gk dµ ≤ η < 1,

since µ(Bk) ≤ 1/k ≤ δ for large k. The contradiction shows that (i) holds.
(i)⇒(iii). Let (i) be satisfied by an element h ∈ L1

+ and η < 1. Set
Y := [−h, h]+ηBL1, where BL1 is the unit ball of L1. Then ‖(|f |−h)+‖ ≤ η
for all f ∈ Y. Take a set A ∈ Σ of finite measure and δ > 0 which satisfy

� B∪(Ω−A) y dµ ≤ (1− η)/4 for all B ∈ Σ with µ(B) < δ. Then we have�
B∪(Ω−A)

An(T )f dµ ≤
�
Ω

(An(T )f − h)+ dµ+
�

B∪(Ω−A)

h dµ

≤ ‖(An(T )f − h)+‖+ (1− η)/4

< η + (1− η)/2 = (1 + η)/2 < 1

for all f ∈ X+ with ‖f‖ = 1 whenever µ(B) < δ and n ≥ n(f) is large
enough.

To complete the picture we give a strongly continuous variant of Theo-
rems 1 and 2.

Theorem 3. Let T = (Tt)t≥0 be a strongly continuous Markov semi-
group on L1(Ω,Σ, µ). Then the following assertions are equivalent :

(i) There exist h ∈ L1
+ and η < 1 such that

(4) lim
t→∞

∥∥∥∥
(

1
t

t�
0

Tτf dτ − h
)

+

∥∥∥∥ ≤ η

for every density f .
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(ii) There is an integer m, a decomposition Ω =
⋃m
k=0Ωk into pairwise

disjoint subsets Ωk ∈ Σ, and two sequences of nonnegative functions uk =
T uk ∈ D(Ωk) and φk ∈ L∞(Ω0), k = 1, . . . ,m, such that

∑m
k=1 φk =

�
Ω0

and for every g ∈ L1(Ω) the norm limit limt→∞ 1
t � t0 Tτgdτ exists and it may

be written in the form

(5) lim
t→∞

1
t

t�
0

Tτg dτ =
m∑

k=1

[ �
Ω

(φk +
�
Ωk)g dµ

]
uk;

moreover , limt→∞ � Ω0
Ttgdµ = 0.

(iii) There exist δ > 0 and η < 1 and a set A ∈ Σ with µ(A) < ∞ such
that for every density f there is r(f) ≥ 0 for which

(6)
�

(Ω−A)∪B

[
1
r

r�
0

Tτf dτ

]
dµ ≤ η

for r ≥ r(f) and µ(B) ≤ δ.

The proof of Theorem 3 is similar to the proofs of Theorems 1 and 2 and
we drop it. Notice also that Theorem 3 can be easily reduced to Theorems
1, 2.

Let us point out that in all theorems of this section it is enough to
consider only a dense subset of D instead of D.

2. Applications. In order to show the power of Theorem 1 we give two
corollaries of it, the first of them being well known as Lasota’s lower bound
criteria [La] of asymptotic stability. The other one is new.

Following Lasota we call a Markov operator T statistically stable when-
ever there exists a density g such that

lim
n→∞

‖Tnf − g‖ = 0 (∀f ∈ D),

and we call a function h ∈ L1
+ a lower-bound function for T if

lim
n→∞

‖(h− Tnf)+‖ = 0 (∀f ∈ D).

Finally, we say that h is nontrivial if h 6= 0. The following result is due to
Lasota [La, Theorem 1.1].

Theorem 4 (Lasota). Let T be a Markov operator on L1. Then the fol-
lowing assertions are equivalent :

(i) T is statistically stable.
(ii) There exists a nontrivial lower-bound function for T .

Proof. (i)⇒(ii). Let a density h ∈ L1 satisfy

lim
n→∞

‖Tnf − h‖ = 0 (∀f ∈ D).

Then h is a nontrivial lower-bound function for T .
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(ii)⇒(i). Let 0 6= h ∈ L1
+ be a nontrivial lower-bound function for T .

Set as usual
L1

0 := {f ∈ L1 : ‖f+‖ = ‖f−‖}.
Since h is a nontrivial lower-bound function, we obtain easily

lim
n→∞

‖(An(T )f − h)+‖ ≤ 1− ‖h‖ < 1 (∀f ∈ D),

and hence T is mean ergodic due to Theorem 1. Then there exists a T -
invariant density, say g. Since L1 = L1

0 ⊕ R·g, it is enough to show that

(7) lim
n→∞

‖Tnf‖ = 0 (∀f ∈ L1
0).

Notice that (‖T nf‖)n is a monotone sequence since T is a contraction. Hence
‖f‖ ≥ limn→∞ ‖Tnf‖ = infn ‖Tnf‖ for every f . Now suppose that there
exists an f ∈ L1

0 with 2α := limn→∞ ‖Tnf‖ > 0. Then

2α = lim
n→∞

‖Tnf‖ = lim
n→∞

‖Tn(f+ − f−)‖(8)

= lim
n→∞

‖(Tnf+ − αh)+ − (Tnf− − αh)+‖
≤ lim

n→∞
(‖(Tnf+ − αh)+‖+ ‖(Tnf− − αh)+‖)

= 2α(1− ‖h‖),
which is impossible (notice that (8) is true because h is a lower-bound func-
tion and ‖f+‖ = ‖f−‖ ≥ α). Consequently, the condition (7) holds.

An analogous result also holds for continuous-time parametrized semi-
groups. For an elegant proof we refer to [LM, Thm. 7.4.1].

We call an h ∈ L1
+ a mean lower-bound function for a Markov operator

T if
lim
n→∞

‖(h−An(T )f)+‖ = 0 (∀f ∈ D).

Obviously any lower-bound function is mean lower-bound. A special kind
of nontrivial mean lower bounds was used by W. Bartoszek [Ba2]. His ad-
ditional assumptions on the operator T imply that it is asymptotically pe-
riodic.

Theorem 5. Let T be a Markov operator on L1. Then the following
assertions are equivalent :

(i) There exists a density g such that

(9) lim
n→∞

‖An(T )f − g‖ = 0 (∀f ∈ D).

(ii) There exists a nontrivial mean lower-bound function for T .

Proof. (i)⇒(ii). Let g satisfy limn→∞ ‖An(T )f − g‖ = 0 for all f ∈ D.
Then g is a nontrivial mean lower-bound function for T .
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(ii)⇒(i). Let 0 6= h ∈ L1
+ be a nontrivial mean lower-bound function

for T . Then
(10) lim

n→∞
‖(An(T )f − h)+‖ ≤ η (∀f ∈ D)

with η := 1−‖h‖. By Theorem 1, T is mean ergodic, so we obtain a decom-
position

L1 = Fix(T )⊕ (I − T )L1.

All that we need is dim(Fix(T )) = 1. By Theorem 1, Fix(T ) is spanned by
dim(Fix(T )) = p densities uk, which in case p > 1 satisfy

inf(ui, uk) = 0 for i 6= k.(11)

But Tuk = uk implies ‖(h− uk)+‖ = limn→∞ ‖(h−An(T )uk)+‖ = 0, hence
uk ≥ h > 0 for all k ≤ p, which by (11) is only possible in case p = 1.

The strongly continuous variant of Theorem 5 may be obtained similarly
by using Theorem 3, or it can be derived from Theorem 5. It reads as follows.

Theorem 6. Let T = (Tt)t≥0 be a strongly continuous Markov semi-
group on L1. Then the following assertions are equivalent :

(i) There exists a density g such that

lim
t→∞

∥∥∥∥
1
t

t�
0

Tτf dτ − g
∥∥∥∥ = 0 (∀f ∈ D).

(ii) There exists an 0 6= h ∈ L1
+ that satisfies

lim
t→∞

∥∥∥∥
(
h− 1

t

t�
0

Tτf dτ

)

+

∥∥∥∥ = 0 (∀f ∈ D).

To complete the picture we give two different applications of Theorem 5.
As usual, let (Ω,Σ, µ) be a σ-finite measure space and let K : Ω×Ω → R+
be a Markov kernel. Define T : L1(Ω,Σ, µ)→ L1(Ω,Σ, µ) by

Tf(x) =
�
K(x, y)f(y) dy,

and by induction

K1(x, y) = K(x, y), Kn+1(x, y) =
�
K(x, z)Kn(z, y) dz.

Then Tnf(x) = � Kn(x, y)f(y) dy. Finally, we set

Kn(x, y) =
1
n

n∑

k=1

Kk(x, y).

Then

TAn(T )f(x) =: Anf(x) =
1
n

n∑

k=1

T kf(x) =
�
Kn(x, y)f(y) dy.

We obtain the following proposition.
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Proposition 7. Assume that � lim infn→∞(infyKn(x, y)) dx > 0. Then
T is mean ergodic and the space of its fixed vectors is one-dimensional.

Proof. Set h(x) = lim infn→∞ infyKn(x, y). Then h 6= 0 by hypothesis.
Moreover an easy computation shows that h is a mean lower bound. Now
apply Theorem 5.

Let (Ω,Σ, µ) as well as K(x, y), T , and Kn(x, y) be as before. Let V :
Ω → R+ be an arbitrary measurable function which is not a null function
with respect to µ, and set Ga := V −1([0, a]) = {x ∈ Ω : V (x) ≤ a}.

Proposition 8. Assume that there exists a constant M > 0 and a sub-
set D0 of the set D of all densities which is dense in D such that

lim sup
n→∞

� �
V (x)Kn(x, y)f(y) dy dx ≤M for all f ∈ D0.

Moreover assume that for every a > 0 with Ga 6= ∅,�
inf
y∈Ga

K(x, y)dx = δ(a) > 0.

Then T is mean ergodic and the space of its fixed vectors is one-dimensional.

Proof. Let f be in D0. Then there exists n0 such that� �
V (x)Kn(x, y)f(y) dy dx ≤M + 1

for all n ≥ n0. Choose a ≥ 3M such that Ga 6= ∅. Then by Chebyshev’s
inequality (cf. [LM, Prop. 5.7.1]) we obtain, for An := n−1∑n

k=1 T
k =

TAn(T ),
�
Ga

Anf dx ≥ 1− 1
a

�
V Anf dx > 1− M + 1

3M
> 1/2

for n ≥ n0. Moreover An+1 ≥ n
n+1TAn. Hence

An+1f(x) ≥ n

n+ 1

�
K(x, y)Anf(y) dy ≥ n

n+ 1

�
Ga

K(x, y)Anf(y) dy.

Therefore for h(x) = infy∈Ga K(x, y) we obtain

An+1f(x) ≥ n

n+ 1
inf
y∈Ga

K(x, y)
�
Ga

Anf(y) dy ≥ n

n+ 1
· 1

2
· h(x) ≥ h(x)

4
.

Thus limn→∞ ‖(Anf − h/4)−‖ = 0 for all f ∈ D0. But since D0 is dense
in D, and h 6= 0 by hypothesis, h/4 is a mean lower bound and the assertion
follows from Theorem 5.

Remark. If V is bounded then the hypotheses on T imply that T dom-
inates an operator 1Ω ⊗ h, from which it follows easily that h is a lower
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bound, and hence T is not only ergodic but even statistically stable by The-
orem 4. So Proposition 8 is only interesting in the case of V unbounded (cf.
also [LM, Theorem 5.7.2]).
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